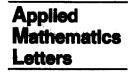


Applied Mathematics Letters 15 (2002) 439-444



www.elsevier.com/locate/aml

Countably *P*-Concentrative Pairs and the Coincidence Index

R. P. AGARWAL

Department of Mathematics, National University of Singapore 10 Kent Ridge Crescent, Singapore 119260

D. O'REGAN

Department of Mathematics, National University of Ireland Galway, Ireland

(Received and accepted May 2001)

Abstract—In this paper, a new coincidence index is presented for countably *P*-concentrative pairs. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords—Vietoris map, Countably P-concentrative pairs, Coincidence index for pairs.

1. INTRODUCTION

Let X and Y be metric spaces. A continuous single valued map $p: Y \to X$ is called a Vietoris map [1,2] if the following two conditions are satisfied:

(i) for each $x \in X$, the set $p^{-1}(x)$ is acyclic,

(ii) p is a proper map, i.e., for every compact $A \subseteq X$ we have that $p^{-1}(A)$ is compact.

Let D(X, Y) be the set of all pairs $X \stackrel{p}{\leftarrow} Z \stackrel{q}{\rightarrow} Y$ where p is a Vietoris map and q is continuous. We will denote every such diagram by (p,q). In Section 2, we discuss the coincidence index for pairs $\overline{U} \stackrel{p}{\leftarrow} Z \stackrel{q}{\rightarrow} X$ where U is an open subset of a Fréchet space X. In particular, we use the results of [3] together with the notion of r-dominated maps (based on work of Borsuk and Granas) to present a coincidence index for pairs of the above form.

Let Y and Z be topological spaces and V an open subset of Z. Then we say Y is r-dominated by V in Z if there exist a pair of continuous maps $r: V \to Y$, $s: Y \to V$ with $rs = 1_Y$. Let ANR, (respectively, AR) denote the class of metrizable absolute neighborhood retracts (respectively, absolute retracts); see [1]. The following result follows immediately from the Arens-Eells theorem (see [4, p. 284]).

THEOREM 1.1. If $Y \in ANR$, (respectively, AR), then Y is r-dominated by an open subset of a normed space (respectively, by a normed space).

Let (E, d) be a pseudometric space. For $S \subseteq E$, let $B(S, \epsilon) = \{x \in E : d(x, S) \leq \epsilon\}, \epsilon > 0$, where $d(x, S) = \inf_{y \in Y} d(x, y)$. The measure of noncompactness [5] of the set $M \subseteq E$ is defined

^{0893-9659/02/\$ -} see front matter © 2002 Elsevier Science Ltd. All rights reserved. Typeset by A_{MS} -TEX PII: S0893-9659(01)00156-2

by $\alpha(M) = \inf Q(M)$ where

 $Q(M) = \{\epsilon > 0 : M \subseteq B(A, \epsilon) \text{ for some finite subset } A \text{ of } E\}.$

Let *E* be a locally convex Hausdorff topological vector space, and let *P* be a defining system of seminorms on *E*. Let *A* and *C* be two subsets of *E*. A pair $A \stackrel{p}{\leftarrow} Z \stackrel{q}{\rightarrow} C$ is called a countably *P*-concentrative pair from *A* to *C* if for (every) $i \in P$, for each countably bounded non-*i*-precompact subset Ω of *A* (i.e., Ω is not precompact in the pseudonormed space (E, i)) we have $\alpha_i(q(p^{-1}(\Omega))) < \alpha_i(\Omega)$; here $\alpha_i(.)$ denotes the measure of noncompactness in the pseudonormed space (E, i).

In Section 3, a coincidence theory for countably P-concentrative pairs is presented. This section extends and generalizes results presented in [6]. In Section 3, all our pairs are countably P-concentrative. However, it is worth remarking here that in fact all the results in Section 3 hold if our pairs are countably condensing in the sense of [7, pp. 353, 356].

2. COINCIDENCE INDEX FOR COMPACT PAIRS IN FRÉCHET SPACES

A pair (p,q) is called compact if q is compact. Let U be an open subset of a normed space E. By $\mathcal{K}(\overline{U}, E)$ we mean the family of compact pairs (p,q) from \overline{U} to E for which $\operatorname{Fix}(p,q) \cap \partial U = \emptyset$ (recall that a pair (p,q) is from \overline{U} to E if there exists a metric space Z for which $\overline{U} \stackrel{p}{\to} Z \stackrel{q}{\to} E$); here $\operatorname{Fix}(p,q) = \{x \in \overline{U} : x \in q (p^{-1}(x))\}$. In 1976, Kucharski [3] defined the coincidence index on $\mathcal{K}(\overline{U}, E)$ (the ideas presented in [3] follow closely ideas given by Granas previously [4]).

