On the boundary of the numerical range of a matrix

Mao-Ting Chien*, Lina Yeh
Department of Mathematics, Soochow University, Taipei 11102, Taiwan

ARTICLE INFO

Article history:

Received 19 February 2010
Accepted 24 February 2010

Keywords:

Numerical range
Boundary

Abstract

A characterization of real matrices is given for which a diagonal entry of a matrix is a boundary point of its numerical range. © 2010 Elsevier Ltd. All rights reserved.

Let $A \in M_{n}$. The numerical range of A is the set of complex numbers

$$
W(A)=\left\{x^{*} A x: x \in \mathbf{C}^{n},|x|=1\right\}
$$

It is a well-known result due to Toeplitz and Hausdorff that the numerical range $W(A)$ is always a convex set. In particular, for $n=2, W(A)$ is an elliptical disc with foci λ, μ, eigenvalues of A, and semi-major axis $\left(\|A\|^{2}-2 \operatorname{Re} \lambda \bar{\mu}\right)^{1 / 2} / 2$. For properties of the numerical range we refer the reader to the books [1,2]. It is clear that every diagonal element of a matrix A lies in $W(A)$. We determine 2×2 real matrices for which an diagonal entry is a boundary point of its numerical range. By using this result, when a diagonal entry or a typical point lies on the boundary of an $n \times n$ real matrix is examined.

Theorem 1. Let A be a 2×2 real matrix given by

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

Then diagonal entry a_{11} is a boundary point of the numerical range of A if and only if $a_{12}+a_{21}=0$, and $a_{12}=a_{21}=0$ if $a_{11}=a_{22}$.

Proof. Consider the matrix

$$
B \equiv A-\left(a_{11}+a_{22}\right) / 2 I=\left(\begin{array}{cc}
\left(a_{11}-a_{22}\right) / 2 & a_{12} \\
a_{21} & \left(a_{22}-a_{11}\right) / 2
\end{array}\right) .
$$

Then $a_{11} \in \partial W(A)$ if and only if $\left(a_{11}-a_{22}\right) / 2 \in \partial W(B)$. Thus we may assume

$$
A=\left(\begin{array}{cc}
a_{11} & a_{12} \tag{1}\\
a_{21} & -a_{11}
\end{array}\right)
$$

Suppose $a_{11} \in \partial W(A)$. It is clear that the real number $a_{11} \in \partial W(A)$ if and only if there exists θ such that $\operatorname{Re} a_{11} \mathrm{e}^{\mathrm{i} \theta}$ is the maximal eigenvalue of $H_{\theta}(A)=\left(A e^{\mathrm{i} \theta}+A^{*} \mathrm{e}^{-\mathrm{i} \theta}\right) / 2$. We find that the eigenvalues of $H_{\theta}(A)$ are

$$
\pm \frac{1}{2}\left(4\left(\operatorname{Re} a_{11} \mathrm{e}^{\mathrm{i} \theta}\right)^{2}+\left|a_{12} \mathrm{e}^{\mathrm{i} \theta}+\bar{a}_{21} \mathrm{e}^{-\mathrm{i} \theta}\right|^{2}\right)^{1 / 2}
$$

[^0]0893-9659/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2010.02.017

Then

$$
\begin{equation*}
\frac{1}{2}\left(4\left(\operatorname{Re} a_{11} \mathrm{e}^{\mathrm{i} \theta}\right)^{2}+\left|a_{12} \mathrm{e}^{\mathrm{i} \theta}+\bar{a}_{21} \mathrm{e}^{-\mathrm{i} \theta}\right|^{2}\right)^{1 / 2}=\operatorname{Re} a_{11} \mathrm{e}^{\mathrm{i} \theta} \tag{2}
\end{equation*}
$$

From (2), we obtain

$$
\begin{equation*}
\left|a_{12} \mathrm{e}^{\mathrm{i} \theta}+\bar{a}_{21} \mathrm{e}^{-\mathrm{i} \theta}\right|^{2}=0 \tag{3}
\end{equation*}
$$

From (3),

$$
\begin{equation*}
a_{21}=-a_{12} \mathrm{e}^{-2 \mathrm{i} \theta} \tag{4}
\end{equation*}
$$

Since a_{21} is real, by (4), it follows that $\mathrm{e}^{-2 i \theta}= \pm 1$. If $\theta=0$ then, by (4) again, $a_{21}=-a_{12}$, and thus $a_{12}+a_{21}=0$. If $\theta=\pi / 2$ then $a_{21}=a_{12} ; A$ is Hermitian. Since $a_{11} \in \partial W(A), a_{11}$ is an endpoint of the line segment $W(A)$. Hence a_{11} is an eigenvalue of A. Let μ be another eigenvalue of A. Then $a_{11}+\mu=\operatorname{trace}(A)=0$; we have $-a_{11} \in \sigma(A)$. This implies that $a_{12}=a_{21}=0$, $a_{12}+a_{21}=0$. Suppose $a_{11}=a_{22}$; then $a_{11}=0$ in (1). In this case, $W(A)$ is the line segment $\left[-i\left|a_{12}\right|, i\left|a_{12}\right|\right]$ on y-axis, and thus $a_{12}=0$.

