Singular integral operators on function spaces

Jiecheng Chen, ${ }^{\text {a, } 1}$ Dashan Fan, ${ }^{\mathrm{b}, *}$ and Yiming Ying ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Zhejiang University (Xixi Campus), 310028, Hangzhou, China
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
Received 19 November 2001
Submitted by L. Chen

Abstract

We study the singular integral operator $$
f_{x, t}\left(y^{\prime}\right)=f\left(x-t y^{\prime}\right)
$$ defined on all test functions f, where b is a bounded function, $\alpha \geqslant 0, \Omega$ is suitable distribution on the unit sphere S^{n-1} satisfying some cancellation conditions. We prove certain boundedness properties of $T_{\Omega, \alpha}$ on the Triebel-Lizorkin spaces and on the Besov spaces. We also use our results to study the Littlewood-Paley functions. These results improve and extend some well-known results. © 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let S^{n-1} be the unit sphere in $\mathbb{R}^{n}, n \geqslant 2$, with normalized Lebesgue measure $d \sigma=d \sigma\left(x^{\prime}\right)$, and let b be an L^{∞} function. In this paper we will study the singular integral operator $T_{\Omega, \alpha}$ defined, on the test function space $\mathcal{S}\left(\mathbb{R}^{n}\right)$, by

$$
\begin{equation*}
T_{\Omega, \alpha}(f)(x)=\text { p.v. } \int_{\mathbb{R}^{n}} b(|y|) \Omega\left(y^{\prime}\right)|y|^{-n-\alpha} f(x-y) d y \tag{1.1}
\end{equation*}
$$

[^0]where $\alpha \geqslant 0, y^{\prime}=y /|y|$ for $y \neq 0, \Omega$ is a distribution in the Hardy space $H^{r}\left(S^{n-1}\right)$ with $r=(n-1) /(n-1+\alpha)$ and satisfies
\[

$$
\begin{equation*}
\left\langle\Omega, Y_{m}\right\rangle=0 \tag{1.2}
\end{equation*}
$$

\]

for all spherical harmonic polynomials Y_{m} with degrees $m \leqslant[\alpha]$. It is easy to check that, for each $x \in \mathbb{R}^{n}$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right),\left|T_{\Omega, \alpha}(f)(x)\right|<\infty$.

Denote $T_{\Omega, \alpha}$ by T_{Ω} if $\alpha=0$. Then the operator T_{Ω} is the well-known rough singular integral operator initially studied by Calderón and Zygmund in their pioneering papers [5,6]. In [6], using the method of rotation, Calderón and Zygmund proved that if $\Omega \in L \log ^{+} L\left(S^{n-1}\right)$ satisfies the mean zero condition (1.2), namely $\alpha=0$, then the operator T_{Ω} with kernel $\Omega\left(x^{\prime}\right)|x|^{-n}$ is a bounded operator on the Lebesgue spaces $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$. This result was extended and improved by many authors [12,14,15,18]. Particularly, it was discovered by Fefferman [12] that if one adds an additional roughness on the radial direction, namely T_{Ω} possesses the kernel $b(|x|) \Omega\left(x^{\prime}\right)|x|^{-n}$ with $b \in L^{\infty}$, then the rotation method used by Calderón and Zygmund cannot be adapted. However, by a Fourier transform method, the following result was obtained independently by several authors at an almost same time (see [2,10,17] and also [19] for a survey).

Theorem A. Suppose $b \in L^{\infty}$. If $\Omega \in L^{r}\left(S^{n-1}\right), r>1$, and satisfies (1.2) for $\alpha=0$, then T_{Ω} is bounded on $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$.

In a previous paper, we extended Theorem A to the case for all $\alpha \geqslant 0$ and obtained the following result.

Theorem B [1]. For $1<p<\infty$, let $\tilde{p}=\max \{p, p /(p-1)\}$. Let $\alpha \geqslant 0$. Suppose that $\Omega \in H^{r}\left(S^{n-1}\right)$ with $r=(n-1) /(n-1+\alpha)$ and that Ω satisfies (1.2) for all Y_{m} whose degrees $\leqslant N$ with $2(N+1)>\alpha \tilde{p}$. Then we have

$$
\begin{equation*}
\left\|T_{\Omega, \alpha}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L_{\alpha}^{p}\left(\mathbb{R}^{n}\right)} \tag{1.3}
\end{equation*}
$$

where L_{α}^{p} is the Sobolev space.
The first main purpose of this paper is to establish a more general theorem in the case $\alpha>0$.

Theorem 1. For $1<q, p<\infty$, let $\tilde{p}=\max \{p, p /(p-1)\}, \tilde{q}=\max \{q$, $q /(q-1)\}$. Let $\alpha>0$. If $\Omega \in H^{r}\left(S^{n-1}\right)$ with $r=(n-1) /(n-1+\alpha)$ and Ω satisfies (1.2) for all Y_{m} whose degrees $\leqslant N$ with $4(N+1)>\tilde{p} \alpha \tilde{q}$, then

$$
\begin{align*}
&\left\|T_{\Omega, \alpha}(f)\right\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{\beta+\alpha, q}\left(\mathbb{R}^{n}\right)}, \tag{1.4}\\
&\left\|T_{\Omega, \alpha}(f)\right\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{B}_{p}^{\beta+\alpha, q}\left(\mathbb{R}^{n}\right)}, \tag{1.5}
\end{align*}
$$

where $\beta \in \mathbb{R}, \dot{F}_{p}^{\beta, q}$ and $\dot{B}_{p}^{\beta, q}$ are the Triebel-Lizorkin spaces and the Besov spaces, respectively.

The constant C in (1.4) and (1.5) depends on α and $C \cong 1 / \alpha$ as $\alpha \rightarrow 0^{+}$. Thus if $\alpha=0$, we assume on Ω a stronger size condition $\Omega \in L^{r}\left(S^{n-1}\right)$ with $r>1$, for the sake of simplicity. Actually the condition $\Omega \in L \log ^{+} L$ might be good enough.

Theorem 2. Let $1, p, q<\infty$. If $\Omega \in L^{r}\left(S^{n-1}\right)$ with $r>1$ and satisfies (1.2) with $\alpha=0$, then

$$
\begin{align*}
& \left\|T_{\Omega}(f)\right\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)}, \tag{1.4'}\\
& \left\|T_{\Omega}(f)\right\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} .
\end{align*}
$$

Before we recall the definitions of these various function spaces, in order to clarify the relations between Theorems 1, 2 and Theorems A, B, we remark that on the unit sphere $S^{n-1}, L^{s} \subseteq L \log ^{+} L \subseteq H^{1} \subseteq L^{1} \subseteq H^{r}, 0<r<1<s$, and all the inclusions are proper, while $L^{q}=H^{q}$ if $1<q<\infty$. It is known in [13] that on $\mathbb{R}^{n}, \dot{F}_{p}^{0,2}=L^{p}, \dot{F}_{p}^{\alpha, 2}=L_{\alpha}^{p}, L^{p} \subseteq \dot{F}_{r}^{\alpha, 2}$ if $\alpha<0$ and $1 / r=1 / p+\alpha / n$. Letting $X \rightarrow Y$ denote that the identity map is a continuous map from X to Y, then $\dot{F}_{p}^{\beta, q} \rightarrow \dot{B}_{p}^{\beta, q}$. Clearly, our Theorem 1 is an extension of Theorem B and Theorem 2 is an extension of Theorem A.

