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Abstract

An incremental approach for the identification of stoichiometries and kinetics of complex homogeneous reaction systems is presented in this
paper. The identification problem is decomposed into a sequence of subproblems. First, the reaction fluxes for the various species are estimated
on the basis of balance equations and concentration measurements stemming from isothermal experiments. This task represents an ill-posed
inverse problem that requires appropriate regularization. Using target factor analysis, suitable reaction stoichiometries can then be identified.
In a further step, the reaction rates are estimated without postulating a kinetic structure. Finally, the kinetic laws, i.e., the dependencies of the
reaction rates on concentrations, are constructed by selecting the best model structure from a set of model candidates. This incremental approach
is shown to be both efficient and flexible for utilizing the available process knowledge. The methodology is illustrated on the industrially
relevant acetoacetylation of pyrrole with diketene.
� 2006 Elsevier Ltd.
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1. Introduction

Mathematical modeling of chemical and biochemical pro-
cesses plays an increasing role in today’s competitive industries.
Such models are typically needed for various tasks including
process design, process analysis, optimization of process condi-
tions and in an increasing manner also for model-based control.
The description of reaction kinetics often represents the most
challenging part in the modeling of (bio-)chemical reactors.
A reliable description is rarely available a priori. For example,
it is well known that reaction kinetics cannot necessarily be de-
rived even if the stoichiometries are known (Connors, 1990).
In some cases, even the stoichiometric model of the reaction
system under investigation is not fully known. A reliable ki-
netic model (i.e., a model including both stoichiometries and
reaction kinetics) must then be identified from experimental

∗ Corresponding author.
E-mail address: marquardt@lpt.rwth-aachen.de (W. Marquardt).

1 Present address: Degussa AG, Process Technology, 63457 Hanau,
Germany.

0009-2509 � 2006 Elsevier Ltd.
doi:10.1016/j.ces.2006.04.028

data obtained in laboratory experiments or during process
operation itself.

These identification steps are normally carried out in systems
where the relevant phenomena can be observed in isolation,
preferably not in interaction with other physical phenomena
such as interfacial transfer processes. For the investigation of
reaction kinetics in liquid phase, a stirred batch or semi-batch
reactor is used in the majority of cases. Integral and differen-
tial methods are typically used to derive the kinetics (Froment
and Bischoff, 1990; Holland and Rayford, 1989). Assuming
some kinetic model structure, the unknown rate constants can
be determined numerically or even graphically. Experimental
conditions are chosen to support the analysis. In particular, if
several reactions occur simultaneously, these methods require
a suitable experimental strategy to separate the effects of the
individual reactions in a sequence of experimental runs.

For complex reaction systems, dynamic parameter estima-
tion problems are often formulated to estimate the unknown
parameters (Bard, 1974). All known information is combined
to produce a dynamic model of the experiment, which consists
of several submodels. Depending on the process considered,
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such submodels may represent heat and mass balances, mass
transfer models, thermodynamics and, crucial for reaction
systems, stoichiometries and reaction kinetics describing how
and to which extent the various chemical species interact. The
model is then numerically integrated and fitted to experimental
data. The data fit adjusts the unknown model parameters in a
way to minimize the deviation between model prediction and
the noise-corrupted measurement data. To this end, weighted
least squares, maximum likelihood or Bayesian approaches
are most commonly employed (Bard, 1974). Alternatively, an
error-in-variables approach can handle errors in both depen-
dent and independent data coordinates. If there is no unique
model structure, but rather a set of candidate models to ac-
count for the chemical reactions, fitting is performed for each
candidate, and the most prospective candidate model is identi-
fied by appropriate model discrimination techniques (Akaike,
1974; Stewart et al., 1998). We refer to this approach as si-
multaneous model identification. The method is capable of
handling reaction systems with arbitrary complexity including
simultaneous reactions and formal kinetics. Variable experi-
mental settings such as a variable feed rate can be accounted
for in the model. Commercial parameter estimation software
is readily available in a number of implementations and the
method leads to statistically optimal estimation of the unknown
parameters.

However, there are some disadvantages involved with simul-
taneous model identification. If an incorrect model structure is
assumed (i.e., the stoichiometric model or some of the kinetic
laws), an erroneous overall model prediction is obtained. Fur-
thermore, the model error is difficult to attribute to a particular
submodel. If, on the other hand, a set of potential model can-
didates is available, parameter fitting must be performed for
each model candidate. The complexity grows if candidates are
available for several submodels. In conjunction with the
computationally expensive dynamic parameter estimation,
computational cost may become prohibitive. From a numerical
perspective, suitable parameter initialization is often difficult,
thereby giving rise to convergence problems. Most parameter
estimation packages are tailored to a small amount of data,
whereas modern optical measurement techniques such as IR
(Alsmeyer et al., 2002) or Raman spectroscopy (Bardow et al.,
2003) produce a vast amount of data which may overstrain
the capabilities of the packages. In summary, the simultaneous
identification approach is often not fully satisfactory to identify
complex reaction systems at moderate effort.

Alternatively, the simultaneous identification problem can be
decomposed into several subproblems. Motivated by the com-
plexity of one-step identification of hybrid models, i.e., mod-
els consisting of both a physically motivated and a data-driven
part, Tholudur and Ramirez (1999) have used a two-step ap-
proach for the identification of kinetics: reaction rates are first
identified, assuming known curve characteristics, and are sub-
sequently correlated with the independent state variables using
a feed-forward neural net approximation. Van Lith et al. (2002)
have combined an extended Kalman filter for the estimation
of states and rates with subsequent fuzzy submodel identifi-
cation. Chang and Hung (2002) correlate polymerization rates

and known states using neural networks. Yeow et al. (2003,
2004) presented an approach to convert time–concentration data
into concentration–reaction rate data and to perform algebraic
regression on this data set. These approaches aim at decom-
posing the identification process in two steps to reduce com-
plexity. However, the methods either need to postulate specific
model assumptions, generally unknown in real systems or are
restricted to individual reactions, which limits their general ap-
plicability. A more systematic, multi-step approach for the iden-
tification of hybrid reaction models has been proposed recently
(Brendel et al., 2003). The stepwise identification of kinetic
phenomena has also been examined by Bardow and Marquardt
(2004a) in the context of the identification of diffusive mass
transfer.

In this paper, a unifying incremental identification concept
is presented for the stepwise identification of structured sub-
models in complex reaction systems. The advantages of simul-
taneous identification, such as general applicability, are largely
retained. At the same time, the complexity is considerably re-
duced by problem decomposition, which results in a more ef-
ficient and robust analysis and supports the modeling process.
The hierarchical structure of any process model is exploited
for the stepwise identification of submodels. Contrary to ex-
isting work, the approach is applicable to arbitrarily complex
homogenous systems.

The time-variant reaction fluxes for the various species are
first estimated from noisy concentration data using the filter-
based approach of Mhamdi and Marquardt (1999) that relies on
material balances. In cases where the reaction stoichiometries
are unknown, target factor analysis (TFA) is applied to iden-
tify a stoichiometric model (Bonvin and Rippin, 1990). Sub-
sequently, the individual reaction rates can be calculated from
the estimated reaction fluxes using the knowledge of reaction
stoichiometries. The reaction rates and estimated concentration
data are then correlated to either identify the unknown param-
eters in a given kinetic model or select a suitable model struc-
ture from a set of candidates. The approach is especially suited
for nowaday’s data-rich measurement techniques such as IR or
Raman spectroscopy, where concentration data can be obtained
almost continuously in situ. It is applicable to all ideally mixed
reactor types operated under transient conditions. Continuous
flow experiments with plug flow reactors can also be treated.

The paper is organized as follows: first, the principal ideas
behind the incremental identification approach are presented
in Section 2. Section 3 describes the base case when data are
available for all species involved in the reaction network, while
Section 4 extends the theory to the case of incomplete measure-
ments. The approach is illustrated on the industrially relevant
acetoacetylation of pyrrole with diketene in Section 5. Finally,
the conclusions are summarized in Section 6.

