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Embeddings of finite metric spaces into Euclidean space have been studied in
several contexts: The local theory of Banach spaces, the design of approximation
algorithms, and graph theory. The emphasis is usually on embeddings with the least
possible distortion. That is, one seeks an embedding that minimizes the bi-Lipschitz
constant of the mapping. This question has also been asked for embeddings into
other normed spaces. However, when the host space is l2 , more can be said: The
problem of finding an optimal embedding into l2 can be formulated as a semi-
definite program (and can therefore be solved in polynomial time). So far, this
elegant statement of the problem has not been applied to any interesting explicit
instances. Here we employ this method and examine two families of graphs: (i)
products of cycles, and (ii) constant-degree expander graphs. Our results in (i)
extend a 30-year-old result of P. Enflo (1969, Ark. Mat. 8, 103�105) on the cube.
Our results in (ii) provide an alternative proof to the fact that there are n-point
metric spaces whose Euclidean distortion is 0(log n). Furthermore, we show that
metrics in the class (ii) are 0(log n) far from the class l2

2 , namely, the square of the
metrics realizable in l2 . This is a well studied class which contains all l1 metrics
(and therefore also all l2 metrics). Some of our methods may well apply to more
general instances where semidefinite programming is used to estimate Euclidean
distortions. Specifically, we develop a method for proving the optimality of an
embedding. This idea is useful in those cases where it is possible to guess an optimal
embedding. � 2000 Academic Press

1. INTRODUCTION

Let (X, d ) be a finite metric space, and let n=|X | (henceforth, n
is always the size of the metric space). Let f : X � Rn be an embedding
of X into Rn equipped with the Euclidean norm. Define the following
quantities:
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v expansion( f )=supx, y # X
& f (x)& f ( y)&

d(x, y) ,

v contraction( f )=supx, y # X
d(x, y)

& f (x)& f ( y)& ,

v distortion( f )=expansion( f ) } contraction( f ).

We denote by c2(X, d ) the least distortion with which (X, d ) may be
embedded in l2 (note that the dimension plays no role in this discussion,
and it is obvious we need no more than n&1 dimensions for the best
possible embedding). The parameter c2(X, d) has been studied for the
metrics of several classes of graph metrics.

(1) For constant degree expander-graphs it has been shown [2] that
c2=0(log n). Thus, by a theorem of Bourgain [4] these are, the metrics
with the asymptotically largest c2(X, d ) among all n-point metric spaces X.

(2) If X is the metric of a tree, T, it has been shown [7] that
c2(X )=O(- log log n).

(3) For the r-dimensional cube (i.e., the graph with vertex set [0, 1]r

where two vertices are adjacent iff they differ in exactly one coordinate) an
exact result is known [1]: c2(r-dimensional cube)=- r=- log n. The
identity map on r-dimensional l2 has this least possible distortion.

In this paper we provide a unified proof for the lower bounds in the
cases of expanders and cubes. We also extend the latter result to graphs
which are strong products of cycles.

Let PSDn be the set of positive semidefinite symmetric n_n matrices.
Define On to be the collection of all matrices Q # PSDn for which Q1=0.

Remark 1.1. We are mostly concerned with metrics, namely, non-
negative symmetric functions d that satisfy the triangle inequality. It is con-
venient, however, in several instances to consider also functions d which
does not necessarily satisfy the triangle inequality.

Define

$(Q, d ) :={�
� i, j: qi , j>0 d 2(i, j ) qi, j

� i, j: qi , j<0 d 2(i, j ) |q i, j |

1

if the denominator is non-zero

otherwise.

When it is clear from the context, we use $(Q) instead of $(Q, d ).
Our starting point is the following proposition, which characterizes

c2(X, d ) in terms of a semidefinite program. This proposition follows
readily from the duality principle in convex programming.
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Proposition 1.2 (Linial, London, Rabinovich [2, Corollary 3.5]). Let
(X, d ) be an n-point metric space. Then c2(X, d )�C iff for every matrix
Q # On the following inequality holds

:
i, j : qi, j>0

d 2(i, j ) q i, j+C2 :
i, j : qi, j<0

d 2(i, j ) qi, j�0.