We also will use a transference method to obtain some analogous results on the n-torus \mathbb{T}^{n}. Let $\Omega \in H^{r}\left(S^{n-1}\right)$ satisfy (1.2). Define informally

$$
\lambda_{\Omega}(\xi)=\int_{\mathbb{R}^{n}} b(|y|)|y|^{-n-\alpha} \Omega\left(y^{\prime}\right) e^{-2 \pi i\langle y, \xi\rangle} d y
$$

We will prove that $\lambda_{\Omega}(\xi)=O\left(|\xi|^{\alpha}\right)$ in Section 6. Since any $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$ has the Fourier series $g(x)=\sum_{\ell \in \Lambda} a_{\ell} e^{2 \pi i\langle\ell, x\rangle}$, where $\Lambda=\mathbb{R}^{n} / \mathbb{T}^{n}$ is the unit lattice which is an additive group of points in \mathbb{R}^{n} having integer coordinates, we define $\widetilde{T}_{\Omega, \alpha}$ on all $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$ by

$$
\widetilde{T}_{\Omega, \alpha}(g)(x)=\sum_{\ell \in \Lambda} a_{\ell} \lambda_{\Omega}(\ell) e^{2 \pi i\langle\ell, x\rangle}
$$

Also denote $\widetilde{T}_{\Omega, 0}$ by \widetilde{T}_{Ω}.
Theorem 3. Under the conditions of Theorem 1, we have that for all $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$

$$
\begin{align*}
& \left\|\widetilde{T}_{\Omega, \alpha}(g)\right\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)} \leqslant C\|g\|_{\dot{F}_{p}^{\beta+\alpha, q}\left(\mathbb{T}^{n}\right)}, \tag{1.6}\\
& \left\|\widetilde{T}_{\Omega, \alpha}(g)\right\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)} \leqslant C\|g\|_{\dot{B}_{p}^{\beta+\alpha, q}\left(\mathbb{T}^{n}\right)}, \tag{1.7}
\end{align*}
$$

where $\beta \in \mathbb{R}, \dot{F}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)$ and $\dot{B}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)$ are the Triebel-Lizorkin spaces and the Besov spaces on the n-torus, respectively.

Theorem 4. Under the condition of Theorem 2, we have that for all $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$,

$$
\begin{align*}
&\left\|\widetilde{T}_{\Omega}(g)\right\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)} \leqslant C\|g\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)}, \\
&\left\|\widetilde{T}_{\Omega}(g)\right\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)} \leqslant C\|g\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)} .
\end{align*}
$$

If $\alpha<0$, then the integral operator defined in (1.1) is the fractional integral operator. This operator was also studied by many authors. The reader can see $[7,16]$ and their references for more information. In Section 7 of this paper, we will obtain a theorem on the fractional integral similar to Theorem 1, in the case $\alpha \in(-1 / 2,0)$. We also will obtain some results related to the Littlewood-Paley functions in Section 8.

2. Hardy space $H^{r}\left(S^{n-1}\right)$

The Poisson kernel on S^{n-1} is defined by

$$
P_{t y^{\prime}}\left(x^{\prime}\right)=\left(1-t^{2}\right) /\left|t y^{\prime}-x^{\prime}\right|^{n}
$$

where $0 \leqslant t<1$ and $x^{\prime}, y^{\prime} \in S^{n-1}$. For any $\Omega \in 夕^{\prime}\left(S^{n-1}\right)$, we define the radial maximal function $P^{+}(\Omega)\left(x^{\prime}\right)$ by

$$
P^{+} \Omega\left(x^{\prime}\right)=\sup _{0 \leqslant t<1}\left|\Omega, P_{t x^{\prime}}\right|,
$$

where $f^{\prime}\left(S^{n-1}\right)$ is the space of Schwartz distributions on S^{n-1}.
The Hardy space $H^{r}\left(S^{n-1}\right), 0<r<\infty$, is the linear space of distribution $\Omega \in 夕^{\prime}\left(S^{n-1}\right)$ with the finite norm $\|\Omega\|_{H^{r}\left(S^{n-1}\right)}=\left\|P^{+} \Omega\right\|_{L^{r}\left(S^{n-1}\right)}<\infty$. It is known in [3] that H^{r} is the same as the atomic Hardy space $H_{a}^{r}\left(S^{n-1}\right)$. Thus by a standard atomic decomposition method (see [14] or [1]), it is known that to prove Theorems 1 and 3, we can assume that $\Omega\left(y^{\prime}\right)=a\left(y^{\prime}\right)$ is an (r, ∞) atom with support in $B(\mathbf{1}, \rho) \cap S^{n-1}$ and prove that the constants C in the theorems are independent of atom $a\left(y^{\prime}\right)$, where $\mathbf{1}=(1,0, \ldots, 0)$, and an (r, s) atom is an L^{s}, $s>1$, function $a(\cdot)$ that satisfies

$$
\begin{align*}
& \operatorname{supp}(a) \subset\left\{x^{\prime} \in S^{n-1},\left|x^{\prime}-x_{0}^{\prime}\right|<\rho\right\} \\
& \text { for some } x_{0}^{\prime} \in S^{n-1} \text { and } \rho>0, \tag{2.1}\\
& \int_{S^{n-1}} a\left(y^{\prime}\right) Y_{m}\left(y^{\prime}\right) \sigma\left(y^{\prime}\right)=0 \tag{2.2}
\end{align*}
$$

for all spherical harmonic polynomials Y_{m} with degree $\leqslant N$ with $4(N+1)>$ $\alpha \tilde{p} \tilde{q}$,

$$
\begin{equation*}
\|a\|_{L^{s}\left(S^{n-1}\right)} \leqslant \rho^{(n-1)(1 / s-1 / r)} . \tag{2.3}
\end{equation*}
$$

For more information on the Hardy spaces, the reader can see [3,4].

3. The spaces $\dot{F}_{p}^{\beta, q}$ and $\dot{B}_{p}^{\beta, q}$

Fix a radial function $\Phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying $\operatorname{supp}(\Phi) \subseteq\{x, 1 / 2<|x| \leqslant 2\}$, $0 \leqslant \Phi(x) \leqslant 1$ and $\Phi(x)>c>0$ if $3 / 5 \leqslant|x| \leqslant 5 / 3$. Let $\Phi_{j}(x)=\Phi\left(2^{j} x\right)$ and require that Φ satisfies

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty} \Phi_{j}(t)^{2}=1 \quad \text { for all } t \tag{3.1}
\end{equation*}
$$