2. The incremental identification concept

The incremental identification approach mirrors the steps
taken when developing a model for a given process. For clari-
fication, dynamic model development of an isothermal reactor
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Fig. 1. Generic reactor schematic.

is considered first and the methodology is then transferred to
model identification.

2.1. Reactor modeling

Consider the generic, ideally mixed, homogeneous and
isothermally operated reactor depicted in Fig. 1, for which a
dynamic model is to be generated. The mole balance equations
are set up first

d

dt
(v(t)c(t)) = q in(t)cin(t) − qout(t)c(t) + f r(t). (1)

Here, v(t) denotes the reactor volume at time t, q in(t) is the
volumetric feed rate and c(t) and cin(t) are molar concentration
vectors2 of the species in the reactor and the feed, respectively.
In the balance equation, the reaction fluxes f r(t) for the various
species, i.e., the net molar amounts consumed or produced per
unit time by all reactions are unknown.

The stoichiometric relations describing the reaction network
may be cast into the nR ×nS stoichiometric matrix N defined as

N =
⎡
⎣ �11 · · · �1nS

...
. . .

...

�nR1 · · · �nRnS

⎤
⎦ , (2)

where �ji , j =1, 2, . . . , nR, i =1, 2, . . . , nS , are the stoichio-
metric coefficients for the ith species in the jth reaction and nS

is the number of species involved in the nR reactions.
Using the stoichiometric matrix N, a constitutive equation

is set up to express the reaction fluxes in terms of the nR-
dimensional reaction rate vector r(t),

f r(t) = v(t)NTr(t). (3)

The reaction rates can then be described by a set of constitu-
tive equations as functions of the concentrations c(t) and the
reaction parameters �:

r(t) = m(c(t), �). (4)

2 Unless otherwise indicated, a vector is defined as a column vector. In
Eq. (1), the dimension of the vectors c(t), cin(t) and f r(t) is nS × 1.

This way, a dynamic model of the reactor has been set up,
which is capable of predicting the reactor behavior over time,
once the various terms in (1)–(4) are known.

2.2. Reactor model identification

It is assumed next that the reactor model is unknown and
needs to be identified from experimental data. In particular,
the number of occurring reactions, the stoichiometric model
of the network and the kinetic laws describing the chemical
conversion are unknown and need to be determined from data.

Measurements over time are supposed to be available for the
reactor volume v (l) and the concentrations ci (mol/l) of some or
all species involved in the reaction network. A detailed analysis
of the measurements required is given below. The flow rates q in

(l/min) and qout (l/min) as well as the feed concentrations cin
i

(mol/l) are set by the experimental procedure and are therefore
known as functions of time. Measurements taken are corrupted
with noise.

The incremental identification of reaction kinetics is
schematically depicted in Fig. 2. The method exploits the
hierarchical model structure sketched in Section 2.1, provid-
ing stepwise identification of quantities as they are used in
the modeling process. Incremental identification includes the
following steps, as marked in Fig. 2:

(1) The reaction fluxes f̂ r
i (t) are estimated individually from

concentration ci and cin
i , volume and flow rate measure-

ments using mole balances only (Eq. (1); Section 3.1).
(2) If the reaction stoichiometric model N is unknown, TFA is

used to test possible stoichiometries and to determine the
number of occurring reactions (Eq. (3); Section 3.2).

(3) With the stoichiometric information, the reaction rates
r̂(t) are then calculated from the fluxes f̂ r(t) (Eq. (3);
Section 3.3).

(4) Kinetic laws are obtained by regressing the time-variant
estimates of concentrations ĉ(t) and rates r̂(t) with candi-
date kinetic structures (Eq. (4); Section 3.4).

In an adaptive modeling context (Marquardt, 2002), the in-
cremental approach allows the utilization of as much informa-
tion as can be safely provided by first-principle modeling or
sound empirical approaches. The process of identification then
reduces to modeling uncertainties, i.e., unknown parameters in
a given structure or the model structure itself. For the identifi-
cation of reaction kinetics, the approach permits to determine
relevant reaction kinetics directly, independently of the other
reactions, i.e., models for irrelevant reactions need not be in-
cluded in the identification process.

Each of the identification steps provides additional infor-
mation regarding the reaction system, which facilitates the
selection of feasible model candidates for the following steps.
If no suitable model structure can be established, some data-
driven function approximation may replace the structured
model (Brendel et al., 2003; Brendel, 2005).

Decomposition of the identification procedure results in a
sequence of decoupled identification problems. Decoupling is
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Fig. 2. Schematic of the incremental identification approach.

achieved both vertically and horizontally. Vertical decomposi-
tion results from exploiting the hierarchical model structure in
Fig. 2, i.e., subsequent estimation of reaction fluxes, stoichiom-
etry, reaction rates and reaction parameters. Horizontal decom-
position denotes the fact that a given identification step can be
performed individually for each component, e.g. reaction flux
for species i independent of the other reaction fluxes, stoichiom-
etry for reaction j independent of the other reactions, reaction
rate for reaction j independent of the other reaction rates, and
parameters for reaction j independent of the other reactions.
Due to the decoupling, the number of possible model candi-
dates in each step is drastically reduced. In addition, kinetics
identification is restricted to the solution of purely algebraic
regression problems as process dynamics are considered in the
flux estimation and can be omitted subsequently. This leads to a
drastic increase in efficiency and robustness, compared to con-
ventional simultaneous parameter estimation. For illustration,
a reaction system with nR reactions involved is considered.
For each of the reactions, a set of lj , j = 1, . . . , nR , feasible
candidates for the description of kinetic laws is available. The
most suitable model for the description of the reaction system
needs to be identified from experimental data. Using simultane-
ous identification, lsim =∏nR

j=1lj dynamic parameter estimation
problems need to be solved, where the most suitable model is
subsequently determined using some model discrimination cri-
terion. In comparison, the incremental identification approach
only requires the solution of linc =∑nR

j=1lj algebraic regression
problems in addition to the linear flux estimation problem in
the first step.

The steps involved in the incremental identification process
are discussed in more detail subsequently. To retain clarity of
description, the focus is on isothermal, single-phase systems.
The concept can however be readily extended to cover multi-
phase systems and non-isothermal cases, including the identifi-
cation of temperature-dependent reaction parameters (Brendel,
2005).

The detailed explanation of the identification steps is pre-
sented in the following two sections. The basic steps are cov-
ered in Section 3, when measurements are available for all
species participating in the reaction network. If measurements
are available only for a subset of species, some extensions to the
identification scheme are required. They are presented in Sec-
tion 4, including identifiability criteria for the unknown rates
and reconstruction of unmeasured species.

3. Incremental identification—the base case

Consider a homogeneous, chemical reaction system with nR

reactions involving nS species i ∈ S, where S is the set of
reacting species. The reactions take place in a generic, well
mixed and isothermal reactor with feed and effluent streams,
as depicted in Fig. 1. All species are assumed to be measured
for this base case.

3.1. Reaction flux estimation

The reaction fluxes need to be calculated for each species
from concentration data, flow rate and volume measurements.

