on hydrophobic mismatch. These redistribution events appear to begin about 500 ns after beginning the simulations.

2222-Pos Board B241 Pre-Exposure of Pulmonary Surfactant to Hyaluronate Alters its Structure and Interfacial Properties

Lopez-Rodriguez Elena1, Antonio Cruz1, Ralf P. Richter1,2, H. William Taeschl1, Jesús Perez-Gil3.
1Complutense University Madrid, Madrid, Spain, 2CIC-BiomaGUNE, San Sebastian, Spain, 3Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany.
Pulmonary surfactant is a complex mixture of lipids and proteins lining the alveolar air-water interface. By lowering the surface tension, pulmonary surfactant stabilizes the respiratory epithelium against physical forces tending to collapse it. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome (ARDS) or meconium aspiration syndrome (MAS), where naturally occurring inhibitory agents reach the lung. We have already confirmed the higher resistance to inhibition of preparations combining pulmonary surfactant and polymers such as hyaluronan (HA) and the potential use of these additives to design new therapeutic surfactant prepa-

2223-Pos Board B242 Identification of the Regulatory Anionic Lipid Site in Kir Channels

Sun-Joo Lee1, Jacob Gyore2, Colin G. Nichols1.
1Washington University, St. Louis, MO, USA, 2University of Illinois at Urbana-Champaign, Champaign, IL, USA.
Inwardly rectifying potassium channels (Kir) are regulated by multiple factors, including multiple lipids. In addition to a specific requirement for phosphatidyl-4,5-bisphosphate (PI(4,5)P2) for channel activity of Kir2.1, analysis of purified proteins reconstituted into liposomes has revealed a secondary requirement for non-specific anionic lipids, which increase PI(4,5)P2 sensitivity by ~100 fold [Cheng et al. 2011, Biophys. J. 100, 620-628]. Recent crystal structures of eukaryotic Kir channels in complex with PI(4,5)P2 reveal a common PI(4,5)P2 binding site [Hansen et al, 2011, Nature. 477, 495-498; Whorton & MacKinnon, 2011, Cell, 147, 199-208], but they have not identified the syner-
gistic anionic lipid site.

We have performed extensive docking simulations to identify potential interac-
tion sites of different phospholipids with Kir2.1 channels. These simulations indicate two distinct binding sites; a high affinity site that corresponds to the crystallographic PI(4,5)P2 binding pocket and a lower affinity site, involving two lysine residues further towards the periphery of the cytoplasmic domain, that may correspond to the secondary anionic lipid site. When the two lysine residues are mutated to cysteine, channel activity is essentially abolished, even in the presence of PI(2). Cysteine modification of these residues by decyl-MTS, which essentially provides a ‘lipid tether’ to the residue, restores channel activity in the presence of low levels of PI(2). These results point strongly to the identified site as being the site for non-specific anionic lipid interaction, and support a model in which the anionic lipid interaction (or ‘lipid tethering’) pulls the Kir domain towards the membrane, facilitating PI(4,5)P2-mediated channel opening.

2224-Pos Board B243 Interaction at the Membrane Midplane Mediates Interleaflet Coupling

Andreas Horner1,2, Sergey Akimov2, Peter Pohl1.
1Johannes Kepler Universität, Linz, Austria, 2Institution of Russian Academy of Science, Moscow, Russian Federation.
Transmembrane signaling implies that peripheral protein binding to one leaflet can be detected by the opposite leaflet. Even without involvement of raft lipids we showed (Horner et. al. Biophys. J. 2009) that, peripheral binding of charged molecules (poly-lysine, PLL) to planar lipid bilayers is detected at the other side. Addition of PLL to both sides of the membrane sandwiched lipids between two PLL molecules, indicating a formed nanodomains. A 2D surface tension between the monolayers is thought to be of comparable size as the line tension in one of the monolayers, interactions at the membrane midplane don’t explain the existence of small nano domains. We tested this assumption by measuring the individual lipid mobility’s in both leaflets of a free standing planar lipid bilayers and developed a model. The adsorption of a polypeptide decreased lipid mobility of the adjacent (lower) monolayer. This was revealed by fluorescence correlation spectroscopy (FCS). Depending on the size of the polypeptide, lipid diffusion was either slower or faster than that of the polypep-
tide. Although only one lipid type was used in both monolayers, lipid mobili-
y’s were not equal. The polypeptide decelerated lipid movement in the distant monolayer to a much smaller degree than it did affect lipid mobility in the adjacent monolayer. Based on these observations we propose a model that suggests that the coupling between monolayers is due to friction at the membrane midplane. The interlayer friction coefficient seems to be much larger than the in-layer friction coefficient which explains the existence of small nano-domains.