It is easy to see $\operatorname{supp}\left(\Phi_{j}\right) \subseteq\left(2^{-j-1}, 2^{-j+1}\right)$. Define the functions Ψ_{j} by $\widehat{\Psi}_{j}(\xi)=$ $\Phi_{j}(\xi)$, so that $\left(\Psi_{j} * f \hat{)}(\xi)=\hat{f}(\xi) \Phi_{j}(\xi)\right.$. For $1<p<\infty, \beta \in \mathbb{R}$ and $1<q<\infty$, the Triebel-Lizorkin space $\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)$ is the set of all distributions f satisfying

$$
\begin{equation*}
\|f\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)}=\left\|\left(\sum_{k}\left|2^{-\beta k} \Psi_{k} * f\right|^{q}\right)^{1 / q}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\infty \tag{3.2}
\end{equation*}
$$

the Besov space $\dot{B}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)$ is the set of all distributions f satisfying

$$
\begin{equation*}
\|f\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)}=\left\{\sum_{k}\left(2^{-\beta k}\left\|\Psi_{k} * f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q}\right\}^{1 / q}<\infty \tag{3.3}
\end{equation*}
$$

For $g(x)=\sum a_{\ell} e^{2 \pi i\langle\ell, x\rangle} \in C^{\infty}\left(\mathbb{T}^{n}\right)$ we define $\widetilde{\Psi}_{k} * g$ by

$$
\begin{equation*}
\widetilde{\Psi}_{k} * g(x)=\sum_{\ell \in \Lambda} a_{\ell} \Phi_{k}(\ell) e^{-2 \pi i\langle\ell, x\rangle} \tag{3.4}
\end{equation*}
$$

In (3.2) and (3.3), replacing $\Psi_{k} * f$ by $\widetilde{\Psi}_{k} * g$, and $L^{p}\left(\mathbb{R}^{n}\right)$ by $L^{p}\left(\mathbb{T}^{n}\right)$, we similarly define the spaces $\dot{F}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)$ and $\dot{B}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)$. It is well-known that the dual space of $\dot{F}_{p}^{\beta, q}$ is $\left(\dot{F}_{p}^{\beta, q}\right)^{*}=\dot{F}_{p^{\prime}}^{-\beta, q^{\prime}}$, where $1 / p+1 / p^{\prime}=1 / q+1 / q^{\prime}=1$. Similarly $\left(\dot{B}_{p}^{\beta, q}\right)^{*}=\dot{B}_{p^{\prime}}^{-\beta, q^{\prime}}$.

Remark. One also can define the Triebel-Lizorkin spaces and the Besov spaces in a continuous version. Let Ψ and Φ be the same as before and let $\Psi_{t}(x)=$ $t^{-n} \Psi(x / t)$. Then it is well-known that

$$
\begin{align*}
& \|f\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \cong\left\|\left\{\int_{0}^{\infty}\left|t^{-\beta} \Psi_{t} * f\right|^{q} t^{-1} d t\right\}^{1 / q}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \tag{3.5}\\
& \|f\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \cong\left\{\int_{0}^{\infty}\left(t^{-\beta}\left\|\Psi_{t} * f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)^{q} t^{-1} d t\right\}^{1 / q} . \tag{3.6}
\end{align*}
$$

The reader can learn more information on these spaces in [21].

4. Some estimates

Suppose that $a\left(y^{\prime}\right)$ is an (r, ∞) atom with support in $B(\mathbf{1}, \rho) \cap S^{n-1}$ and satisfies the cancellation conditions in Theorem 1. Let I_{k} be the interval $\left(2^{k}, 2^{k+1}\right), k=1,2, \ldots$, and

$$
\mathcal{J}_{k, \alpha} f(x)=\int_{\mathbb{R}^{n}} b(|y|)|y|^{-n-\alpha} a\left(y^{\prime}\right) \chi_{I_{k}}(|y|) f(x-y) d y
$$

It is easy to see that $\mathcal{J}_{k, \alpha} f=\sigma_{k, \alpha} * f$ so that $\left(\mathcal{J}_{k, \alpha} f \hat{)}(\xi)=\hat{\sigma}_{k, \alpha}(\xi) \hat{f}(\xi)\right.$, where $\sigma_{k, \alpha}$ is the measure defined by

$$
\int_{\mathbb{R}^{n}} f d \sigma_{k, \alpha}=\int_{2^{k} \leqslant|y|<2^{k+1}} f(y) b(|y|)|y|^{-n-\alpha} a\left(y^{\prime}\right) d y .
$$

Thus we have

$$
\hat{\sigma}_{k, \alpha}(\xi) \cong \int_{2^{k}}^{2^{k+1}} b(|t|)|t|^{-1-\alpha} \int_{S^{n-1}} a\left(y^{\prime}\right) e^{-2 \pi i t\left\langle y^{\prime}, \xi\right\rangle} d \sigma\left(y^{\prime}\right) d t
$$

By the cancellation condition of $a\left(y^{\prime}\right)$, it is easy to see

$$
\left|\hat{\sigma}_{k, \alpha}(\xi)\right| \leqslant C \int_{2^{k}}^{2^{k+1}} t^{-1-\alpha}\left|\int_{S^{n-1}} a\left(y^{\prime}\right)\left\{e^{-2 \pi i t\left\langle y^{\prime}-\mathbf{1}, \xi\right\rangle}-1\right\} d \sigma\left(y^{\prime}\right)\right| d t
$$

because

$$
\begin{aligned}
& \left|\int_{S^{n-1}} a\left(y^{\prime}\right)\left\{e^{-2 \pi i\left\langle y^{\prime}-\mathbf{1}, \xi\right\rangle}-1\right\} d \sigma\left(y^{\prime}\right)\right| \\
& \quad=\left|e^{2 \pi i\langle\mathbf{1}, \xi\rangle} \int_{S^{n-1}} a\left(y^{\prime}\right)\left\{e^{-2 \pi i\left\langle y^{\prime}, \xi\right\rangle}-e^{-2 \pi i\langle\mathbf{1}, \xi\rangle}\right\} d \sigma\left(y^{\prime}\right)\right|
\end{aligned}
$$

So by the Taylor expansion and the cancellation and support conditions of $a\left(y^{\prime}\right)$, we have

$$
\begin{equation*}
\left|\hat{\sigma}_{k, \alpha}(\xi)\right| \leqslant C 2^{-k \alpha}\left|2^{k} \rho \xi\right|^{N+1} \rho^{(1-1 / r)(n-1)} \tag{4.1}
\end{equation*}
$$

Similarly, by the support and size conditions of $a\left(y^{\prime}\right)$ we have

$$
\begin{equation*}
\left|\hat{\sigma}_{k, \alpha}(\xi)\right| \leqslant C 2^{-k \alpha} \rho^{(1-1 / r)(n-1)} \tag{4.2}
\end{equation*}
$$

The constants C in (4.1) and (4.2) are independent of k, ρ, and ξ.
In the case $\alpha=0$, we need a more precise estimate. If $a\left(y^{\prime}\right)=\Omega\left(y^{\prime}\right)$ is in $L^{r}\left(S^{n-1}\right), r>1$, and satisfies (1.2) with $\alpha=0$, then by [10] we know that there
is a $\gamma>0$ such that

$$
\begin{equation*}
\left|\hat{\sigma}_{k, 0}(\xi)\right| \leqslant C \min \left\{\left|2^{k} \xi\right|,\left|2^{k} \xi\right|^{-\gamma}\right\} . \tag{4.3}
\end{equation*}
$$

