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A characterization of real matrices is given for which a diagonal entry of a matrix is a
boundary point of its numerical range.
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Let A ∈ Mn. The numerical range of A is the set of complex numbers

W (A) =
{
x∗Ax : x ∈ Cn, |x| = 1

}
.

It is a well-known result due to Toeplitz and Hausdorff that the numerical rangeW (A) is always a convex set. In particular,
for n = 2,W (A) is an elliptical discwith fociλ,µ, eigenvalues of A, and semi-major axis (‖A‖2−2Re λµ̄)1/2/2. For properties
of the numerical rangewe refer the reader to the books [1,2]. It is clear that every diagonal element of amatrix A lies inW (A).
We determine 2×2 real matrices for which an diagonal entry is a boundary point of its numerical range. By using this result,
when a diagonal entry or a typical point lies on the boundary of an n× n real matrix is examined.

Theorem 1. Let A be a 2× 2 real matrix given by

A =
(
a11 a12
a21 a22

)
.

Then diagonal entry a11 is a boundary point of the numerical range of A if and only if a12 + a21 = 0, and a12 = a21 = 0 if
a11 = a22.

Proof. Consider the matrix

B ≡ A− (a11 + a22)/2 I =
(
(a11 − a22)/2 a12

a21 (a22 − a11)/2

)
.

Then a11 ∈ ∂W (A) if and only if (a11 − a22)/2 ∈ ∂W (B). Thus we may assume

A =
(
a11 a12
a21 −a11

)
. (1)

Suppose a11 ∈ ∂W (A). It is clear that the real number a11 ∈ ∂W (A) if and only if there exists θ such that Re a11eiθ is the
maximal eigenvalue of Hθ (A) = (Aeiθ + A∗e−iθ )/2. We find that the eigenvalues of Hθ (A) are

±
1
2

(
4(Re a11eiθ )2 + |a12eiθ + ā21e−iθ |2

)1/2
.
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Then

1
2

(
4(Re a11eiθ )2 + |a12eiθ + ā21e−iθ |2

)1/2
= Re a11eiθ . (2)

From (2), we obtain∣∣a12eiθ + ā21e−iθ ∣∣2 = 0. (3)

From (3),

a21 = −a12e−2iθ . (4)

Since a21 is real, by (4), it follows that e−2iθ = ±1. If θ = 0 then, by (4) again, a21 = −a12, and thus a12+a21 = 0. If θ = π/2
then a21 = a12; A is Hermitian. Since a11 ∈ ∂W (A), a11 is an endpoint of the line segmentW (A). Hence a11 is an eigenvalue
of A. Letµ be another eigenvalue of A. Then a11+µ = trace(A) = 0; we have−a11 ∈ σ(A). This implies that a12 = a21 = 0,
a12 + a21 = 0. Suppose a11 = a22; then a11 = 0 in (1). In this case,W (A) is the line segment [−i|a12|, i|a12|] on y-axis, and
thus a12 = 0.
Conversely, suppose a12 + a21 = 0. We may also assume that A is in the form of (1) and a11 6= 0. The eigenvalues of A

then become±(a211 − a
2
12)
1/2, and A is unitarily similar to the upper triangular matrix

T =
(
(a211 − a

2
12)
1/2 α

0 −(a211 − a
2
12)
1/2

)
.

Sine A and T have the same Frobenius norm, we have

2a211 + 2a
2
12 = 2|a

2
11 − a

2
12| + |α|

2. (5)

From (5),

|α| =
2|a12|, if a211 ≥ a

2
12

2|a11|, otherwise.

In either case,W (A) is an elliptical disc centered at the origin with foci (a211− a
2
12)
1/2 and−(a211− a

2
12)
1/2, and a11 is a vertex

of the ellipse on the real line. �

For general n× n real matrices, we have the following result.

Theorem 2. Let A = (aij) ∈ Mn(R). If there exists i such that aii ∈ ∂W (A) then aij + aji = 0 for all 1 ≤ j 6= i ≤ n.
Proof. For any j 6= i, consider the 2× 2 principal submatrix

Aij =
(
aii aij
aji ajj

)
.

Suppose aii ∈ ∂W (A). Since W (Aij) ⊂ W (A) and aii ∈ W (Aij), it follows that aii ∈ ∂W (Aij). Then, by Theorem 1,
aij + aji = 0. �

It is shown in [3] that

W (A) = ∪W
((
u∗Au u∗Av
v∗Au v∗Av

))
,

where u and v run over all orthonormal pairs in Cn. We examine some 2× 2 compression matrices in the union.

Theorem 3. Let A = (aij) ∈ Mn(R). If x and y are real orthonormal vectors such that x∗Ax ∈ ∂W (A) then x∗Ay+ y∗Ax = 0.
Proof. Suppose x∗Ax ∈ ∂W (A) and y is orthonormal to x. Consider the 2× 2 compression

Axy =
(
x∗Ax x∗Ay
y∗Ax y∗Ay

)
∈ M2(R).

Then x∗Ax ∈ W (Axy) ⊂ W (A), and hence x∗Ax is a boundary point ofW (Axy). By Theorem 1, x∗Ay+ y∗Ax = 0. �

Remark. The converse of Theorem 2 is false. For example, consider the matrix

A =

(1 0 0
0 1 2
0 0 1

)
.

ThenW (A) is a circular disc centered at the point (1,0) with radius 1. The condition a1j + aj1 = 0 for j = 2, 3 in Theorem 2
is satisfied, but the entry a11 = 1 does not lie on the boundary ofW (A).

This example also provides the invalidity of the converse of Theorem 3 on taking x = [1, 0, 0]T and y = [0, 1, 0]T .
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