2225-Pos Board B244 Molecular Basis of the Interaction between Signaling Lipids and Proteins: the Special Case of Phosphatidic Acid

Johanna M. Rankenbein1, Carlos S. Galvan-Ampudia2, Christa Testerink2, Edgar E. Kooijman1.
1Kent State University, Kent, OH, USA, 2University of Amsterdam, Amsterdam, Netherlands.
Intricate networks of signaling cascades regulate cellular development and re-
sponse to environmental factors. Within these cascades, the lipid second mes-
enger phosphatidic acid (PA) is an important regulator in all eukaryotes. Rapid but transient increase of PA levels regulate growth, acclimatization and survival during development and stress response. Signaling lipids, includ-
ing PA, function by selectively recruiting proteins to the membrane. This facil-
itates either the activation or inhibition of these target proteins. However, the exact details of phospholipid-mediated stress response mechanisms are still largely unclear, partially due to the lack of characterized target proteins of PA. Here we report on characterization of the interaction between various regula-
tory proteins and lipid second messengers by determining their lipid binding specificity and affinity for PA. Furthermore, to assess relative binding affinity in variable structural lipid environments, in vitro liposome-binding assays with liposomes covering a range of lipid compositions are performed. In our binding studies, phosphatidylethanolamine is utilized to study the role of membrane curvature and electrostatics in lipid-binding. Specific attention is given to the electrostatic/hydrogen bond switch model. Hydro-
drogen bond formation between basic amino acids and the PA phosphomo-
noester headgroup increases the negative charge of PA and allows for decent two protein binding domain. The elucidation of the mechanism be-
hind the binding of proteins to lipid second messengers such as PA will further develop our understanding of their function in plant growth and stress re-
sponses. This in turn can help in understanding regulation and cell functioning in numerous organisms.

2226-Pos Board B245 Cholesterol Stabilizes Ion Channel Function during Sphingomyelinase Hydrolysis

Georg Pabst1, Benjamin Kollmitzer1, Peter Heftberger1, Michael Rappold1,2.
1University of Graz, Graz, Austria, 2Graz University of Technology, Graz, Austria.
Sphingomyelinase, a central enzyme of sphingolipid metabolism, hydrolyses sphingomyelin to ceramide, which is a potent modulator of membrane proper-
ties. using well-defined mixtures of palmitoyl-oleoyl-phosphatidylcholine (POPC), sphingomyelin (SM), ceramide (Cer) and cholesterol (Chol), we coexist of L
a
b

molecules (poly-lysine, PLL) to planar lipid bilayers is detected at the other side. Addition of PLL to both sides of the membrane sandwiched lipids between two PLL molecules, indicating a formed nanodomains. A 2D surface tension between the monolayers is thought to be of comparable size as the line tension in one of the monolayers, interactions at the membrane midplane don’t explain the existence of small nano domains. We tested this assumption by measuring the individual lipid mobility’s in both leaflets of a free standing planar lipid bilayers and developed a model. The adsorption of a polypeptide decreased lipid mobility of the adjacent (lower) monolayer. This was revealed by fluorescence correlation spectroscopy (FCS). Depending on the size of the polypeptide, lipid diffusion was either slower or faster than that of the polypeptide. Although only one lipid type was used in both monolayers, lipid mobility’s were not equal. The polypeptide decelerated lipid movement in the distant monolayer to a much smaller degree than it did affect lipid mobility in the adjacent monolayer. Based on these observations we propose a model that suggests that the coupling between monolayers is due to friction at the membrane midplane. The interlayer friction coefficient seems to be much larger than the in-layer friction coefficient which explains the existence of small nano-domains.