For $\alpha \geqslant 0$, we also have

$$
\begin{equation*}
\left|\sigma_{k, \alpha}\right| \leqslant C \int_{2^{k} \leqslant|y|<2^{k+1}}|y|^{-n-\alpha}\left|\Omega\left(y^{\prime}\right)\right| d y . \tag{4.4}
\end{equation*}
$$

It is easy to see that if $\Omega\left(y^{\prime}\right)=a\left(y^{\prime}\right)$ is an (r, ∞) atom, then for all $1 \leqslant p \leqslant \infty$

$$
\begin{align*}
& \left\|\hat{\sigma}_{k, \alpha}\right\|_{\infty} \leqslant C\left|\sigma_{k, \alpha}\right| \leqslant C 2^{-k \alpha} \rho^{(1-1 / r)(n-1)}, \tag{4.5}\\
& \left\|\sup _{k}\left(\left|\sigma_{k, \alpha}\right| * f_{k}\right)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C \rho^{(1-1 / r)(n-1)}\left\|\sup _{k} 2^{-k \alpha} f_{k}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \tag{4.6}\\
& \left\|\left|\sigma_{k, \alpha}\right| * f_{k}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C \rho^{(1-1 / r)(n-1)} 2^{-k \alpha}\left\|f_{k}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \tag{4.6'}
\end{align*}
$$

where C is independent of k and ρ.
If Ω is in $L^{r}\left(S^{n-1}\right)$ with $r>1$, then

$$
\begin{equation*}
\left\|\sup _{k}\left|\sigma_{k, 0}\right| * f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{4.7}
\end{equation*}
$$

for all $1<p \leqslant \infty$.

5. Proof of Theorems 1 and 2

First, we remark that throughout this section and the next section, the condition $r=(n-1) /(n-1+\alpha)$ in Theorems 1 and 3 is equivalent to $(n-1)(1-1 / r)+$ $\alpha=0$.

To prove Theorem 1, as mentioned in Section 2, we can assume that $\Omega\left(y^{\prime}\right)=$ $a\left(y^{\prime}\right)$ is an (r, ∞) atom with support in $B(\mathbf{1}, \rho) \cap S^{n-1}$, and prove that the constant C in the theorem is independent of $a\left(y^{\prime}\right)$. Let $\left\{\Phi_{j}\right\}$ and $\left\{\Psi_{j}\right\}$ be the same as in Section 3. Following the proof of lemma in [10], we decompose the operator $T_{\Omega, \alpha}(f)$ by

$$
\begin{equation*}
T_{\Omega, \alpha}(f)=\sum_{j}\left(\sum_{k} S_{j+k} \sigma_{k, \alpha} * S_{j+k} f\right)=\sum_{j} \Delta_{j} f, \tag{5.1}
\end{equation*}
$$

where $\left(S_{j} f \hat{)}(\xi)=\Phi\left(2^{j} \rho \xi\right) \hat{f}(\xi)\right.$. Let S_{j}^{*} be the dual operator of S_{j}; it is easy to check

$$
\begin{aligned}
\|f\|_{\dot{F}_{p}^{\beta, q}} & \cong\left\|\left\{\sum_{j=-\infty}^{\infty}\left|\left(2^{j} \rho\right)^{-\beta} S_{j}^{*} f\right|^{q}\right\}^{1 / q}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \cong\left\|\left\{\sum_{j=-\infty}^{\infty}\left|\left(2^{j} \rho\right)^{-\beta} S_{j} f\right|^{q}\right\}^{1 / q}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

For any $g \in \dot{F}_{p^{\prime}}^{-\beta, q^{\prime}}$, we have

$$
\begin{align*}
\left|\left\langle\Delta_{j} f, g\right\rangle\right|= & \left|\int \sum_{k} S_{k+j} \sigma_{k, \alpha} *\left(S_{j+k} f\right)(x) g(x) d x\right| \\
= & \left|\int \sum_{k} \sigma_{k, \alpha} *\left(S_{j+k} f\right)(x) S_{j+k}^{*} g(x) d x\right| \\
\leqslant & \int\left(\sum_{k}\left|\left(2^{k+j} \rho\right)^{-\beta} \sigma_{k, \alpha} * S_{j+k} f(x)\right|^{q}\right)^{1 / q} \\
& \times\left(\sum_{k}\left|\left(2^{k+j} \rho\right)^{\beta} S_{k+j}^{*} g(x)\right|^{q^{\prime}}\right)^{1 / q^{\prime}} d x . \tag{5.2}
\end{align*}
$$

Taking supremum over g with $\|g\|_{\dot{F}_{p^{\prime}}^{-\beta, q^{\prime}}} \leqslant 1$ and by Hölder's inequality we have

$$
\begin{equation*}
\left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{\beta, q}} \leqslant C\left\|\left(\sum_{k}\left|\left(2^{k+j} \rho\right)^{-\beta} \sigma_{k, \alpha} * S_{k+j} f\right|^{q}\right)^{1 / q}\right\|_{L^{p}} \tag{5.3}
\end{equation*}
$$

Now we use (5.3) to estimate $\left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{\beta, q}}$ for different pairs (p, q).
For $q=p$, by (5.3) and (4.6'),

$$
\begin{aligned}
\left\|\Delta_{j} f\right\|_{\dot{F}_{q}^{\beta, q}} & \leqslant C\left\{\sum_{k}\left(2^{k+j} \rho\right)^{-\beta q} \int_{\mathbb{R}^{n}}\left|\sigma_{k, \alpha} * S_{k+j} f(x)\right|^{q} d x\right\}^{1 / q} \\
& \leqslant C 2^{j \alpha}\left(\sum_{k}\left(2^{k+j} \rho\right)^{-(\alpha+\beta) q} \int_{\mathbb{R}^{n}}\left|S_{k+j} f(x)\right|^{q} d x\right)^{1 / q}
\end{aligned}
$$

This shows

$$
\begin{equation*}
\left\|\Delta_{j} f\right\|_{\dot{F}_{q}^{\beta, q}} \leqslant C 2^{j \alpha}\|f\|_{\dot{F}_{q}^{\alpha+\beta, q}} . \tag{5.4}
\end{equation*}
$$

If $p=q=2$, we have

$$
\begin{aligned}
\left\|\Delta_{j} f\right\|_{\dot{F}_{2}^{\beta, 2}}^{2} & \cong\left\|\Delta_{j} f\right\|_{L_{\beta}^{2}}^{2} \leqslant C \sum_{k} \int_{\mathbb{R}^{n}}\left(2^{k+j} \rho\right)^{-2 \beta}\left|\sigma_{k, \alpha} *\left(S_{j+k} f\right)(y)\right|^{2} d y \\
& \cong C \sum_{k} \int_{\mathbb{R}^{n}}\left|\Phi_{j+k}(|\rho \xi|)\left(2^{k+j} \rho\right)^{-\beta} \hat{\sigma}_{k, \alpha}(\xi) \hat{f}(\xi)\right|^{2} d \xi \\
& \leqslant C \sum_{k} \int_{D_{j+k}}\left|\hat{\sigma}_{k, \alpha}(\xi) \hat{f}(\xi)\right|^{2}\left(2^{k+j} \rho\right)^{-2 \beta} d \xi
\end{aligned}
$$

where

$$
D_{j}=\left\{\xi: 2^{-j-1} \leqslant|\xi \rho| \leqslant 2^{-j+1}\right\} .
$$