Remark 1.3. It will be convenient for us to use Proposition 1.2 in the
following equivalent form:

c2(X, d )=max
Q # On

$(Q, d).

(The expression in Proposition 1.2 cannot be simplified and written in a
fraction form only when the metric is Euclidean. This case is taken care of
by the second alternative in the formula for $.)

The task of proving a lower bound * on the Euclidean distortion of
metric spaces thus reduces to the problem of finding a certain matrix Q # On

with $(Q, d )�*. Of course, the greater $(Q, d) is, the better the bound is.
The next two claims provide some insight on how to search for ``good''
matrices Q. The claim is stated for a situation where a particular embed-
ding is suspected of being optimal, and a matrix Q # On is sought to prove
this.

Claim 1.4. Suppose that , is an optimal embedding of an n-point metric
space (X, d ) into l2 . Then a matrix Q that achieves the maximum in Proposi-
tion 1.2 has the following properties

v qi, j�0 for every pair i, j that satisfies d(xi , xj)�&,(xi)&,(x j)&
<contraction(,). That is, qi, j>0 only for the most contracted pairs i, j.

v qi, j�0 for every pair i, j that satisfies &,(xi)&,(xj)&�
d(xi , xj)<expansion(,). That is, qi, j<0 only for the most expanded pairs
i, j.

In particular, qi, j=0 for every pair i, j that is neither most contracted
nor most expanded by ,.

Proof. Let , and Q be the embedding and matrix of the claim. We
prove the first property, the second follows analogously. Consider a pair of
indices i, j with

d(xi , x j)
&,(xi)&,(x j)&

<contraction(,).
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Define d*, which coincides with d, apart from the pair (xi , x j), where
d*(xi , x j) = contraction(,) } &,(xi)&,(xj)&.

It should be noted that the concept of c2 can be defined for any d that
is a symmetric matrices with nonnegative entries, and not necessary a
metric. Moreover, Proposition 1.2 applies in this more general context.
This implies the validity of the following arguments, regardless of the fact
that d* need not be a metric.

Let distortion*(,) be the distortion of , with respect to d*. (Likewise,
we define expansion*(,) and contraction*(,)).

Clearly, contraction*(,)=contraction(,), and expansion*(,)�
expansion(,). Therefore, distortion*(,)�distortion(,).

Proposition 1.2, now implies $(Q, d*)�distortion*(,), and $(Q, d )=
distortion(,), whence also $(Q, d*)�$(Q, d ). But d*(xi , xj)>d(xi , xj),
and otherwise d and d* are identical. It follows that qij�0. K

In the embedding problems that we encounter here, it is not difficult to
guess an optimal mapping ,. However, even in such circumstances, the pre-
vious claim still does not provide us with a complete recipe for constructing
the matrix Q to show ,'s optimality, namely, a matrix Q for which
$(Q)=distortion(,). Note that in order to apply the claim, it is necessary to
know which pairs are the most contracted nodes, and which are the most
expanded ones (by ,). Even though we may have an optimal ,, this addi-
tional information may be hard to derive. We therefore take a somewhat
indirect approach, that seems to be of some general interest. The following
claim offer a method for proving optimality of an embedding by finding many
``good'' matrices. Such a matrix is constructed per each pair of points.

Claim 1.5. Let , be an embedding of a (unweighted) graph metric X into
l2 . Suppose that &,(x)&,( y)&=1 for every two adjacent vertices x, y
(whence expansion(,)=1, see Claim 2.2).

Further assume that for every two vertices with d(x, y)>1, there exists a
matrix Q(x, y) # On such that

$(Q(x, y))=\
� i, j : qi, j

(x, y)>0 d 2(i, j ) q (x, y)
i, j

� i, j : qi, j
(x, y)<0 d 2(i, j ) |q (x, y)

i, j |+
1
2=

d(x, y)

&,(x)&,( y)&
.