3.1.1. Problem formulation
The time evolution of the number of moles of species i, ni

(mol), is given by

dni

dt
= f in

i − f out
i + f r

i , i = 1, . . . , nS , (5)

where f in
i and f out

i (mol/min) are the molar flow rates of species
i into and out of the reactor, and f r

i (mol/min) is the reaction flux
of species i. The molar flow rates f in

i and f out
i are calculated

from

f in
i = q incin

i , f out
i = qoutci , (6)
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where q in and qout denote the total volumetric feed and efflu-
ent streams, respectively. The concentration of species i in the
reactor is expressed by ci , whereas cin

i represents the feed con-
centration. The molar concentrations ci are defined according
to

ni = civ, (7)

where v is the reactor volume. Integration of (5) yields

ni(t) = ni(t0) +
∫ �=t

�=t0

[
f in

i (�) − f out
i (�)

]
d�

+
∫ �=t

�=t0

f r
i (�) d�. (8)

Following the approach of Mhamdi and Marquardt (1999),
the generic model of a dynamic system with unknown inputs
is formulated as

dyi(t)

dt
= f r

i (t), yi(t0) = 0, (9)

where f r
i (t) is considered as an unknown input to a dynamic

system.
Eqs. (8) and (9) give

yi(t) ≡
∫ �=t

�=t0

f r
i (�) d�

= ni(t) − ni(t0) −
∫ �=t

�=t0

[
f in

i (�) − f out
i (�)

]
d�, (10)

which indicates that the reaction fluxes f r
i (t), i ∈ S, can be

estimated independently for each species.
The unknown input must be determined on the basis of the

noisy measurement

ỹi (t) = yi(t) + �yi
(t). (11)

Here, the superscript ( ·̃ ) is used to denote a noisy quantity and
�y represents the measurement noise contained in ỹ.

To determine yi(t), measurement data need to be available
for the volume v(t), the concentrations ci(t) and cin

i (t), and the
volumetric feed and effluent flow rates q in(t) and qout(t). Each
of the measured quantities represents a noise-corrupted instance
z̃(t) = z(t) + �z(t) of the true quantity z(t). The measurement
noise terms �z(t) contribute to the errors �yi

(t). These errors
�yi

(t) usually do not show a normal distribution even if �z(t)
can be assumed to be normal.

3.1.2. Calculation of regularized flux estimates
The estimation of f r

i (t) from (9) represents a classical ill-
posed inverse problem (Engl et al., 1996). Since the measure-
ment ỹi (t) is noisy, the error in the estimate f̂ r

i (t) of f r
i (t) can

be arbitrarily large if no stabilizing regularization of the solu-
tion is considered.

For the solution of ill-posed problems, a variety of methods
exist in the literature. Mhamdi and Marquardt (1999, 2003)
have used Tikhonov–Arsenin filtering for the estimation of
f r

i (t). The quality of the estimation is greatly influenced by the

choice of the regularization parameter that expresses the trade-
off between noise reduction and bias in the estimate. Adequate
regularization parameters can be determined for example by the
L-curve criterion (Hansen, 1998). Smoothing splines (Craven
and Wahba, 1979) constitute an alternative to Tikhonov–Arsenin
filtering. Splines are piecewise polynomial functions that pos-
sess certain smoothness and differentiability properties at the
nodes. General cross validation (GCV) is often used to se-
lect a suitable regularization parameter (Craven and Wahba,
1979). Further alternatives can be found in the theory on kernel
smoothers (Härdle, 1990), wavelet decomposition (Abramovich
and Silverman, 1998) or neural networks (MacKay, 1992).
Taking a different point of view, estimation of unknown inputs
can be regarded as a dynamic optimization problem applied to
(9) (Binder et al., 2002).

3.1.3. Reduction of measurement noise
If all species are measured, the measurement noise contained

in ỹi can be reduced by means of data reconciliation based on
atomic balances (Bonvin and Rippin, 1990).

In particular, consider nQ data samples at the time instants
tq , t0 � tq � tnQ−1. The nQ × nS data matrix

Ỹ =
⎡
⎣ ỹ1(t0) · · · ỹnS

(t0)
...

. . .
...

ỹ1(tnQ−1) · · · ỹnS
(tnQ−1)

⎤
⎦ (12)

represents the molar changes due to the chemical reactions for
each species i ∈ S at time instants t0 � tq � tnQ−1. For the nS

species, the nA × nS atomic matrix reads

M =
⎡
⎣ m11 · · · m1nS

...
. . .

...

mnA1 · · · mnAnS

⎤
⎦ , (13)

where mij , i = 1, 2, . . . , nA, j = 1, 2, . . . , nS , is the number
of atoms of the ith type in the jth chemical species.

During reaction, the number of atoms of each type is con-
served. Hence, the error-free data matrix Y must necessarily
obey

YMT = 0. (14)

This property can be used to project the noisy matrix Ỹ onto
the null space of M. With the nS × nS projection matrix PM
associated with the null space of M (Björck, 1996),

PM = I − M†M, (15)

the reconciled data matrix Ỹ′ results from

Ỹ′ = ỸPM. (16)

Matrix I in Eq. (15) is the nS × nS identity matrix. The recon-
ciled data matrix is used now to address the inverse problem in
Eq. (9).
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3.2. Identification of a stoichiometric model

The time-varying reaction fluxes are now available for each
measured species. The focus is turned to the reaction path-
ways, i.e., the stoichiometric relations between the various
reactions.

If the stoichiometric matrix N is known, the reaction rates
can be readily calculated from the determined reaction fluxes
(Section 3.3). Often, however, the exact stoichiometric model
is unknown and needs to be identified from the data. To this
end, TFA can be used to determine the number of indepen-
dent reactions and the corresponding stoichiometries, without
knowledge of reaction kinetics (Bonvin and Rippin, 1990;
Amrhein et al., 1999). The basic idea is as follows: educated
guesses or chemical intuition on possible reaction pathways
generally provides candidate reactions for the system un-
der investigation. Then, TFA allows testing each candidate
reaction individually for compatibility with the measured
data.

To identify a stoichiometric model from the available mea-
surements, TFA requires (i) a target stoichiometric matrix Ntar,
the rows of which constitute possible stoichiometric candidates,
and (ii) the experimental data in the form of the data matrix
Ỹ or its reconciled version Ỹ′. When data from different ex-
periments are available, Ỹ is obtained as Ỹ = [ỸT

1 , . . . , ỸT
nE

]T,

where Ỹi is the data matrix for experiment i, i = 1, . . . , nE .
The target stoichiometric matrix Ntar is nRc × nS , where nRc

is the number of candidate reaction stoichiometries and nS the
number of species involved in the reaction network.

Bonvin and Rippin (1990) have used the method of factor
analysis (Malinowski, 1991) to determine the number of reac-
tions and to derive an observed stoichiometric space from Ỹ.
The validity of the target stoichiometries proposed is then indi-
vidually tested on the observed stoichiometric space. Good re-
sults were achieved using a recursive TFA approach, allowing
stepwise identification of stoichiometries and thereby reducing
considerably the effect of measurement noise on the data. The
procedure results in a nR × nS, nR �nRc stoichiometric matrix
N, compatible with the data observed in the system. For details
on the implementation, the reader is referred to the original
work (Bonvin and Rippin, 1990; Amrhein et al., 1999).

TFA is capable of handling non-isothermal systems, unmea-
sured species and unknown elements in the target matrices.
A necessary condition for the use of the TFA technique is that
the number of measured species must exceed the pseudo-rank
of data matrix Ỹ, i.e., the number of reactions that can be seen
in the measurements (Bonvin and Rippin, 1990).

The application of the TFA technique requires special at-
tention when linearly dependent stoichiometries occur, such
as reversible reactions. Indeed, TFA will accept any linear
combination of stoichiometries present in the system. This
may lead to difficulties, for example, in discriminating be-
tween sequential and parallel reaction mechanisms. Moreover,
the matrix Ntar must have full rank. Dependent reactions vi-
olate this condition, which requires the reduction of Ntar to
a full-rank matrix. These topics are detailed in the example
below.

Example 3.1. Consider a simple reaction system with compo-
nents A, B and C, where A is known to convert to species B
and C. The correct reaction path is unknown. Candidate stoi-
chiometries for the system can be set up as

A → B, (17a)

B → C, (17b)

A → C. (17c)

For the reaction of A to B and C, the following three possible
cases can be distinguished:

(1) Only reactions (17a) and (17b) occur (sequential reac-
tions).

(2) Only reactions (17a) and (17c) occur (parallel reactions).
(3) Reactions (17a)–(17c) occur (sequential and parallel reac-

tions).