THEOREM 2.1. There exists a map $I : \mathcal{K}(\overline{U}, E) \to \mathbf{Q}$ (called the coincidence index) which satisfies the following properties:

- (I) if $I(p,q) \neq 0$, then Fix $(p,q) \neq \emptyset$;
- (II) if $q: Z \to E$ given by $q(y) = x_0$ is a constant map, then $I(p,q) \neq 0$ if $x_0 \in U$;
- (III) if V is an open subset of U, $(p,q) \in \mathcal{K}(\overline{U}, E)$ and Fix $(p,q) \subset V$, then $I(p,q) = I(p_1,q_1)$ where $V \stackrel{p_1}{\leftarrow} p^{-1}(U) \stackrel{q_1}{\rightarrow} E$ with $p_1(y) = p(y)$ and $q_1(y) = q(y)$.

REMARK 2.1. Also the coincidence index has additivity, homotopy, and commutativity properties [4,6].

In this section, we extend Theorem 2.1 to the case when our space is a Fréchet space. The strategy presented here is based on an idea of Borsuk and Granas [4]. Let U be an open subset of a Fréchet space X. Let $\mathcal{M}(\overline{U}, X)$ denote the family of all compact pairs (p, q) from \overline{U} to X for which $\operatorname{Fix}(p,q) \cap \partial U = \emptyset$. Let $(p,q) \in \mathcal{M}(\overline{U}, X)$. Fix a normed space E which r-dominates X (Theorem 1.1 guarantees the existence of E). Fix $r: X \to E$ and $s: E \to X$ with $rs = 1_X$. Notice

$$\overline{r^{-1}(U)} \stackrel{r^{-1}p}{\leftarrow} Z \stackrel{sq}{\to} E;$$

since $r^{-1}p: Z \to \overline{r^{-1}(U)}$ is a Vietoris map (this follows immediately from the definition, or alternatively use [1, p. 40]). Next, notice

$$-\operatorname{Fix}\left(r^{-1}\,p,\,s\,q\right)\neq\emptyset\,\,\mathrm{implies}\,\,\operatorname{Fix}\left(p,q\right)\neq\emptyset.\tag{2.1}$$

To see this, notice if $x \in Fix(r^{-1}p, sq)$, then $x \in sqp^{-1}r(x)$ with $x \in \overline{r^{-1}(U)}$. Then since $rs = 1_X$, we have immediately that $r(x) \in qp^{-1}r(x)$ and $r(x) \in \overline{U}$ (since $r(\overline{r^{-1}(U)}) \subseteq \overline{r(r^{-1}(U))} \subseteq \overline{U}$), so $r(x) \in Fix(p,q)$.

We now claim that

$$(r^{-1}p, sq) \in \mathcal{K}\left(\overline{r^{-1}(U)}, E\right).$$
(2.2)

Certainly $(r^{-1}p, sq)$ is a compact pair, so it remains to show

Fix
$$(r^{-1}p, sq) \cap \partial r^{-1}(U) = \emptyset$$
.

If there exists $x \in \partial r^{-1}(U)$ with $x \in s q p^{-1} r(x)$, then since $r s = 1_X$, we have

$$r(x) \in q p^{-1} r(x), \quad \text{with } r(x) \in \partial U,$$

a contradiction since $(p,q) \in M(\overline{U}, X)$. Thus, (2.2) holds. Define

$$I(p,q)=I\left(r^{-1}\,p,\,s\,q\right),\,$$

where $I(r^{-1}p, sq)$ is as defined in Theorem 2.1.