Then , is an optimal mapping (i.e., it has the minimal possible distortion).

Proof.

c2(X )�distortion(,)=contraction(,)= max
x, y # X: d(x, y)>1

d(x, y)
& f (x)& f ( y)&

= max
x, y # X: d(x, y)>1

$(Q(x, y))�max
Q # On

$(Q, d )=c2(X )
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The last equality comes from Proposition 1.2. We conclude that
c2(X )=distortion(,).

2. EMBEDDING PRODUCTS OF CYCLES INTO EUCLIDEAN SPACE

In this section we find optimal Euclidean embeddings for graphs which
are products of cycles.

Let G1 , G2 , ..., Gr be graphs. Their strong product is the graph
G=>r

i=1 Gi whose vertex set is V(G )=V(G1)_V(G2) } } } _V(Gr). Two
vertices in G are adjacent if they differ in exactly one coordinate, on which
their projections are adjacent. Our goal is to find the Euclidean distortion
of graphs which are the strong product of cycles. Namely, if Cn denotes the
cycle of length n, we consider graphs of the form G=>r

i=1 Cni
.

Here is an algebraic view of this family of graphs: Let A be a finite
Abelian group: A=Zn1

�Zn2
� } } } �Znr

, (Recall that every finite Abelian
group can be thus presented.) Let gi be a generator of Zni

, and consider

S=[(g1 , 0, 0, ..., 0), (0, g2 , 0, ..., 0), ..., (0, 0, ..., 0, gr)].

the corresponding generating set for A. Now let G=G(A)=G(A, S) be the
Cayley graph of A with respect to the generating set S, and let X(A) be the
graph metric associated with G. The special case A=(Z2)m is just the cube
with its usual graph metric.

2.1. Embedding a Cycle

We return to the n-cycle Cn and assume for convenience that n�4 and
is even (since Claim 2.5 generalizes this section, this loss of generality is
justified). Call the embedding of Cn onto the vertices of the regular n-gon
the standard embedding. We claim that the standard embedding of Cn into
R2 is optimal. Namely, it has the least possible distortion.

Claim 2.1. The embedding ,: [1, 2, ..., n] � R2

,: j �
1

2 sin (?�n) \cos
2?j
n

, sin
2?j
n +

is an optimal embedding of Cn into l2 .

We start with the following observation.

Claim 2.2. Let f be an embedding of a graph G into any metric space M.
Then the expansion of f, namely, the maximum of dM ( f (x),f ( y))�dG(x, y) is
attained for x and y that are adjacent.
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Proof. Let x=x0 , x1 , ..., xk= y be a shortest path from x to y in G.
Then

dM ( f (x), f ( y))
dG(x, y)

�
� i<k dM ( f (xi), f (xi+1))

� i<k dG(xi , xi+1)

�max
i<k

dM ( f (xi), f (xi+1))
dG(xi , xi+1)

.

A calculation shows that a pair of vertices that are at distance k in Cn ,
is mapped by the standard embedding to points in R2 that are at distance
sin( ?

n k)�sin ?
n . By the above claim expansion(,)=1. Since sin( ?

n k)�(k sin ?
n)

is minimized for k=n�2, we get contraction(,)= n
2 sin ?

n .
Therefore distortion(,)=expansion(,) } contraction(,)= n

2 sin ?
n .

We now turn to the lower bound. To prove that the embedding , is
optimal we seek a matrix Q # On , for which $(Q)=distortion(,). Claim 1.4
now applies. If indeed , is optimal, then the desired matrix must be non
positive at entries that correspond to incident vertices, where the maximal
expansion occurs. On the other hand, entries corresponding to antipodes
(vertices of distance n�2) must be non negative, since there, the contraction
is maximal. The other off-diagonal entries must vanish. If we further
impose symmetry constraints and the equality $(Q)=distortion(,) the
matrix Q is determined up to a multiplicative scalar. To recap: the duality
theorem implies that if, as we suspect, , is optimal, then the desired matrix
exists. The previous discussion yielded sufficiently many constraints to
uniquely determine Q.