If $j \geqslant 0$, noting $2^{-k-j} \cong|\xi \rho|$ on D_{j+k}, using (4.1) we have

$$
\begin{aligned}
\left\|\Delta_{j} f\right\|_{\dot{F}_{2}^{\beta, 2}}^{2} & \leqslant C 2^{-2 j(N+1)} \rho^{(n-1)(1-1 / r)} \sum_{k} \int_{D_{j+k}}|\hat{f}(\xi)|^{2} 2^{-2 k \alpha}|\xi|^{2 \beta} d \xi \\
& \leqslant C 2^{-2 j(N-\alpha+1)} \sum_{k} \int_{D_{k}}|\hat{f}(\xi)|^{2}|\xi|^{2(\alpha+\beta)} d \xi
\end{aligned}
$$

Therefore, for $j \geqslant 0$, we have

$$
\begin{equation*}
\left\|\Delta_{j} f\right\|_{\dot{F}_{2}^{\beta, 2}}^{2} \leqslant C 2^{-j(N-\alpha+1)}\|f\|_{\dot{F}_{2}^{\alpha+\beta, 2}}^{\left(\mathbb{R}^{n}\right)} \tag{5.5}
\end{equation*}
$$

Similarly, using (4.2), we have for $j<0$

$$
\begin{equation*}
\left\|\Delta_{j} f\right\|_{\dot{F}_{2}^{\beta, 2}} \leqslant C 2^{j \alpha}\|f\|_{\dot{F}_{2}^{\alpha+\beta, 2}}{\left(\mathbb{R}^{n}\right)} \tag{5.6}
\end{equation*}
$$

If $p>q$, let $s=(p / q)^{\prime}=p /(p-q)$. By (5.3), we can take a non-negative $h \in L^{s}\left(\mathbb{R}^{n}\right)$ with $\|h\|_{s}=1$ such that

$$
\begin{equation*}
\left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{F_{p}^{\beta, q}}}^{q} \leqslant C \sum_{k=-\infty}^{\infty} \int_{\mathbb{R}^{n}}\left|\left(2^{k+j} \rho\right)^{-\beta} \sigma_{k, \alpha} *\left(S_{k+j} f\right)\right|^{q} h d x . \tag{5.7}
\end{equation*}
$$

Since $\left|\sigma_{k, \alpha} *\left(S_{k+j} f\right)\right|^{q}$ is bounded by

$$
\begin{aligned}
& C\left(\rho^{(n-1)(1-1 / r)}\right)^{q / q^{\prime}} 2^{-k q \alpha} \int_{2^{k} \leqslant|y|<2^{k+1}}\left|a\left(y^{\prime}\right)\right||y|^{-n}\left|S_{k+j} f(x-y)\right|^{q} d y \\
& \quad=C\left(\rho^{(n-1)(1-1 / r)}\right)^{q / q^{\prime}} 2^{-k \alpha q} L_{k}\left\{\left|S_{j+k} f\right|^{q}\right\}(x)
\end{aligned}
$$

where

$$
\begin{equation*}
L_{k} f(x)=\int_{2^{k} \leqslant|y| \leqslant 2^{k+1}}\left|a\left(y^{\prime}\right)\right||y|^{-n} f(x-y) d y \tag{5.8}
\end{equation*}
$$

we have that

$$
\begin{aligned}
& \sum_{k} \int_{\mathbb{R}^{n}}\left|\left(2^{k+j} \rho\right)^{-\beta} \sigma_{k, \alpha} *\left(S_{k+j} f\right)\right|^{q} h d x \\
& =C\left(\rho^{(n-1)(1-1 / r)}\right)^{q / q^{\prime}} \\
& \quad \times \int_{\mathbb{R}^{n}}\left\{\sum_{k}\left|2^{-k \alpha}\left(2^{j+k} \rho\right)^{-\beta} S_{k+j} f(x)\right|^{q}\right\} N_{a} h(x) d x
\end{aligned}
$$

where $N_{a} h(x)=\sup _{k}\left(L_{k}^{*} h\right)(x)$, and

$$
\left(L_{k}^{*} h\right)(x)=\int_{2^{k} \leqslant|y|<2^{k+1}}|y|^{-n}\left|a\left(y^{\prime}\right)\right| h(x+y) d y
$$

By the rotation method and the L^{p} boundedness of the Hardy-Littlewood maximal function, it is easy to see that

$$
\left\|N_{a} h\right\|_{L^{s}} \leqslant C \rho^{(n-1)(1-1 / r)}\|h\|_{L^{s}} \leqslant \rho^{(n-1)(1-1 / r)} .
$$

Thus by Hölder's inequality and (5.7), we have

$$
\left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{j \alpha}\left\|\left(\sum_{k}\left|\left(2^{k+j} \rho\right)^{-\alpha-\beta} S_{k+j} f\right|^{q}\right)^{1 / q}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

which, together with (5.4), show that if $p \geqslant q$, then for any $j \in \mathbb{Z}$

$$
\begin{equation*}
\left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{\beta, q}} \leqslant C 2^{j \alpha}\|f\|_{\dot{F}_{p}^{\beta+\alpha, q}} \tag{5.9}
\end{equation*}
$$

Taking $q=2$ in (5.9) and by duality, it is easy to check that for all $1<p<\infty$

$$
\begin{equation*}
\left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{\beta, 2}} \leqslant C 2^{j \alpha}\|f\|_{\dot{F}_{p}^{\alpha+\beta, 2}} \tag{5.10}
\end{equation*}
$$

By interpolating (5.5), (5.6) and (5.10) (see [21]), and by the choice of N, we have a positive number θ, which is less than, but arbitrarily close to, $(2(N+1)-\alpha \tilde{p}) / \tilde{p}$ such that for $1<p<\infty$

$$
\begin{align*}
& \left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{\beta, 2}} \leqslant 2^{-\theta j}\|f\|_{\dot{F}_{p}^{\alpha+\beta, 2}} \quad \text { if } j \geqslant 0 \tag{5.11}\\
& \left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{\beta, 2}} \leqslant 2^{\alpha j}\|f\|_{\dot{F}_{p}^{\alpha+\beta, 2}} \quad \text { if } j<0
\end{align*}
$$

Interpolating between (5.11), (5.11') and (5.9), we obtain a positive number $\delta=$ $\min \{\alpha, \gamma\}$, where γ is less than, but arbitrarily close to, $(4(N+1)-\tilde{p} \alpha \tilde{q}) / \tilde{p} \tilde{q}$, for $1<q \leqslant p<\infty$, such that

$$
\begin{equation*}
\left\|\Delta_{j} f\right\|_{\dot{F}_{p}^{\beta, q}} \leqslant C 2^{-\delta|j|}\|f\|_{\dot{F}_{p}^{\alpha+\beta, q}} . \tag{5.12}
\end{equation*}
$$

From (5.1) and (5.12), we have that for $1<q \leqslant p<\infty$

$$
\begin{equation*}
\left\|T_{\Omega, \alpha}(f)\right\|_{\dot{F}_{p}^{\beta, q}} \leqslant C\|f\|_{\dot{F}_{p}^{\alpha+\beta, q}} . \tag{5.13}
\end{equation*}
$$

Noting that β is an arbitrary real number, by duality we obtain (5.13) for all $\beta \in \mathbb{R}$, $1<q, p<\infty$. This proves (1.4) in Theorem 1. Now (1.5) of Theorem 1 follows by an interpolation result $\left(\dot{F}_{r}^{\alpha, r}, \dot{F}_{s}^{\alpha, s}\right)_{\theta, q} \cong \dot{B}_{p}^{\alpha, q}$ (see [21]).