REMARK 2.2. We note that the definition is independent of the choices involved. Suppose E' is another normed space which r-dominates X, so $s' : X \to E'$ and $r' : E' \to X$ are a pair of continuous maps with $r's' = 1_X$. Then the same ideas as in [1, pp. 241-242] guarantee that

$$I\left(\left(r'\right)^{-1}\,p,s'\,q\right)=I\left(r^{-1}\,p,s\,q\right).$$

The coincidence index also satisfies Properties (I)-(III) (and other well-known properties). For completeness we will establish Property (I). Suppose $(p,q) \in M(\overline{U},X)$ with $I(p,q) \neq 0$. Then there exists E, r, and s as above with

$$I(r^{-1}p,sq) = I(p,q) \neq 0.$$

Now Theorem 2.1 guarantees that $Fix(r^{-1}p, sq) \neq \emptyset$ so $Fix(p,q) \neq \emptyset$ from (2.1). Thus, Property (I) holds. The other properties are similar.

For our results in Section 3 we will need a slight generalization of the index defined above. Let C be a closed convex subset of a Fréchet space X and U an open subset of C. Let $\mathcal{M}(\overline{U}, C)$ denote the family of all compact pairs (p,q) from \overline{U} into C with $\operatorname{Fix}(p,q) \cap \partial U = \emptyset$. We now extend the coincidence index from $\mathcal{M}(\overline{U}, X)$ to $\mathcal{M}(\overline{U}, C)$ using a standard trick [6, p. 5]. For completeness we sketch the extension here (see [6] for complete details). Fix a retraction $r_0: X \to C$ (notice such a retraction exists by Dugundji's extension theorem). Let $(p,q) \in \mathcal{M}(\overline{U}, C)$ so $\overline{U} \stackrel{p}{\leftarrow} Z \stackrel{q}{\to} C$. Let

$$\Gamma = \left\{ (x,y) \in \overline{(r_0)^{-1}(U)} \times p^{-1}(\overline{U}) : r_0(x) = p(y) \right\} \quad \text{and} \quad g(x,y) = y,$$

with $g: \Gamma \to Z$. Also let

 $ilde{p}(x,y)=x \quad ext{ and } \quad ilde{q}=i \circ q \circ g,$

where $i: C \to X$ is the inclusion map. It is easy to check that

$$\operatorname{Fix}(p,q) = \operatorname{Fix}(\tilde{p},\tilde{q}) \tag{2.3}$$

and

$$\overline{(r_0)^{-1}(U)} \stackrel{\tilde{p}}{\leftarrow} \Gamma \stackrel{\tilde{q}}{\to} X.$$

Notice $(r_0)^{-1}(U)$ is open and from (2.3) we have $\operatorname{Fix}(\tilde{p}, \tilde{q}) \cap \partial(r_0)^{-1}(U) \neq \emptyset$. Also, for fixed $x \in \overline{(r_0)^{-1}(U)}$ notice $(\tilde{p})^{-1}(x)$ is homeomorphic to $p^{-1}(r_0(x))$ so $(\tilde{p})^{-1}(x)$ is acyclic. Define

$$I(p,q) = I\left(\tilde{p},\tilde{q}\right)$$

and again our coincidence index satisfies Properties (I)-(III).

3. COUNTABLY P-CONCENTRATIVE PAIRS

We present a coincidence index for countably P-concentrative pairs (p,q) in this section.

DEFINITION 3.1. Let A and C be two subsets of a Fréchet space X (P a defining system of seminorms). A pair (see Section 1) $A \stackrel{p}{\leftarrow} Z \stackrel{q}{\rightarrow} C$ is called a countably P-concentrative pair from A to C if for (every) $i \in P$, for each countably bounded non-i-precompact subset Ω of A, (i.e., Ω is not precompact in the pseudonormed space (X,i)) we have $\alpha_i(q(p^{-1}(\Omega))) < \alpha_i(\Omega)$; here $\alpha_i(.)$ denotes the measure of noncompactness in the pseudonormed space (X,i).

REMARK 3.1. In this section, all our pairs are countably P-concentrative. However, it is worth remarking here that in fact all the results hold if our pairs are countably condensing in the sense of [7, pp. 353, 356].

For the analysis below we assume A is a bounded, closed subset of a Fréchet space X (P is a defining system of seminorms) and C a closed convex subset of X. Consider a countably P-concentrative pair (p,q) from A to C. We claim that we can associate with each pair (p,q) a compact pair (\tilde{p}, \tilde{q}) such that

$$\operatorname{Fix}(p,q) = \operatorname{Fix}(\tilde{p},\tilde{q});$$

here Fix $(p,q) = \{x \in A : x \in q (p^{-1}(x))\}$. To see this let

$$K_1 = \overline{\operatorname{co}} \left(q \left(p^{-1} \left(A \right) \right) \right)$$
 and $K_n = \overline{\operatorname{co}} \left(q \left(p^{-1} \left(A \cap K_{n-1} \right) \right) \right)$, for $n = 2, 3, \ldots$.