Assume that all three reactions represent feasible stoichio-
metric candidates (case 3). Thus, the corresponding stoichio-
metric target matrix reads

Ntar =
[−1 +1 0

0 −1 +1
−1 0 +1

]
. (18)

Due to the linear dependence of the stoichiometric candidates,
rank(Ntar) = 2. To apply TFA, Ntar is reduced to

Nred
tar =

[−1 +1 0
0 −1 +1

]
(19)

by omission of reaction (17c).
In general, any of the linearly dependent stoichiometries can

be omitted to construct a full-rank matrix with rank(Nred
tar ) =

rank(Ntar). Matrix Nred then results from the application of
TFA to Nred

tar .
In the example system, the target stoichiometric model Nred

tar
(19) will always be accepted, regardless of the true mechanism
(either case 1, 2 or 3), as it is not possible to discriminate
between the three cases from experimental data at this point.
Likewise, any other target matrix constructed from two linearly
independent stoichiometries of reaction system (17) will be
accepted.

Generally, for such target matrices representing linear com-
binations of the stoichiometries inherent to the system, the ac-
cepted stoichiometric model is normally not identical to the
true stoichiometric model but rather represents a (known) lin-
ear combination. In consequence, the rates r(t) identified with
these stoichiometric matrices do not correspond to the real rates
occurring in the system, but constitute linear combinations of
the true rates. Hence, they are referred to as pseudo-rates r�(t).
As will be shown in Section 3.4.2, even these pseudo-rates can
be used to identify the kinetic laws.



5410 M. Brendel et al. / Chemical Engineering Science 61 (2006) 5404–5420

3.3. Reaction rate estimation

According to Eq. (3), the reaction flux of species i at time tq ∈
t = [t0, . . . , tnQ−1] can be expressed in terms of the individual
(pseudo-)reaction rates

f r
i (tq) = v(tq)

nR∑
j=1

�jirj (tq), i = 1, . . . , nS ,

q = 0, . . . , nQ − 1, (20)

where rj (tq) (mol/(l min)) is the rate of the jth reaction at
time tq . In matrix form, Eq. (20) reads

Fr = VRN, (21)

where Fr is the nQ × nS reaction flux matrix with elements
f r

i (tq), i=1, . . . , nS, q=0, . . . , nQ−1, and R is the nQ×nR

reaction rate matrix. The nQ ×nQ diagonal matrix V =diag{v}
represents the volume measurements v=[v(t0), . . . , v(tnQ−1)].

The estimation of the reaction rates R̂ from the reaction fluxes
F̂r may be formulated as a weighted least-squares problem, i.e.,

R̂ = arg min tr(�),

� =
(

F̂r − VRN
)

�−1
F

(
F̂r − VRN

)T
, (22)

with �F representing the nS ×nS covariance matrix of the noise
on the individually estimated reaction fluxes. The solution is
given as (Bard, 1974)

R̂ = V−1F̂r�−1
F NT

(
N�−1

F NT
)−1

. (23)

The stoichiometries contained in N are valid for both re-
versible and irreversible reactions. In the former case, the re-
actions may proceed in both directions, causing the estimated
reaction rates to take either only positive, only negative or pos-
itive as well as negative values (see Section 3.4.3). In the latter
case, the absence of a reverse reaction restricts the estimated
rates to positive values (assuming the stoichiometry describes
the correct reaction direction). Such prior knowledge of the
existence of an irreversible reaction can be incorporated as a
constraint in the reaction rate estimation problem. Eq. (22) is
then extended to

R̂ = arg min tr(�),

� =
(

F̂r − VRN
)

�−1
F

(
F̂r − VRN

)T

s.t. 0�rj , j ∈ I, (24)

where rj is the jth reaction rate vector in matrix R =
[r1, . . . , rnR

] and I is the set of irreversible reactions. The
bounded least-squares problem (24) can be solved by quadratic
programming (Gill and Murray, 1978; Stoer, 1971).

Eq. (23) yields an unbiased estimate R̂ of R for the case
of normally distributed noise on F̂r. Due to the nature of the
flux estimation algorithm (Section 3.1), the noise in F̂r gen-
erally does not exhibit normal distribution. Furthermore, only
rough estimates of the bounds of the noise on F̂r can be given
(Bardow and Marquardt, 2004b). The covariance matrix �F is

pragmatically chosen to be the nS ×nS identity matrix I. Then,
Eq. (23) simplifies to

R̂ = V−1F̂rN†, (25)

where N† = NT(NNT)−1 is the Moore–Penrose inverse of N.
This choice of covariance matrix is used throughout this paper.

3.4. Identification of kinetic laws

So far, a set of estimated reaction rates r̂j , j =1, . . . , nR , and
measured concentration transients c̃i , i = 1, . . . , nS , are avail-
able for various time instants tq , q = 0, . . . , nQ − 1. Since the
measurements c̃i (tq) may contain a significant level of noise,
non-parametric smoothing algorithms (e.g. Craven and Wahba,
1979; Härdle, 1990; Abramovich and Silverman, 1998) may
be used to obtain smooth estimates ĉi (tq). Now, a correlation
between those quantities is established according to

r̂j (tq) = mj(�j , ĉ(tq)), j = 1, . . . , nR, q = 0, . . . , nQ − 1,

(26)

where �j is the set of unknown parameters in model mj , and
ĉ(tq) = [c1(tq), . . . , cnS

(tq)]. The correlation constructs a gen-
eral predictive model mj for reaction j, given the set of con-
centrations.

3.4.1. Regression problem
Given a model structure, the unknown parameters in the

model need to be determined such that the model prediction
comes close to the available data. A variety of criteria defin-
ing such goodness of fit and the corresponding parameter esti-
mation methods are available in the literature, see e.g. (Bard,
1974). In the univariate regression problem considered here,
the model may exhibit nonlinearity in the parameters. In addi-
tion, since the error level on the concentration data ĉ is gen-
erally much smaller than the error on the estimated rates r̂ , a
simple least-squares approach seems adequate. The parameter
estimates result from

�̂j = arg min
1

2

nQ−1∑
q=0

(r̂j (tq) − mj(�j , ĉ(tq)))2, (27)

with the estimated parameter vector �̂j consisting of one single
parameter, e.g. in the case of elementary kinetics, or a set of
parameters, in the case of formal kinetics.

For a set of candidate models under consideration, parame-
ter estimation is performed for each candidate. Subsequently,
the particular model that best describes the data needs to be
identified. Model discrimination techniques rank the models
according to their probability for correctly predicting the next
experimental observation (Verheijen, 2003).

3.4.2. Dependent reactions
The case of dependent reactions has already been introduced

earlier in the text: Section 3.2 dealt with the issue of stoichio-
metric matrix reduction for the case of dependent reactions.
Full rank of the stoichiometric matrix is also required for the
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identification of kinetic laws. In case of a rank-deficient stoi-
chiometric model, since the rates are not uniquely identifiable
from the estimated reaction fluxes, full-rank reduction of the
stoichiometric matrix is required.

The rates identified with the nR ×nS reduced stoichiometric
matrix Nred do not necessarily correspond to the true rates
in the system (even if the remaining stoichiometries in Nred

actually correspond to occurring reactions), but rather constitute
linear combinations of the true rates, the so-called pseudo −
rates r�

j . It must be stressed that a fully predictive model is

already obtained from the reduced matrix Nred and adequate
state-dependent description of the pseudo-rates. Knowledge of
the relation between identifiable pseudo-rates and true rates is
however beneficial to derive physically motivated kinetic laws
or exploit the structure in data-driven model approaches.

For Nred, the relation between fluxes and pseudo-rates is
expressed as

R� = V−1Fr(Nred)† (28)

and

Fr = VR�Nred, (29)

whereas, for the full, rank-deficient nrdf
R × nS stoichiometric

matrix N, (21) is valid. A criterion for the relation between
nQ × nrdf

R matrix R and nQ × nR matrix R� is derived from
(21) and (29) as

R� = RC� (30)

with the nrdf
R × nR aggregation matrix

C� = N
(

Nred
)†

. (31)

The aggregation matrix C� can be decomposed into block-
diagonal structure (Pothen and Fan, 1990), where the individ-
ual blocks representing the relations between R� and R can
be solved independently. An example of incremental identifi-
cation of a system with dependent reactions is presented in
Section 4.4.