Define

qi, j={
2 cos2 \?

n+ if i=j

&1 if d(i , j)=1

2 sin2 \?
n+ if d(i , j)=n�2

0 otherwise.

Clearly, Q is symmetric, and Q1=0. To prove that it is positive semi-
definite, we exhibit a complete set of eigenvectors for Q all having non-
negative eigenvalues. The set of characters of Zn provides such a system of
eigenvectors. Let | be a primitive nth root of unity, and consider the
orthogonal set of vectors vi=(|i, |2i, ..., |ni) for i=0, ..., n&1.

Claim 2.3. vi is an eigenvector of Q with eigenvalue *i=4 sin2 ( ?
n i )&

2 sin2 ( ?
n)(1&(&1) i).
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Proof.

(Qvi) j=\2&2 sin2 \?
n++ |ij&(|i( j+1)+|i( j&1))+2 sin2 \?

n+ |i( j+n�2)

=|ij \2&2 sin2 \?
n+&2 cos \2?

n
i+ 2 sin2 \?

n+ (&1) i+
=|ij \4 sin2 \?

n
i+&2 sin2 \?

n+ (1&(&1) i)+ ,

and so

Qvi=\4 sin2 \?
n

i+&2 sin2 \?
n+ (1&(&1) i)) vi .

As vi are linearly independent, they form a complete set of eigenvectors.
Now, for i even, *i is clearly nonnegative. For i odd, the smallest *i occurs
for i=1, and *1=0.

Therefore Q#On . Now, $(Q)=- n}2 sin2 (?�n)(n�2)2�2n=n
2 sin ?

n=distortion
(,). By Proposition 1.2 we have shown that , is an optimal embedding. K

2.2. Embedding a Cube

The following theorem is due to P. Enflo:

Theorem 2.4 (Enflo [1]). Let X be the graph metric of the r-dimensional
cube. Then c2(X )=- r, the identity map being an optimal embedding.

We have already noted that the cube is just a simple instance of a graph
which is a product of cycles. We use the semidefinite characterization of c2

to reprove the theorem, and as another stage in settling the general case of
products of cycles.

Proof. The r-dimensional cube is the product of r 2-cycles C2 . The
identity map that sends the vertices of the cube onto [0, 1]r�Rr, is the
cartesian product of the one-dimensional standard embeddings.

Clearly, edge lengths are maintained, while the largest contraction, - r,
occurs at antipodal pairs. More generally, vertices at distance l are mapped
to two points at distance - l. Now, Claim 1.4 yields the following proper-
ties for the matrix Q, which, by Proposition 1.2 imply that , is optimal:
The only nonzero entries reside (i) On the main diagonal (ii) At entries
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corresponding to neighboring vertices (non positive) and (iii) on antipodal
entries (nonnegative). We consider the matrix

qi, j={
r&1
&1
1
0

if i=j
if d(i , j)=1
if d(i , j)=r
otherwise.

Clearly, Q is symmetric, and Q1=0. It is not hard to verify that Q is
indeed positive semi-definite. We omit the proof, which is a special case of
Claim 2.6.

A simple calculation yields $(Q)=- 2rr�2r=- r, which is distortion(,),
and we are done.

2.3. The General Case

Having established the optimality of the standard embedding for Cn , we
now turn to the general case of G=>Cni

.

Theorem 2.5. Let G=>Cni
. The cartesian product of standard embed-

dings is an optimal embedding of G into l2 . That is , : G � R2n defined by

, : (k1 , k2 , ..., kr) �

\
cos

2?
n1

k1

2 sin
?
n1

,
sin

2?
n1

k1

2 sin
?
n1

,
cos

2?
n2

k2

2 sin
?
n2

,
sin

2?
n2

k2

2 sin
?
n2

, ...,
cos

2?
nr

kr

2 sin
?
nr

,
sin

2?
nr

kr

2 sin
?
nr
+

is an optimal embedding.