The proof of Theorem 2 is exactly the same by letting $\alpha=0, \rho=1$ and using (4.3) instead of (4.1) and (4.2).

6. Proof of Theorems 3 and 4

We prove Theorem 3 only, since the proof of Theorem $4(\alpha=0)$ is similar and easier than the case $\alpha>0$. Similar to the proof of Theorem 1, it suffices to show the boundedness on the Triebel-Lizorkin spaces. Also, we can assume that
$\Omega\left(y^{\prime}\right)=a\left(y^{\prime}\right)$ is an (r, ∞) atom supported in $B(\mathbf{1}, \rho) \cap S^{n-1}$ and show that the bound is independent of $a\left(y^{\prime}\right)$. For $n>\alpha>0$, let R_{α} be the Riesz potential on \mathbb{R}^{n} which is defined by $\left(R_{\alpha} f \hat{)}(\xi)=C_{\alpha}|\xi|^{-\alpha} \hat{f}(\xi)\right.$, and let \widetilde{R}_{α} be the Riesz potential on \mathbb{T}^{n} defined by

$$
\begin{equation*}
\widetilde{R}_{\alpha} g(x)=C_{\alpha} \sum_{\ell \in \Lambda \backslash\{0\}}|\ell|^{-\alpha} a_{\ell} e^{2 \pi i\langle\ell, x\rangle} \quad \text { for } g(x)=\sum_{\ell \in \Lambda} a_{\ell} e^{2 \pi i\langle\ell, x\rangle}, \tag{6.1}
\end{equation*}
$$

where C_{α} is a constant depending on α. It is known that R_{α} has the "lift" property, and so does \widetilde{R}_{α}. This means that R_{α} (also \widetilde{R}_{α}) is an isomorphism between the spaces $\dot{F}_{p}^{\beta, q}$ and $\dot{F}_{p}^{\alpha+\beta, q}$ and $\|f\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \cong\left\|R_{\alpha} f\right\|_{\dot{F}_{p}^{\alpha+\beta, q}\left(\mathbb{R}^{n}\right)}$ and $\|g\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{T}^{n}\right)} \cong\left\|\widetilde{R}_{\alpha} g\right\|_{\dot{F}_{p}^{\alpha+\beta, q}\left(\mathbb{T}^{n}\right)}$. Thus to prove the theorem, it suffices to show that, for any $\gamma \in R$,

$$
\left\|R_{\alpha} T_{\Omega, \alpha}(f)\right\|_{\dot{F}_{p}^{\gamma, q}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{\gamma, q}\left(\mathbb{R}^{n}\right)}
$$

implies

$$
\left\|\widetilde{R}_{\alpha} \widetilde{T}_{\Omega, \alpha}(g)\right\|_{\dot{F}_{p}^{\gamma, q}\left(\mathbb{T}^{n}\right)} \leqslant C\|g\|_{\dot{F}_{p}^{\gamma, q}\left(\mathbb{T}^{n}\right)} .
$$

If we further use the "lift" property and note that R_{α} and \widetilde{R}_{α} satisfy the semigroup property $R_{\alpha} R_{\gamma} \cong R_{\alpha+\gamma}$. Then it is easy to see that to prove Theorem 3 , we only need to show the following proposition.

Proposition 1. If $\left\|R_{\alpha} T_{\Omega, \alpha}(f)\right\|_{\dot{F}_{p}^{0, q}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{0, q}\left(\mathbb{R}^{n}\right)}$ for all $f \in \&\left(\mathbb{R}^{n}\right)$, then for all $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$

$$
\left\|\widetilde{R}_{\alpha} \widetilde{T}_{\Omega, \alpha}(g)\right\|_{\dot{F}_{p}^{0, q}\left(\mathbb{T}^{n}\right)} \leqslant C\|g\|_{\dot{F}_{p}^{0, q}\left(\mathbb{T}^{n}\right)}
$$

Proof. Let $R_{\alpha} T_{\Omega, \alpha}=T$ and $\widetilde{R}_{\alpha} \widetilde{T}_{\Omega, \alpha}=\widetilde{T}$. They are convolution operators so that $(T f \hat{)}(\xi)=\mu(\xi) \hat{f}(\xi)$. By the main theorem in [11], to prove the proposition, we only need to verify $\mu \in L^{\infty}$, and that $\mu(\xi)$ is continuous at each $\xi \neq 0$. First we show that $\mu(\xi) \in L^{\infty}\left(\mathbb{R}^{n}\right)$. By the definition and (4.1), (4.2), for any $\xi \neq 0$

$$
\begin{aligned}
|\mu(\xi)| \leqslant & C|\xi|^{-\alpha} \sum_{k}\left|\hat{\sigma}_{k, \alpha}(\xi)\right| \\
\leqslant & C|\xi|^{-\alpha} \sum_{\left|2^{k} \rho \xi\right|>1}\left|\hat{\sigma}_{k, \alpha}(\xi)\right|+C|\xi|^{-\alpha} \sum_{\left|2^{k} \rho \xi\right| \leqslant 1}\left|\hat{\sigma}_{k, \alpha}(\xi)\right| \\
\leqslant & C \rho^{(n-1)(1-1 / r)} \sum_{\left|2^{k} \rho \xi\right|>1}\left|2^{k} \xi\right|^{-\alpha} \\
& +C \rho^{(n-1)(1-1 / r)+(N+1)} \sum_{2^{k} \leqslant 1 /|\rho \xi|}\left|2^{k} \xi\right|^{(N+1)-\alpha} \leqslant C .
\end{aligned}
$$

So $\mu \in L^{\infty}$.

Next, fix an $\varepsilon>0$; for any $\xi \neq 0$,

$$
\begin{aligned}
& \mu(\xi)=C_{\alpha}|\xi|^{-\alpha}\left\{\text { p.v. } \int_{|y|<\varepsilon} b(|y|)|y|^{-n-\alpha} a\left(y^{\prime}\right) e^{-2 \pi i\langle y, \xi\rangle} d y\right. \\
&\left.+\int_{|y| \geqslant \varepsilon}|y|^{-n-\alpha} b(|y|) a\left(y^{\prime}\right) e^{-2 \pi i\langle y, \xi\rangle} d y\right\}
\end{aligned}
$$

Thus using the cancellation condition on $a\left(y^{\prime}\right)$ it is easy to check that $\mu(\xi)$ is continuous at each $\xi \neq 0$. The proposition is proved.

Remark. In the case $\alpha=0$ (Theorem 4), by checking the proof of the main theorem in [11], it suffices to prove that the symbol $\mu(\xi)$ of $T_{\Omega, 0}$ is bounded and each $\lambda \in \Lambda \backslash\{0\}$ is a Lebesgue point of $m(\xi)$. But this was pointed out on p. 263 in [20].