Notice since $q(p^{-1}(A \cap K_n)) \subseteq \overline{co}(q(p^{-1}(A \cap K_n)))$ that we have

$$q\left(p^{-1}\left(A\cap K_{n}\right)\right)\subseteq K_{n+1}, \quad \text{for each } n.$$

$$(3.1)$$

In addition, we note

$$\operatorname{Fix}(p,q) \subseteq K_n, \quad \text{for each } n.$$
 (3.2)

First, we show Fix $(p,q) \subseteq K_1$. If $x \in \text{Fix}(p,q)$, then $x \in A$ and $x \in q(p^{-1}(A))$, so Fix $(p,q) \subseteq K_1$. Suppose Fix $(p,q) \subseteq K_k$ for some k. Let $x \in \text{Fix}(p,q)$ so $x \in A \cap K_k$ and as a result

$$x \in q \left(p^{-1} \left(A \cap K_k \right) \right) \subseteq \overline{\operatorname{co}} \left(q \left(p^{-1} \left(A \cap K_k \right) \right) \right) = K_{k+1}.$$

Now there are two possibilities that can occur, namely

$$K_n \neq \emptyset$$
, for each n (3.3)

or

$$K_i \neq \emptyset$$
, for $i = 1, \dots, m$ and $K_{m+j} = \emptyset$, for each $j \in \{1, 2, \dots\}$. (3.4)

If (3.4) holds, then we can choose $x_0 \in K_m$ and let

$$\tilde{q}: Z \to C \text{ by } q(z) = x_0 \quad \text{and} \quad \tilde{p} = p.$$
 (3.5)

Clearly (\tilde{p}, \tilde{q}) is a compact pair. Now (3.2) guarantees that Fix $(p, q) = \emptyset$. Also, if $x \in A$ with $x \in \tilde{q} (\tilde{p}^{-1}(x))$, then it is immediate that $x = x_0$ so $K_{m+1} \neq \emptyset$, a contradiction. Thus, Fix $(\tilde{p}, \tilde{q}) = \emptyset$ and so

$$\mathrm{Fix}\,(p,q)=\mathrm{Fix}\,(ilde{p}, ilde{q})=\emptyset.$$

Next suppose (3.3) holds. Then [7, Theorem 2.2] (note A is bounded and $q(p^{-1}(.))$ takes relatively compact sets into relatively compact sets) guarantees that

$$K_{\infty} = \bigcap_{n=1}^{\infty} K_n$$

is compact. Also, from (3.2) we have that $Fix(p,q) \subseteq K_{\infty}$. Now define a compact (note p is a proper map) pair (\tilde{p}, \tilde{q}) as follows:

$$A\cap K_{\infty}\stackrel{\tilde{p}}{\leftarrow} p^{-1}(A\cap K_{\infty})\stackrel{\tilde{q}}{\to} K_{\infty},$$

with

$$\tilde{p}(u) = p(u)$$
 and $\tilde{q} = q(u)$, for all u . (3.6)

Also note

$$\operatorname{Fix} \left(\tilde{p}, \tilde{q} \right) = \left\{ x \in A \cap K_{\infty} : x \in \tilde{q} \left(\tilde{p}^{-1} \left(x \right) \right) \right\} \subseteq \operatorname{Fix} \left(p, q \right)$$

In addition, since $q(p^{-1}(A \cap K_{\infty})) \subseteq K_{\infty}$ and Fix $(p,q) \subseteq K_{\infty}$ (from (3.2)) we have that

$$\operatorname{Fix}(p,q) \subseteq \operatorname{Fix}(\tilde{p},\tilde{q}).$$

Thus, $\operatorname{Fix}(p,q) = \operatorname{Fix}(\tilde{p},\tilde{q}).$

REMARK 3.2. If A = C, then it is easy to see that (3.4) cannot occur.

THEOREM 3.1. Let A be a bounded, closed, convex subset of a Fréchet space X (P is a defining system of seminorms) and (p,q) a countably P-concentrative pair from A to A. Then $\operatorname{Fix}(p,q) \neq \emptyset$. PROOF. From the above there exists a compact pair (\tilde{p}, \tilde{q}) with $\operatorname{Fix}(p,q) = \operatorname{Fix}(\tilde{p}, \tilde{q})$. Now $\operatorname{Fix}(\tilde{p}, \tilde{q}) \neq \emptyset$ from [1, p. 59].