3.4.3. Reversible reactions
A special case of dependent reactions is encountered when

reversible reactions are present in the system. Due to the lin-
ear dependence of the stoichiometries of the forward (1) and
reverse (2) reactions, only one of the stoichiometries can be in-
cluded in the stoichiometric matrix. The estimated reaction rate
r̂�

1 = [r̂�
1 (t0), . . . , r̂

�
1 (tnQ−1)]T will then describe both the for-

ward and reverse reactions according to r�
1 =r1 −r2. Unknown

model parameters in the kinetic laws describing r1 and r2 are
estimated from regression of r̂�

1 with the estimated concentra-
tion trajectories ĉ. Hence, the case of reversible reactions inte-
grates in the framework proposed above, thereby allowing mul-
tiple reversible reactions in complex system stoichiometries.

4. Incremental identification—extensions

While concentration measurements have been assumed to be
available for all reacting species in Section 3, the focus is now
set on the case where data are present for a subset of species
only. The full and measured set of species will be denoted S
and Sm ⊂ S in the following. In addition to those sets, Su is
introduced to denote the set of the nSu unmeasured species. The
relations Sm ∪Su=S and nSm +nSu =nS obviously hold. The
incremental identification steps for this case will be sketched
in Section 4.1, where the previously discussed steps are largely
transferable. However, two issues demand special attention: the
question regarding which rates rj (t) are identifiable from the
data available, and the reconstruction of the concentrations ci(t)

of unmeasured species that are required in the identification of
kinetic laws. These topics are further detailed in Sections 4.2
and 4.3, respectively. In Section 4.4, an illustrative example
on handling systems with unmeasured species and dependent
reactions is presented.

4.1. Incremental identification for incomplete measurements

First, the reaction fluxes f̂ r
i are estimated for each species

i ∈ Sm with the techniques discussed in Section 3.1. Due to
the presence of unmeasured species, not all entries in the data
matrix Ỹ are known. Note that the reduction of measurement
errors in Ỹ using the knowledge of the atomic matrix, performed
in Section 3.1.3 on the full set S, is not applicable any more.

The recursive TFA approach introduced in Section 3.2 can
be applied next to test possible stoichiometries. The case of
unmeasured species is detailed in the original paper (Bonvin
and Rippin, 1990) and not commented further here. Note that
nSm > nR is generally required.

Once the stoichiometric model has been determined, the re-
action rates r̂j , j = 1, . . . , nR , are estimated from the reaction
fluxes. Since reaction flux estimates are available for the mea-
sured species only, some of the reaction rates may not be iden-
tifiable. An analysis of identifiability and a procedure for cal-
culating the corresponding rates are presented in Section 4.2.

For the set Sm, noisy concentration transients are avail-
able from measurements. To construct kinetic laws for the
description of reaction kinetics, concentration data for the
(possibly) rate-influencing species are essential. For the set Su
of unmeasured species, however, the concentration data are not
readily accessible. Using the stoichiometries and known initial
concentrations of the unmeasured species, some or all of the
unmeasured concentration data can be reconstructed from
the available measurements. Identifiability criteria and the re-
construction of the concentrations of unmeasured species are
described in Section 4.3.

Finally, kinetic laws can be obtained by correlation of the
time-variant estimates of identifiable rates r̂(t) and concentra-
tions ĉ(t), as discussed in Section 3.4 above.

4.2. Identifiability and estimation of reaction rates

From the general stoichiometric matrix N, the nR × nSm

stoichiometric sub-matrix Nm of measured species and the
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nR × nSu stoichiometric sub-matrix Nu of unmeasured species
can be obtained as

Nm = NQm, Nu = NQu, (32)

where the nS × nSm matrix Qm and the nS × nSu matrix Qu
are introduced to single out the columns corresponding to the
measured and unmeasured species, respectively. The elements
of each column of Qm and Qu consist of zeros and a single one.

4.2.1. All reaction rates identifiable
The nQ × nR reaction rate matrix R generated by the nR

independent reactions has full rank, i.e., rank(R) = nR . The
stoichiometric matrix Nm projects R onto the nQ ×nSm matrix
Fr

m according to

Fr
m = VRNm (33)

(cf. (21)). Since rank(Fr
m)=min{rank(R), rank(Nm)}, complete

information on R is preserved if and only if

rank(Nm) = nR . (34)

This identifiability condition allows all nR rates to be estimated
uniquely from the available fluxes. In this case, the reaction
rates are obtained from the nQ×nSm matrix Fr

m as (cf. Eq. (25))

R̂ = V−1F̂r
mN†

m. (35)

4.2.2. Subset of reaction rates identifiable
For the case where rank(Nm) < nR , only a part of the occur-

ring reaction rates can be obtained from the measured species
i ∈ Sm. Which of those rates can be obtained, is examined in
the following.

For the set of measurable reaction fluxes Fr
m, i.e., the fluxes

estimated from the measured concentration data, (33) is valid.
For rank(Nm) = nRm < nR , the matrix of reaction rates R of
rank nR is projected onto the matrix of measured reaction fluxes
Fr

m with

rank(Fr
m) = min{rank(R), rank(Nm)} = nRm . (36)

Hence, at most nRm (pseudo-)reaction rates may be identified
from the measurable reaction fluxes.

A criterion for identifiability of the rates is derived from an
analysis of the difference between the true rates R and those
(Rinv) obtained from direct inversion of (33), assuming (34) is
satisfied and regardless of (36):

Rinv = V−1Fr
mN†

m. (37)

Substitution of Fr
m from (33) gives the difference between Rinv

and R as

Rinv − R = R[NmN†
m − I], (38)

where I is the nR × nR identity matrix. The (symmetric) dif-
ference matrix �r for the identifiable rates is defined as

�r ≡ NmN†
m − I. (39)

Obviously, a reaction rate rj is theoretically identifiable if the
corresponding column �r

j of �r =[�r
1, . . . ,�

r
nR

] is represented

by the null vector. A simplified identifiability criterion can be
derived from

�r = [
�r

1, . . . , �
r
nR

]
(40)

with elements

�r
j = ‖�r

j‖1. (41)

The nRr zero elements of the identifiability vector �r indi-
cate identifiability of the corresponding rates from the available
measurements.

The nQ × nRr matrix R̂ of identifiable reaction rates is now
obtained in analogy to Eq. (35) as

R̂ = V−1F̂rN†
mQr, (42)

where the nR × nRr matrix Qr is chosen such as to hide the
non-identifiable reaction rates. The elements of each column of
Qr consist of zeros and a single one.

4.3. Concentration estimation

Concentration data for the (possibly) rate-influencing species
are essential to construct kinetic laws for the description of
reaction kinetics. The required concentration data might not be
readily accessible in the set Sm. Consider the simple example

A → B (43)

with species B measured. The reaction flux f r
B and the reaction

rate can be calculated from the available concentration data.
However, to identify the reaction parameter k in a given kinetic
law (e.g. r = kcA), an estimate of the concentration transient
cA of species A is required.

In such cases, concentration estimates for some or even all
of the unmeasured species have to be obtained from the data
available. In the following, general conditions for the recon-
struction of concentration transients for unmeasured species are
derived, and equations are given to obtain them from the set
of measured concentration trajectories using the reaction sto-
ichiometries. To this end, some additional notation needs to
be introduced: while Sm is the set of measured and Su the
set of unmeasured species, Sc describes the nSc unmeasured
species that can be reconstructed from the data. The relation
Sc ⊆ Su ⊆ S applies.