Proof. We use the notation k=(k1 , k2 , ..., kr) to denote the vertices of
G, and consider this as a vector in Zn1

�Zn2
� } } } �Znr

. First note that if
k and l are neighbors, then &,(k)&,(l)&=1 whence expansion(,)=1. To
determine the contraction of ,, it suffices to consider max d(k, l)

&,(k)&,(l)& over
nonadjacent vertices k and l.

We now use the symmetry of our construction and show that it suffices
to consider the case where l=0. Indeed d(k, l)=d(k&l, 0) and
&,(k&l)&,(0)&=&,(k)&,(l)&. (This latter identity follows from the
geometric definition of the embedding, but can also be verified directly.) In
other words,

distortion(,)=contraction(,)= max
h : d(h, 0)>1

d(h, 0)
&,(h)&,(0)&

.
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In view of our discussion in the case of the cube, it seems natural to
expect that in general, the largest contraction occurs at antipodal pairs.
(We say that k and l are antipodal if for every index i, the distance between
ki and li is as large as possible, namely, wni �2x.) This is, however, incorrect
as we soon explain. There are two sources to the distortion: One that
comes from each component in the product G=> Cni

, while the other
arises from the combined effect of many coordinates. In the cube, where
each coordinate is mapped isometrically, only the latter effect is observed,
and the distortion results only from the disagreement between l1 and l2

metrics. In d dimensions, this yields a distortion of - d. What should we
expect in the general case? The l1 vs l2 distortion is largest for vectors all
of whose coordinates are equal. The standard embedding of each individual
cycle Ck with k�4, has some distortion of its own that is maximized at
antipodal vertices. Therefore, when considering products of cycles, two
conflicting principles are at play: On one hand, distortion is maximized at
individual coordinates for antipodal pairs. On the other hand, to increase
the overall distortion, we may want to make individual coordinate differ-
ences as equal as possible.

To illustrate the tradeoff between these two principles, let G be the
product of a big cycle and a small one, say G=C40_C4 . The antipodal
pair (0, 0) and (20, 2) is not as contracted as the pair (0, 0) and (1, 2). In
fact the latter is a most contracted pair.

The way to handle this problem is to bypass it using Claim 1.5 as
follows: For every h with d(h, 0)>1, define a matrix Q=Q(h).

For j=1, 2, ..., r, define

\j={1
2

if nj=2
if nj>2.

Let =j=(0, 0, ..., 1, ..., 0), the j th unit vector, and H=[h$ : \f, h$f=\hf].

Let Q=Q(h) be defined by

qk, l={
:

j \sin
?hj

nj <sin
?
n j+

2

&1 if k=l

&
1
\j \sin

?h j

n j <sin
?
n j+

2

if d(k, l)=1, and they differ on the

j th coordinate
|H|&1 if k&l # H

0 otherwise.
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Proof. As in the special case, it is easily seen that Q is symmetric, and
Q1=0. Also, again we claim that the characters of the underlying group
A=Zn1

�Zn2
� } } } �Znr

constitute a complete system of eigenvectors for
Q, all with non negative eigenvalues. Let va be the vector corresponding to
the character /a : b � exp(2?i�ja jbj �n j). Then

(Qva)b=\:
j \sin

?hj

nj <sin
?
n j+

2

&1+ va(b)

&:
j

1
\j \sin

?hj

nj <sin
?
nj +

2

(\j �2)(va(b&=j)+va(b+= j))

+|H|&1 :
h$ # H

va(b+h$)

=va(b)( :
j \sin

?hj

n j <sin
?
nj+

2

&1

&:
j \sin

?hj

nj <sin
?
nj+

2

cos
2?a j

nj
+|H| &1 :

h$ # H

exp \2?i :
j

ajh$j
nj ++

=va(b)(2 :
j \sin

?a j

n j +
2

\sin
?h j

nj <sin
?
n j+

2

+`
j

cos
2?a jhj

n j
&1+ .