7. Fractional integral operators

Let $n>\alpha>0, \Omega \in L^{1}\left(S^{n-1}\right)$. The fractional integral operator $F_{\Omega, \alpha}$ is defined on all $f \in f\left(\mathbb{R}^{n}\right)$ by

$$
F_{\Omega, \alpha}(f)(x)=\int_{\mathbb{R}^{n}}|y|^{-n+\alpha} \Omega\left(y^{\prime}\right) f(x-y) d y
$$

Let $\tau_{\alpha, k}(y)=|y|^{-n+\alpha} \Omega\left(y^{\prime}\right) \chi_{I_{k}}(|y|)$ with $I_{k}=\left(2^{k}, 2^{k+1}\right]$. Then we have

$$
F_{\Omega, \alpha}(f)(x)=\sum_{k=-\infty}^{\infty} \tau_{\alpha, k} * f(x)
$$

It is easy to check

$$
\begin{equation*}
\left|\hat{\tau}_{\alpha, k}(\xi)\right| \leqslant C 2^{k \alpha} \tag{7.1}
\end{equation*}
$$

By checking p. 551 of [10], we find that if $\Omega \in L^{r}\left(S^{n-1}\right), r>1$, then for any δ less than $1 / 2 r^{\prime}$

$$
\begin{equation*}
\left|\hat{\tau}_{\alpha, k}(\xi)\right| \leqslant C 2^{k \alpha}\left|2^{k} \xi\right|^{-\delta} \tag{7.2}
\end{equation*}
$$

Now replacing (4.1) and (4.2) by (7.1) and (7.2), using the exactly same proof in Theorem 1, we have the following theorem for the fractional integral operator.

Theorem 5. Let $\Omega \in L^{r}\left(S^{n-1}\right), r>1$. For $1<q, p<\infty$, let $\tilde{p}=\max \{p$, $p /(p-1)\}$ and $\tilde{q}=\max \{q, q /(q-1)\}$. If $0<\alpha<2 / r^{\prime} \tilde{p} \tilde{q}($ or $r>2 /(2-\alpha \tilde{p} \tilde{q})$ with $2-\alpha \tilde{p} \tilde{q}>0)$, then for any real number β

$$
\begin{aligned}
& \left\|F_{\Omega, \alpha}(f)\right\|_{\dot{F}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{\beta-\alpha, q}\left(\mathbb{R}^{n}\right)}, \\
& \left\|F_{\Omega, \alpha}(f)\right\|_{\dot{B}_{p}^{\beta, q}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{B}_{p}^{\beta-\alpha, q}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

8. Littlewood-Paley functions

For an $L^{1}\left(\mathbb{R}^{n}\right)$ function ϕ, we define $\phi_{t}(x)=2^{-t n} \phi\left(x / 2^{t}\right), t \in \mathbb{R}$. Then the Fourier transform of ϕ_{t} is $\hat{\phi}_{t}(\xi)=\hat{\phi}\left(2^{t} \xi\right)$. The Littlewood-Paley g-function $g_{\phi}(f)$ on \mathbb{R}^{n} is defined on $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
g_{\phi} f(x)=\left(\int_{\mathbb{R}}\left|\phi_{t} * f(x)\right|^{2} d t\right)^{1 / 2} \tag{8.1}
\end{equation*}
$$

The following theorem is the main result in [8].
Theorem C. For $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$, if ϕ satisfies
(i) $\left\|\sup _{t \in \mathbb{R}}\left|\phi_{t}\right| * f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ for all $f \in \&\left(\mathbb{R}^{n}\right)$ and all $p \in(1, \infty)$,
(ii) $|\hat{\phi}(\xi)| \leqslant C \min \left(|\xi|^{\beta},|\xi|^{-\beta}\right)$ for some $\beta>0$,
then we have

$$
\begin{equation*}
\left\|g_{\phi}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { for all } f \in s\left(\mathbb{R}^{n}\right) \tag{8.2}
\end{equation*}
$$

If we define $\phi_{t} * f(x)$ by $\mathcal{F}(f)(x, t)$, then (8.2) can be written as

$$
\left\|\|\mathcal{F}(f)\|_{L^{2}(\mathbb{R})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{0,2}\left(\mathbb{R}^{n}\right)}
$$

Now we define, for any real number α,

$$
\mathcal{F}_{\alpha}(f)(x, t)=2^{-t \alpha} \phi_{t} * f(x)=2^{-t \alpha} \mathcal{F}(f)(x, t) .
$$

In this section we extend Theorem C to the following more general theorem.
Theorem 6. For $1<p, q<\infty$, let \tilde{p} and \tilde{q} be as in Theorem 5. Suppose that $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$ satisfies (i), (ii) in Theorem C. If $\alpha \in(-\beta, \beta)$ satisfies $|\alpha|<4 \beta / \tilde{p} \tilde{q}$, then we have

$$
\begin{equation*}
\left\|\left\|\mathcal{F}_{\alpha}(f)\right\|_{L^{q}(\mathbb{R})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)} \tag{8.3}
\end{equation*}
$$

Proof. We use the equivalent definition (3.5) to study the Triebel-Lizorkin spaces. Choose a radial function $\Psi \in \ell\left(\mathbb{R}^{n}\right)$ as in the definition of the TriebelLizorkin spaces, namely Ψ satisfies

$$
\begin{aligned}
& \int_{\mathbb{R}} \widehat{\Psi}\left(2^{s}\right) d s=1, \quad \widehat{\Psi}(y)>c>0 \quad \text { if } 3 / 5 \leqslant|y| \leqslant 5 / 3, \\
& \operatorname{supp}(\widehat{\Psi}) \subseteq\left\{y \in \mathbb{R}^{n}: 2^{-1}<|y| \leqslant 2\right\} .
\end{aligned}
$$

It is easy to see that for any test function $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$

$$
f \cong \int_{\mathbb{R}} \Psi_{s} * f d s
$$

So by the Minkowski inequality, we have that

$$
\begin{align*}
\left\|\mathcal{F}_{\alpha}(f)(x, \cdot)\right\|_{L^{q}(\mathbb{R})} & =\left(\int_{\mathbb{R}}\left|\int_{\mathbb{R}}\left(\Psi_{s+t} * 2^{-t \alpha} \phi_{t} * f\right)(x) d s\right|^{q} d t\right)^{1 / q} \\
& \leqslant \int_{\mathbb{R}} I_{\alpha, s} f(x) d s \tag{8.4}
\end{align*}
$$

where

$$
I_{\alpha, s} f(x)=\left(\int_{\mathbb{R}}\left|\left(\Psi_{s+t} * 2^{-t \alpha} \phi_{t} * f\right)(x)\right|^{q} d t\right)^{1 / q}
$$

Let

$$
L_{\alpha, s}(f)(x, t)=\Psi_{s+t} * 2^{-t \alpha} \phi_{t} * f(x)=\Psi_{s+t} * \mathcal{F}_{\alpha}(x, t)
$$