Conversely, suppose $a_{12}+a_{21}=0$. We may also assume that A is in the form of (1) and $a_{11} \neq 0$. The eigenvalues of A then become $\pm\left(a_{11}^{2}-a_{12}^{2}\right)^{1 / 2}$, and A is unitarily similar to the upper triangular matrix

$$
T=\left(\begin{array}{cc}
\left(a_{11}^{2}-a_{12}^{2}\right)^{1 / 2} & \alpha \\
0 & -\left(a_{11}^{2}-a_{12}^{2}\right)^{1 / 2}
\end{array}\right)
$$

Sine A and T have the same Frobenius norm, we have

$$
\begin{equation*}
2 a_{11}^{2}+2 a_{12}^{2}=2\left|a_{11}^{2}-a_{12}^{2}\right|+|\alpha|^{2} \tag{5}
\end{equation*}
$$

From (5),

$$
|\alpha|=\begin{array}{ll}
2\left|a_{12}\right|, & \text { if } a_{11}^{2} \geq a_{12}^{2} \\
2\left|a_{11}\right|, & \text { otherwise } .
\end{array}
$$

In either case, $W(A)$ is an elliptical disc centered at the origin with foci $\left(a_{11}^{2}-a_{12}^{2}\right)^{1 / 2}$ and $-\left(a_{11}^{2}-a_{12}^{2}\right)^{1 / 2}$, and a_{11} is a vertex of the ellipse on the real line.

For general $n \times n$ real matrices, we have the following result.
Theorem 2. Let $A=\left(a_{i j}\right) \in M_{n}(R)$. If there exists i such that $a_{i i} \in \partial W(A)$ then $a_{i j}+a_{j i}=0$ for all $1 \leq j \neq i \leq n$.
Proof. For any $j \neq i$, consider the 2×2 principal submatrix

$$
A_{i j}=\left(\begin{array}{ll}
a_{i i} & a_{i j} \\
a_{j i} & a_{j j}
\end{array}\right) .
$$

Suppose $a_{i i} \in \partial W(A)$. Since $W\left(A_{i j}\right) \subset W(A)$ and $a_{i i} \in W\left(A_{i j}\right)$, it follows that $a_{i i} \in \partial W\left(A_{i j}\right)$. Then, by Theorem 1, $a_{i j}+a_{j i}=0$.

It is shown in [3] that

$$
W(A)=\cup W\left(\left(\begin{array}{cc}
u^{*} A u & u^{*} A v \\
v^{*} A u & v^{*} A v
\end{array}\right)\right)
$$

where u and v run over all orthonormal pairs in \mathbf{C}^{n}. We examine some 2×2 compression matrices in the union.
Theorem 3. Let $A=\left(a_{i j}\right) \in M_{n}(\mathrm{R})$. If x and y are real orthonormal vectors such that $x^{*} A x \in \partial W(A)$ then $x^{*} A y+y^{*} A x=0$.
Proof. Suppose $x^{*} A x \in \partial W(A)$ and y is orthonormal to x. Consider the 2×2 compression

$$
A_{x y}=\left(\begin{array}{ll}
x^{*} A x & x^{*} A y \\
y^{*} A x & y^{*} A y
\end{array}\right) \in M_{2}(\mathrm{R}) .
$$

Then $x^{*} A x \in W\left(A_{x y}\right) \subset W(A)$, and hence $x^{*} A x$ is a boundary point of $W\left(A_{x y}\right)$. By Theorem $1, x^{*} A y+y^{*} A x=0$.
Remark. The converse of Theorem 2 is false. For example, consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) .
$$

Then $W(A)$ is a circular disc centered at the point $(1,0)$ with radius 1 . The condition $a_{1 j}+a_{j 1}=0$ for $j=2$, 3 in Theorem 2 is satisfied, but the entry $a_{11}=1$ does not lie on the boundary of $W(A)$.

This example also provides the invalidity of the converse of Theorem 3 on taking $x=[1,0,0]^{T}$ and $y=[0,1,0]^{T}$.

Acknowledgement

The first author was supported in part by Taiwan National Science Council.

References

[1] K.E. Gustafson, D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
[2] R. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[3] M. Marcus, C. Pesce, Computer generated numerical ranges and some resulting theorems, Linear and Multilinear Algebra 20 (1987) 121-157.

[^0]: * Corresponding author.

 E-mail addresses: mtchien@scu.edu.tw (M.-T. Chien), linayeh@scu.edu.tw (L. Yeh).