4.3.1. Reconstruction of reaction fluxes
In Section 3.1, we have shown that the unknown reaction

fluxes can be calculated for each component from measured
concentration data. Conversely, concentration transients can be
calculated for those species where the reaction flux and the
initial amount present in the system are known. Such reac-
tion fluxes for unmeasured species can be calculated from the
reaction rates estimated from concentration measurements by
means of the stoichiometric model.

Case 1: All reaction fluxes identifiable. If rank(Nm) = nR ,
all reaction rates are identifiable from the measured species.
This implies identifiability of the reaction fluxes for all species
involved in the reaction network, i.e., Sc = Su.
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The nQ × nSc reaction flux matrix Fr
c of the unmeasured but

reconstructable species is related to the nQ × nSm matrix Fr
m

of estimated reaction fluxes by

Fr
c = Fr

mTN, (44)

with TN being a nSm × nSc matrix to be determined next. In
analogy to Eq. (33),

Fr
c = VRNc (45)

is valid for the set Sc. With Eqs. (33), (44), (45) and Nc = Nu
we obtain

TN = N†
mNu, (46)

which is called reconstruction matrix subsequently.
Case 2: Subset of reaction fluxes identifiable. For the case

where rank(Nm) < nR , identification is feasible for a subset of
the reaction fluxes only. From the (partly erroneous) rates Rinv
(37), fluxes Fr

inv = VRinvN can be calculated. In analogy to
(38), a comparison between Fr

inv and the true fluxes Fr (cf. Eq.
(21)) is employed to analyze the set Sc, i.e., the unmeasured
species for which the fluxes can be calculated correctly from
the available data. The difference Fr

inv − Fr can be written as

Fr
inv − Fr = V[Rinv − R]N = VR�rN (47)

using (38) and (39). Defining

�f ≡ �rN, (48)

a flux is identifiable if the corresponding column of �f is the null
vector. In analogy to (40), a simplified identifiability criterion
can be derived from

�f =
[
�f

1, . . . , �
f
nS

]
, (49)

with elements

�f
i = ‖�f

i‖1, (50)

where the column vectors �f
i compose the nR × nS matrix

�f = [�f
1, . . . ,�

f
nS

]. A zero element �f
i indicates the flux of

species i as identifiable from the available measurements. The
set Sc contains the nSc unmeasured species whose reaction
fluxes (and thus the corresponding concentration transients)
can be estimated from the available data, i.e., Sc = {i|�f

i =
0, i ∈ Su}.

To obtain the matrix Fr
c of calculable reaction fluxes from

(44), Eq. (46) is replaced by the nSm × nSc matrix

TN = N†
mNc, Nc = NQc, (51)

where the nS ×nSc matrix Qc is chosen so as to hide the already
measured and non-identifiable reaction fluxes. The elements of
each column of Qc consist of zeros and a single one.

4.3.2. Calculation of concentration estimates
Assuming known initial reactor and feed concentrations

cc(t0) and cin
c (t) for the set Sc, the calculation of correspond-

ing concentration transients is sketched in short.

Eq. (8) applied to sets Sm and Sc yields expressions for
the mole vectors nm(t) and nc(t) as functions of the sets of
reaction fluxes f r

m(t) and f r
c(t), respectively. Insertion of (44)

and reformulation leads to

nc(t) = nc(t0) +
∫ �=t

�=t0

[
f in
c (�) − fout

c (�)
]

d�

+ TT
N [nm(t) − nm(t0)]

− TT
N

∫ �=t

�=t0

[
f in
m (�) − fout

m (�)
]

d�. (52)

Using Eqs. (6) and (7), the expression

cc(t) = TT
Ncm(t) + v0

v(t)

[
cc(t0) − TT

Ncm(t0)
]

+ 1

v(t)

∫ �=t

�=t0

[
q in(�)cin

c (�) − qout(�)cc(�)
]

d�

− 1

v(t)
TT

N

∫ �=t

�=t0

[
q in(�)cin

m(�) − qout(�)cm(�)
]

d�

(53)

is obtained to relate the concentrations in the sets Sm and Sc.
This equation allows the calculation of concentration tran-

sients ĉc(t) for the species in the set Sc from smoothed esti-
mates ĉm(t) (cf. Section 3.4). The expression may be simplified
for a variety of cases, e.g. for

• batch reactors:

ĉc(t) = TT
Nĉm(t) + v0

v(t)

[
cc(t0) − TT

Ncm(t0)
]

(54)

• or for semi-batch reactors with constant feed:

ĉc(t) = TT
Nĉm(t) + v0

v(t)

[
cc(t0) − TT

Ncm(t0)
]

+ qint

v(t)

[
cin

c − TT
Ncin

m

]
. (55)

4.4. Unmeasured species in dependent reaction systems

In the case of dependent reactions, the pseudo-rate concept
introduced in Section 3.4 is equally applicable to sets Sm ⊂
S. The relation between rates and pseudo-rates is expressed as
R� = RC� (30). Here, Eq. (31) is replaced by

C� = Nm(Nred
m )†, (56)

where Nm is rank deficient and Nred
m is the corresponding full-

rank matrix.
An illustrative example is introduced to point out the treat-

ment of unmeasured species and dependent reactions. Consider
a batch reactor with five species involved in up to four reac-
tions. The reaction mechanism is given as

A → B, (57a)

B → C, (57b)
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A → C, (57c)

C + D → E. (57d)

The full stoichiometric matrix is

N =
⎡
⎢⎣

−1 +1 0 0 0
0 −1 +1 0 0

−1 0 +1 0 0
0 0 −1 −1 +1

⎤
⎥⎦ . (58)

Let us assume that species A–C are available from measure-
ments, i.e., matrix Nm is

Nm =
⎡
⎢⎣

−1 +1 0
0 −1 +1

−1 0 +1
0 0 −1

⎤
⎥⎦ (59)

with rank(Nm) = 3 < nR = 4. As a consequence, criterion (40)
yields �r =[1, 1, 1, 0], categorizing only the rate corresponding
to (57d) as identifiable, whereas the rates belonging to (57a)
to (57c) cannot be determined uniquely. To meet the full-rank
condition, the contribution due to a linear-dependent reaction
has to be deleted in Nm. A feasible reduced matrix Nred

m is found
by dropping the third reaction:

Nred
m =

[−1 +1 0
0 −1 +1
0 0 −1

]
, (60)

Criterion (40), applied to Nred
m , suggests that all three corre-

sponding pseudo-rates are identifiable from the data present
(�r = [0, 0, 0]). The aggregation matrix C� (56) is calculated
as follows:

(C�) =
⎡
⎢⎣

+1 0 0
0 +1 0

+1 +1 0
0 0 +1

⎤
⎥⎦ , (61)

from which the independent pseudo-rates can be expressed in
terms of the reaction rates:

r�
1 = r1 + r3

r�
2 = r2 + r3

}
block 1,

r�
3 = r4 } block 2,

(62)

where r�
j , j = 1, . . . , 3, are the rates corresponding to the full-

rank stoichiometric matrix Nred
m . Assuming model structures for

the rates ri , i = 1, . . . , 4, the chemical reactions present and
their parameters can now be identified by algebraic regression
(27) using the estimated rates r̂�

j , j = 1, . . . , 3.
Concentration transients of the unmeasured species Su =

{D, E} are required for such regression. Evaluation of (49) re-
sults in �f = [0, 0, 0, 0, 0]. Hence, both unmeasured species
can be calculated from available data, given initial concentra-
tions ci0, i ∈ Su. The resulting reconstruction matrix TN is

calculated from (51) as

TN =
[+1 −1

+1 −1
+1 −1

]
. (63)

The concentration estimates finally result from Eq. (54).

5. Illustrative example: acetoacetylation of pyrrole

The incremental approach for reaction model identification
is illustrated for the acetoacetylation of pyrrole with diketene
(Ruppen, 1994; Ruppen et al., 1998). The system has a main
desired reaction and several undesired side reactions that impair
selectivity. To validate the incremental identification approach,
simulated data are used. This way, the results of the identifica-
tion process can easily be compared to the model assumptions
made for generating the data. The simulation is based on the
experimental work of Ruppen (1994), who developed a kinetic
model of the reaction system.