In order to show that the eigenvalues are nonnegative we need the following
technical statement:

Proposition 2.7.

\sin
?a
n +

2

\sin
?h
n <sin

?
n+

2

�\sin
?ah

n +
2

for a, h=0, 1, ..., n&1.

Proof. We first observe a simple trigonometric fact:

Lemma 2.8. The function sin :x�sin x is decreasing in x for :>1, and x
in the interval (0, ?�2:).

Proof. By taking a derivative, the claim reduces to the inequality
tan :x�tan x�: with the same ranges for : and x. This last inequality
follows easily from the convexity of tan % for 0<%<?�2.
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Note that when a or h equal 0 or 1 the inequality is trivially true.
Furthermore, through replacing a by n&a if necessary, and h by n&h, it
suffices to check only for 1<a, h�w n&1

2 x.
Now Lemma 2.8 implies the proposition whenever ah�n� 1

2 (taking
:=a).

The only case not covered is when a and h are as above, whereas
ah�n� 1

2 .
In this range we argue as

\sin
?a
n +

2

\sin
?h
n <sin

?
n+

2

�\sin
?
2h+

2

\sin
?h
n <sin

?
n+

2

�\sin
?
2+

2

=1�\sin
?ah

n +
2

.

The first inequality expresses the monotonicity of the sin function in
(0, ?�2). The second one follows from Lemma 2.8 (with :=h).

We now complete the proof that the eigenvalues are non-negative:

*a=2 :
j \sin

?a j

n j +
2

\sin
?hj

nj <sin
?
nj+

2

+`
j

cos
2?ajhj

nj
&1

�2 :
j \sin

?aj hj

nj +
2

+`
j

cos
2?aj hj

nj
&1

We now define ;j to be 2(sin(?aj hj �n j )
2. It is enough to show that for

;j # [0, 2],

`
j

(1&;j)�1&:
j

;j .

This is clearly true for r=1, and the following inductive step gives the
desired result,

:
r

j

;j+`
r

j

(1&; j)&1= :
r&1

j

; j+;r+(1&;r) `
r&1

j

(1&;j)&1

�;r\1& `
r&1

j

(1&; j)+�0.

Claim 2.9. For all h such that d(h, 0)>1, $(Q(h))= d(h, 0)
&,(h)&,(0)&
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Proof.

$(Q(h))=\
�k, l : qk, l>0 d 2(k, l) qk, l

�k, l : qk, l<0 d 2(k, l) |qk, l |+
1
2

=\ |G| |H| &1 |H| d 2(h, 0)
|G| � j (sin (?hj �nj )�sin (?�nj ))2+

1
2

=\ d 2(h, 0)
� j (sin (?hj �nj )�sin (?�n j ))

2+
1
2

=
d(h, 0)

&,(h)&,(0)&
.

Claim 1.5 can now be invoked to complete the proof of Theorem 2.5.

3. EMBEDDING EXPANDERS IN L2 AND L2
2

Bourgain [4] has proved a major result on the embedding of finite
metrics into normed spaces. Namely, that every metric space with n points,
can be embedded into Euclidean space with distortion only O(log n).

It was shown [2] (see also [6]) that this bound is tight and is attained
for the graph metric of constant degree expanders. That is, if (X, d ) is the
metric of a k-regular graph of order n whose second largest eigenvalue is
�k&= where = is a constant not dependent on n, then c2(X)>c log n
where c depends only on k and =.