Next, we show that it is easy using the results in Section 2 to define the coincidence index for countably *P*-concentrative pairs. Let X be a Fréchet space (*P* is a defining system of seminorms), C a closed convex subset of X and U an open subset of C with \overline{U} bounded. By $M(\overline{U}, C)$ we denote the family of all countably *P*-concentrative pairs from \overline{U} to C with no fixed points on ∂U , (i.e., Fix $(p,q) \cap \partial U = \emptyset$ for all $(p,q) \in M(\overline{U}, C)$).

DEFINITION 3.2. Let $(p,q) \in M(\overline{U},C)$. We define the coincidence index I(p,q) of (p,q) by putting

$$I(p,q) = I(\tilde{p},\tilde{q}),$$

where (\tilde{p}, \tilde{q}) is the compact pair associated with (p, q) by (3.5) or (3.6).

REMARK 3.3. Recall the coincidence index $I(\tilde{p}, \tilde{q})$ is well defined (see Section 2).

THEOREM 3.2. Let $(p,q) \in M(\overline{U},C)$ and $I(p,q) \neq 0$. Then Fix $(p,q) \neq \emptyset$.

PROOF. Now $I(\tilde{p}, \tilde{q}) \neq 0$, where (\tilde{p}, \tilde{q}) is the compact pair associated with (p, q). Now Section 2 (Property (I)) guarantees that Fix $(\tilde{p}, \tilde{q}) \neq \emptyset$, so Fix $(p, q) \neq \emptyset$.

Essentially the same argument as in [6, p. 9] guarantees the following homotopy result.

THEOREM 3.3. Let X, C, and U be as above and $p: Z \to \overline{U}$ a Vietoris map with $h: Z \times [0, 1] \to C$ a continuous map. Suppose the following two conditions are satisfied:

$$\operatorname{Fix}\left(p,h\right) \cap \partial U = \emptyset \tag{3.7}$$

and

for (every) $i \in P$, for each countably non-*i*-precompact subset Ω of \overline{U} we have $\alpha_i \left(h \left(p^{-1}(\Omega) \times [0,1] \right) \right) < \alpha_i(\Omega).$ (3.8)

Then $I(p, h_0) = I(p, h_1)$, where $h_i(x) = h(x, i)$, i = 0, 1.

Let X be a Fréchet space (P is a defining system of seminorms), C a closed convex subset of X, U an open subset of C with \overline{U} bounded, and let $\phi \in Ad(\overline{U}, C)$ be countably P-concentrative with Fix $\phi \cap \partial U = \emptyset$; here Fix $\phi = \{x \in U : x \in \phi(x)\}$ and ϕ is called countably P-concentrative if there exists a selected pair (p,q) of ϕ which is countably P-concentrative. Of course we can now define the coincidence index $I(\phi)$ by putting

 $I(\phi) = \{I(p,q) : (p,q) \subset \phi \text{ such that } (p,q) \text{ is countably } P\text{-concentrative}\};$

note $\operatorname{Fix} \phi = \operatorname{Fix}(p,q)$.

REFERENCES

- 1. L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic, Dordrecht, (1999).
- 2. D. O'Regan, A note on morphisms and fixed point theory, Math. Proc. Royal Irish Acad. 99A, 163-170, (1999).
- 3. Z. Kucharski, A coincidence index, Bull. Acad. Polon. Sci. 24, 245-252, (1976).
- 4. A. Granas, The Leray-Schauder index and fixed point theory for arbitrary ANR's, Bull. Soc. Math. Fr. 100, 209-228, (1972).
- 5. J. Daneš, Generalized contractive mappings and their fixed points, Comment. Math. Univ. Carolin. 11, 115-136, (1970).
- L. Gorniewicz and Z. Kucharski, Coincidence of k-set contraction pairs, Jour. Math. Anal. Appl. 107, 1-15, (1985).
- 7. M. Vath, Fixed point theorems and fixed point index for countably condensing maps, Topological Methods in Nonlinear Analysis 13, 341-363, (1999).
- 8. L. Gorniewicz and A. Granas, Some general theorems in coincidence theory I, Jour. Math. Pures et Appl. 60, 361-373, (1981).