The reaction system is introduced next. The identification
of the reaction system is carried out for some experimental
scenario employing the incremental approach suggested in this
paper.

5.1. Reaction system and experimental conditions

The reaction system comprises the reactions

P + D
K→ PAA, (64a)

D + D
K→ DHA, (64b)

D → OL, (64c)

PAA + D
K→ G. (64d)

In addition to the desired reaction (64a) of diketene (D) and
pyrrole (P) to 2-acetoacetyl pyrrole (PAA), there are three un-
desired side reactions (64b)–(64d). These include the dimer-
ization and oligomerization of diketene to dehydroacetic acid
(DHA) and oligomers (OLs) as well as a consecutive reaction
to the by-product G.

The reactions take place in an isothermal laboratory-scale
semi-batch reactor, to which a diluted solution of diketene is
added continuously. Reactions (64a), (64b) and (64d) are cat-
alyzed by pyridine (K), the concentration of which continuously
decreases during the run due to addition of diluted diketene
feed. Reaction (64c), which is assumed to be promoted by
other intermediate products, is not catalyzed. Hence, the reac-
tion rates are described by the constitutive equations

ra(t) = kacP(t)cD(t)cK(t), (65a)

rb(t) = kbc
2
D(t)cK(t), (65b)

rc(t) = kccD(t), (65c)

rd(t) = kdcPAA(t)cD(t)cK(t), (65d)

where ka , kb, kc and kd represent the rate constants.
The reaction fluxes Fr = [f r

D, f r
P, f r

PAA, f r
DHA, f r

OL, f r
G] can be

related to the reaction rates R = [ra, rb, rc, rd ] by

Fr = VRN
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Table 1
Values of rate constants

ka kb kc kd

(l2/mol2 min) (l2/mol2 min) (1/ min) (l2/mol2 min)

Value 0.053 0.128 0.028 0.000

with the stoichiometric matrix

N =
⎡
⎢⎣

−1 −1 +1 0 0 0
−2 0 0 +1 0 0
−1 0 0 0 +1 0
−1 0 −1 0 0 +1

⎤
⎥⎦ (66)

for the set of species S = {D, P, PAA, DHA, OL, G}.
The catalyst is not affected by the chemical reactions oc-

curring. Its dilution during the run of the experiment can be
modeled as

cK(t) = v0

v(t)
cK0, (67)

where cK0 is the initial concentration of catalyst in the reactor.
Under the assumption that no volume change is induced by the
reactions occurring, the reactor volume is modeled as

dv(t)

dt
= q in, v(t0) = v0, (68)

with constant volumetric feed flow rate q in.
The material balance for species i ∈ S reads as

dci(t)

dt
= q in

v(t)

[
cin
i − ci(t)

]
+ f r

i (t)

v(t)
, ci(t0) = ci0, (69a)

where cin
D is the constant concentration of diketene in the feed.

For all other species, cin
i = 0, i 
= D. The initial conditions ci0

are known.
To assess the performance of the incremental identification

approach and allow a comparison of the identified and simu-
lated kinetics, concentration trajectories are generated using the
model described above and the rate constants given in Table 1.
The rate constant of the fourth reaction is set to kd = 0, i.e.,
this reaction is assumed not to occur in the network.

Concentration data are assumed to be available for the set
of species Sm = {D, PAA, DHA, OL, G}. For P, no measure-
ments exist. The measured concentrations are assumed to stem
from a data-rich in situ measurement technique such as Raman
spectroscopy, taken with the sampling period ts =10 s over the
batch time tf = 60 min. Thus, a total of nQ = 361 data points
for each species result. The data are corrupted with normally
distributed white noise. The standard deviation �i differs for
each species i, depending on its calibration range. The calibra-
tion ranges of the species can be taken from Table 2, where
concentration data are expected in the range 0�ci �cmax

i , i ∈
Sm. The same relative, normally distributed error �� = 1.0%
within the component specific calibration range [0, cmax

i ] is as-
sumed for each species. Hence, the standard error on the data
is assumed to follow the relation

�i = ��cmax
i , i ∈ Sm. (70)

Table 2
Concentration ranges for calibration

cD cPAA cDHA cOL cG
(mol/l) (mol/l) (mol/l) (mol/l) (mol/l)

Min 0.00 0.00 0.00 0.00 0.00
Max 0.38 0.45 0.63 0.52 0.05

The time-varying reactor volume v(t) is measured with neg-
ligible error. In addition, error-free data on q in and cin

D exist. The
concentration of catalyst K can be calculated from the volume
and the initial concentration of catalyst according to Eq. (67).

In the experimental setup, the initial concentrations are cD,0=
0.14 mol/l, cP,0 = 0.30 mol/l, cPAA,0 = 0.08 mol/l and cDHA,0 =
0.01 mol/l. Negligible amounts of both the OLs and the by-
product G are supposed to be present in the reactor at t0 =
0, i.e., cOL,0 = 0.01 mol/l and cG, 0 = 0.01 mol/l. The initial
reactor volume is set to v0 = 0.5 l, the volumetric feed rate is
q in = 5.0 ml/min and its concentration of diketene amounts to
cin

D = 6.0 mol/l.

5.2. Identification procedure

For the identification process, a candidate stoichiometric ma-
trix

Ntar =
⎡
⎢⎣

−1 −1 +1 0 0 0
−2 0 0 +1 0 0
−1 0 0 0 +1 0
−1 0 −1 0 0 +1

⎤
⎥⎦ (71)

is available, corresponding to the stoichiometries of reactions
(64a)–(64d). However, the number and type of actually occur-
ring reactions remain unknown and need to be identified from
the data. Furthermore, for each reaction, a set of kinetic law
candidates is available, corresponding to feasible power-law
kinetic combinations. The number of model candidates is 10
for reactions (64a) and (64d) and six for reactions (64b) and
(64c) (see Table 3 for a summary). Theoretical identifiability
of the individual model structures is ensured by construction.

The noisy data sets generated by simulation are depicted in
Fig. 3, together with the true concentration transients.

In a first step, the reaction fluxes f r
i (t), i ∈ Sm, are cal-

culated using smoothing splines to solve the ill-posed inverse
problem in Eq. (9). A suitable regularization parameter is ob-
tained by means of GCV. Fig. 4 shows the resulting reaction
fluxes for the set Sm. For species P, no reaction flux can be
estimated at this point.

Next, the stoichiometries of the reaction network have to
be determined, based on the candidate stoichiometries (71).
The recursive TFA approach is applied to check the validity
of the proposed stoichiometries and to identify the number of
reactions occurring. The method successively accepts reactions
(64b), (64a) and (64c) (in this order). Reaction (64d) does not
take place in the simulation and is correctly not accepted. The
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Table 3
Kinetic model candidates

Reaction a: Reaction b: Reaction c: Reaction d:

P + D
K→ PAA D + D

K→ DHA D
K→ OL PAA + D

K→ G

m
(1)
a = k

(1)
a m

(1)
b

= k
(1)
b

m
(1)
c = k

(1)
c m

(1)
d

= k
(1)
d

m
(2)
a = k

(2)
a cD m

(2)
b

= k
(2)
b

cD m
(2)
c = k

(2)
c cD m

(2)
d

= k
(2)
d

cD

m
(3)
a = k

(3)
a cP m

(3)
b

= k
(3)
b

c2
D m

(3)
c = k

(3)
c c2

D m
(3)
d

= k
(3)
d

cPAA

m
(4)
a = k

(4)
a cK m

(4)
b

= k
(4)
b

cDcK m
(4)
c = k

(4)
c cDcK m

(4)
d

= k
(4)
d

cK

m
(5)
a = k

(5)
a cDcP m

(5)
b

= k
(5)
b

c2
DcK m

(5)
c = k

(5)
c c2

DcK m
(5)
d

= k
(5)
d

cDcPAA

m
(6)
a = k

(6)
a cPcK m

(6)
b

= k
(6)
b

cK m
(6)
c = k

(6)
c cK m

(6)
d

= k
(6)
d

cPAAcK

m
(7)
a = k

(7)
a cDcK m

(7)
d

= k
(7)
d

cDcK

m
(8)
a = k

(8)
a cDcPcK m

(8)
d

= k
(8)
d

cDcPAAcK

m
(9)
a = k

(9)
a cDc2

P m
(9)
d

= k
(9)
d

cDc2
PAA

m
(10)
a = k
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a c2
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d
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Fig. 4. True and estimated reaction fluxes.