Here we provide an alternative proof that is completely different from
the previous ones, using Proposition 1.2. It turns out that this technique
yields a much stronger result than that. Consider the family of functions
d( } , } ) that are realizable in l2

2 , that is there are n points x1 , ..., xn # Rn,
and d(x, y)=&,(x)&,( y)&2. The family of such d constitutes a cone that
contain the cut-cone, the cone of l1 realizable metrics. It is a standard fact
that every l2 metric belongs to the cut-cone. (For this fact as well as a
thorough introduction to this area, see [5]). We prove that in fact metrics
of expander graphs are 0(log n) far from l2

2 . It follows that Bourgain's
bound is tight in an even stronger sense. We start by reproving the known
result:

Theorem 3.1. Let d be the metric of a k-regular graph G of order n
whose second largest eigenvalue is �k&=. Then c2(X )>c log n where c
depends only on k and =.
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Proof. We start by defining a graph H that has the same vertex set as
G and where two vertices are adjacent if their distance in G is at least
logkn&2.

Claim 3.2. All vertices of H have degree >1
2 n.

Proof. Since G has constant degree k, every vertex has at most
kr (1+ 1

k&1) vertices at distance �r from it. For r=logk n&2, this implies
that the r-neighborhood of every vertex contains fewer than n

2 vertices as
claimed.

We now use the following graph theoretic fact: A graph in which all
vertices have degree � 1

2 n, has a matching of w n
2x edges. This is a simple

consequence of Dirac's sufficient condition for a Hamiltonian circuit (e.g.,
[3, pp. 106�107]).

For simplicity we assume that n is even and that M is a perfect matching
in H.

Let A be the adjacency matrix of G and B the adjacency matrix of the
matching M, and let Q=kI&A+ =

2(B&I ). We now show that Q is in On .
Since Q1=0, it is enough to show for every vector x orthogonal to 1
that xQxt�0. Consider a vector x with x=1. The assumption on G 's
eigenvalues now implies x(kI&A) xt�= &x&2.

Now,

x(B&I ) xt= :
ij # M

(2x ix j&x2
i &x2

j )�&2 :
ij # M

(x2
i +x2

j )=&2 &x&2,

and so

xQxt=x(kI&A) xt+
=
2

x(B&I ) xt�= &x&2&= &x&2=0.

We conclude by evaluating $(Q), the lower bound on c2(X ) that Q yields

:
i, j : qi, j>0

d 2(i, j ) qi, j�
=
2

} n(logk n&2)2,

since the distances on the entries supported by B are at least logk n&2,

:
i, j: qi, j<0

d 2(i, j ) |q i, j |=kn,
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as we have kn ordered pairs of neighbors in the graph. Consequently

$(Q)�� =
2k

(logk n&2)�0(log n),

whence c2(X )�0(log n).

Definition 3.3. l2
2 is the class of functions which are the square of

Euclidean metrics. (In [5] this class is called NOR2.) That is, d # l2
2 iff there

exist n points x1 , ..., xn in Rn such that di, j=&xi&xj&2.

Claim 3.4 [5]. Any metric realizable in l1 is in l2
2 .

We turn to the stronger result and consider the minimal distortion of an
embedding of d into l2

2 .

Theorem 3.5. Let d be the metric of a k-regular graph of order n whose
second eigenvalue is �k&=. Every embedding of d into l2

2 has distortion
�0(log n). The implicit constants in the 0 term depend on k and = but not
on n.

Proof. The first thing to observe is that the following two quantities are
identical:

v The least distortion in any embedding of d into l2
2 .

v (c2(- d ))2, namely, the square of the least Euclidean distortion of
the function - d.

It follows that we can again use Proposition 1.2 to conclude that the
minimal distortion for the class l2

2 is given by

max
P # On

$2(P, - d ).

Again we utilize the matrix Q # On from the previous proof, and conclude

�i, j : qi, j>0 d(i, j ) qi, j

�i, j : qi, j<0 d(i, j ) |qi, j |
=

(=�2) } n(logk n&2)
kn

�0(log n).

Remark 3.6. Observe that Claim 3.4 implies that every embedding of d
into l1 has distortion �0(log n).
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