resulting stoichiometric matrix of the reaction network reads

N =
[−1 −1 +1 0 0 0

−2 0 0 +1 0 0
−1 0 0 0 +1 0

]
. (72)

The nR × nSm stoichiometric matrix Nm (32) is

Nm =
[−1 +1 0 0 0

−2 0 +1 0 0
−1 0 0 +1 0

]
. (73)

With this stoichiometric matrix, reaction rates are estimated
from (35). Since rank(Nm)=nR , all rates can be identified from
the reaction fluxes present. With more species measured (5) than
independent reactions occurring in system (3), a least-squares
reconciliation problem results which reduces the errors in the
rates. The resulting, time-variant reaction rates are depicted in
Fig. 5, together with the true rates for comparison.

Estimates ĉi (t), i ∈ Sm, are obtained using smoothing
splines with GCV to select the regularization parameter. To
identify the unknown parameters in the set of kinetic model can-
didates, an estimate of the concentration trajectory of species
P needs to be available. With rank(Nm) = nR , ĉP can be ob-

tained from (55) using the known initial concentration cP0. The
estimate shows a close fit to the true concentration cP, with a
relative deviation of 0.83%.

For the description of reaction kinetics, a suitable model can
now be selected from the set of model candidates available for
each accepted reaction (Table 3), together with the unknown
model parameters. To this end, for each reaction, the available
model candidates are fitted to the estimates of the concentra-
tions and rates, both available as a function of time, according
to (27). Some representative fits are plotted in Fig. 6 for the
first reaction (64a). Here, candidate 8 (cf. Table 3) can be best
fitted to the estimated reaction rate and is identified as the most
suitable kinetic law from the set of candidates.

From the data available, the following kinetics were identi-
fied:

ra(t) = kacP(t)cD(t)cK(t), (74a)

rb(t) = kbc
2
D(t)cK(t), (74b)

rc(t) = kccD(t), (74c)

with parameters ka = 0.0523 l2/(mol2 min), kb = 0.1279 l2/
(mol2 min) and kc =0.0281 1/ min. For all three reactions, the
kinetic laws correspond to the correct model structures, i.e.,
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the models used for data simulation. The estimated parameter
values come out to be very close to the parameters taken for
simulation. Identification of the system using the proposed in-
cremental procedure requires 42 s on a standard PC (1.5 GHz).

For comparison, a simultaneous identification was applied
to the data given, requiring dynamic parameter estimation for
each combination of kinetic models and subsequent model dis-
crimination. The simultaneous procedure correctly identifies
the number of reactions and the corresponding kinetics. The re-
action parameters are calculated as ka =0.0532 l2/(mol2 min),
kb = 0.1281 l2/(mol2 min) and kc = 0.0280 1/ min, giving a
slightly better fit compared to the incremental identification re-
sults. However, the computational cost is excessive, lying in the
order of 122,000 s or 34 h. Using incremental identification, an
excellent approximation is calculated in only a fraction of time.

The advantage in computational cost is especially thrilling for
multiple reactions with a high number of candidate kinetics.

If the data quality is poor, i.e., high noise on the data and/or
infrequent data, a single experiment may be insufficient to
identify the reaction system. In this case, incremental identifi-
cation can be fully integrated in iterative experiment planning
using experimental design techniques (see e.g. Asprey and Mac-
chietto (2000)). To obtain statistically optimal parameters and
corresponding parameter confidence intervals, a subsequent si-
multaneous parameter estimation on the model obtained from
incremental identification can be performed with good starting
values. In the case considered, such correction of parameters
only requires an additional 8.2 s of computing time.

6. Conclusions

An incremental approach has been presented for the
identification of complex reaction systems. The problem is
decomposed into a sequence of simple subproblems, allowing
stepwise identification of model parts. This way, the number,
stoichiometries and kinetics of the occurring reactions can be
determined efficiently.

Maximum decoupling of the physical phenomena is achieved
for arbitrary complexity of the reaction system. As system dy-
namics are fully covered in the flux estimation, they can be
omitted in the following, thereby generating purely algebraic
regression and structure discrimination problems. Much fewer
model candidates are required in each step due to problem de-
coupling. The simplicity of the individual subproblems leads
to drastically reduced calculation times. Moreover, this renders
the method more robust compared to conventional simultane-
ous parameter estimation, e.g. by avoiding the difficulties in
choosing suitable parameter (re-)initialization. The approach
allows efficient use of a priori knowledge and, in each step,
novel information is determined. This helps gain physical in-
sight and choose models for the following step. If no feasi-
ble model structure can be set up, the previously calculated
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Table 4
Comparison between simultaneous and incremental identification

Approach Incremental Simultaneous

Problem complexity Decoupled sub-problems Full problem
• Linear flux estimation • Dynamic parameter estimation
• Algebraic regression problems required for each candidate
⇒ Low computational effort ⇒ High computational effort

Initialization and convergence • Robustness due to low • Suitable (re-)initialization
subproblem complexity may be difficult

Support of modeling process • Incremental testing of submodels • Only lumped effect of model
• Physical insight gained assumptions seen in output
• Flexible use of physically founded • Data-driven models require

and data-driven submodels specific training algorithms

Data resolution • Designed for high-resolution data • Designed for low resolution
• Sufficient data density required

Accuracy • Parameter values biased • Statistically optimal estimates
but good approximation

Applicability • Arbitrary problem complexity • Arbitrary problem complexity
• Only partial system identification

achieved in certain cases

quantities may serve as input to some data-driven function ap-
proximation technique (Brendel et al., 2003; Brendel, 2005).

The concept is particularly efficient for the computationally
expensive discrimination between model candidates. In these
cases, substantial savings in computational effort can be expe-
rienced, especially for multiple reaction systems with a large
number of kinetic model candidates. Note, however, that the
estimated parameters may contain a bias, introduced by the so-
lution of an infinite dimensional estimation problem involved
in the initial flux estimation and propagated through the subse-
quent steps. Hence, the approach requires a sufficient amount of
“good” data, since the bias introduced decreases with the num-
ber of data and a better signal-to-noise ratio. Subsequent pa-
rameter correction ensures statistically optimal parameters and
allows the calculation of confidence intervals. In some problem
settings, the incremental procedure allows only partial identifi-
cation of the system, i.e., identification of a subset of reaction
kinetics, whereas formulation of a simultaneous identification
problem can lead to full identification. In such cases, incremen-
tal identification can be pursued first for the identifiable kinet-
ics, benefitting from the advantages of the approach. The re-
maining unknown submodels are then identified (if applicable)
using a simultaneous formulation of the already reduced iden-
tification problem. In this sense, the incremental identification
approach does not aim at replacing conventional simultaneous
model identification, but rather represents a valuable comple-
ment. The main characteristics of the incremental and simulta-
neous identification strategies are summarized in Table 4.

The focus of the paper has been set on the identification
of homogeneous isothermal reaction systems, but the concept
can be extended to the identification of non-isothermal and
multi-phase systems including mass transport between phases
(Brendel, 2005). The versatility of the approach produces a
powerful model identification framework for constructing both

physically motivated and possibly hybrid models, depending
on the available knowledge.

Efficient interplay between incremental and simultaneous
identification is currently investigated. Further work will also
deal with the reduction of bias in the flux estimates and the
calculation of reliable error estimates, representing important
steps towards enhanced prediction accuracies.
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