Then

$$
I_{\alpha, s} f(x)=\left\|\Psi_{s+t} * \mathcal{F}_{\alpha}(x, t)\right\|_{L^{q}(\mathbb{R}, d t)}=\left\|L_{\alpha, s}(f)(x, \cdot)\right\|_{L^{q}(\mathbb{R})}
$$

It is easy to see that

$$
\begin{aligned}
\left\|\left\|L_{\alpha, s}(f)\right\|_{L^{q}(\mathbb{R})}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} & =\| \| L_{\alpha, s}(f)\left\|_{L^{q}\left(\mathbb{R}^{n}\right)}\right\|_{L^{q}(\mathbb{R})} \\
& \leqslant C\left\|\left(\int_{\mathbb{R}}\left|2^{-t \alpha} \Psi_{s+t} * f\right|^{q} d t\right)^{1 / q}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

This shows

$$
\begin{equation*}
\left\|\left\|L_{\alpha, s}(f)\right\|_{L^{q}(\mathbb{R})}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{s \alpha}\|f\|_{\dot{F}_{q}^{\alpha, q}\left(\mathbb{R}^{n}\right)} \tag{8.5}
\end{equation*}
$$

By the proof of (2.5) in [8] we find that if $s \geqslant 0$,

$$
\begin{equation*}
\left\|\left\|L_{\alpha, s}(f)\right\|_{L^{2}(\mathbb{R})}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{-s(\beta-\alpha)}\|f\|_{L_{\alpha}^{2}} \cong 2^{-s(\beta-\alpha)}\|f\|_{\dot{F}_{2}^{\alpha, 2}\left(\mathbb{R}^{n}\right)} \tag{8.6}
\end{equation*}
$$

Similarly, by the proof of (2.8) in [8], we find that if $s<0$, then

$$
\begin{equation*}
\left\|\left\|L_{\alpha, s}(f)\right\|_{L^{2}(\mathbb{R})}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{s(\alpha+\beta)}\|f\|_{\dot{F}_{2}^{\alpha, 2}\left(\mathbb{R}^{n}\right)} \tag{8.7}
\end{equation*}
$$

If $p>q$, using the same argument to prove (5.9), we obtain

$$
\begin{equation*}
\left\|\left\|L_{\alpha, s}(f)\right\|_{L^{q}(\mathbb{R})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{s \alpha}\|f\|_{\dot{F}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)} . \tag{8.8}
\end{equation*}
$$

If $q>p$, then $p^{\prime}>q^{\prime}$. Now for all $g(x, t)$ satisfying $\left\|\|g\|_{L^{q^{\prime}}(\mathbb{R})}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}=1$, we have

$$
\begin{aligned}
&\left|\left\langle L_{\alpha, s}(f), g\right\rangle\right| \leqslant\left\|\left\|\mathcal{F}^{*}(g)\right\|_{L^{q^{\prime}}(\mathbb{R})}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)} \\
& \times\left\|\left(\int_{\mathbb{R}}\left|2^{-t \alpha} \Psi_{s+t} * f\right|^{q} d t\right)^{1 / q}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \cong\left\|\left\|\mathcal{F}^{*}(g)\right\|_{L^{q^{\prime}}(\mathbb{R})}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)} 2^{s \alpha}\|f\|_{\dot{F}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)},
\end{aligned}
$$

where

$$
\mathcal{F}^{*}(g)(x, t)=\int_{\mathbb{R}^{n}} \phi_{t}(y) g(x+y, t) d y
$$

Let $s=p^{\prime} / q^{\prime}>1$ and let s^{\prime} be the dual exponent of s. There is a positive function $h \in L^{s^{\prime}}\left(\mathbb{R}^{n}\right),\|h\|_{L^{s^{\prime}}\left(\mathbb{R}^{n}\right)}=1$, such that

$$
\begin{aligned}
& \left\|\left\|\mathcal{F}^{*}(g)\right\|_{L^{q^{\prime}}(\mathbb{R})}\right\|_{L^{p^{\prime}\left(\mathbb{R}^{n}\right)}}^{q^{\prime}} \\
& \quad=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}}\left|\int_{\mathbb{R}^{n}} \phi_{t}(y) g(x+y, t) d y\right|^{q^{\prime}} d t h(x) d x \\
& \quad \leqslant C \int_{\mathbb{R}^{n}}\left(\sup _{t \in \mathbb{R}_{\mathbb{R}}} \int_{\mathbb{R}^{n}}\left|\phi_{t}(x-y)\right| h(x) d x\right) \int_{\mathbb{R}^{n}}|g(y, t)|^{q^{\prime}} d t d y \\
& \quad \leqslant C\left\|_{t \in \mathbb{R}}\left|\phi_{t}\right| * h\right\|_{L^{s^{\prime}}\left(\mathbb{R}^{n}\right)}\left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}}|g(y, t)|^{q^{\prime}} d t\right)^{s} d y\right)^{1 / s} \\
& \quad \leqslant C\|h\|_{L^{s^{\prime}}\left(\mathbb{R}^{n}\right)}\| \| g\left\|_{L^{q^{\prime}}(\mathbb{R})}\right\|_{L^{p^{\prime}\left(\mathbb{R}^{n}\right)}}^{q^{\prime}}=C .
\end{aligned}
$$

This shows, for all $q>p$,

$$
\begin{equation*}
\left\|\left\|L_{\alpha, s}(f)\right\|_{L^{q}(\mathbb{R})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{s \alpha}\|f\|_{\dot{F}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)} . \tag{8.8'}
\end{equation*}
$$

By interpolating among (8.5)-(8.8') and the condition $|\alpha|<4 \beta / \tilde{p} \tilde{q}$, we obtain a $\delta>0$:

$$
\begin{equation*}
\left\|\left\|L_{\alpha, s}(f)\right\|_{L^{q}(\mathbb{R})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{-|s| \delta}\|f\|_{\dot{F}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)} . \tag{8.9}
\end{equation*}
$$

Thus by (8.4) and (8.9),

$$
\begin{aligned}
\left\|\left\|\mathcal{F}_{\alpha}(f)\right\|_{L^{q}(\mathbb{R})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} & \leqslant \int_{\mathbb{R}}\left\|I_{\alpha, s}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} d s \\
& \leqslant \int_{\mathbb{R}}\| \| L_{\alpha, s}(f)\left\|_{L^{q}(\mathbb{R})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} d s \leqslant C\|f\|_{\dot{F}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

The theorem is proved.
Next we give two applications of Theorem 6.
Let $\Omega \in L^{1}\left(S^{n-1}\right)$ satisfy $\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0$ and let

$$
\begin{equation*}
\phi(x)=\chi_{B}(x)|x|^{-n+1} \Omega\left(x^{\prime}\right), \tag{8.10}
\end{equation*}
$$

where χ_{B} is the characteristic function on the unit ball $B=\{x:|x|<1\}$. Let $M(f)(x, t)=\phi_{t} * f(x)$; then

$$
\mu_{\Omega}(f)=\left\{\int_{\mathbb{R}}|M(f)(x, t)|^{2} d t\right\}^{1 / 2}
$$

is the well-known n-dimensional Marcinkiewicz integral defined by Stein. It is known in [8] that if $\Omega \in L^{r}, r>1$, then for all $1<p<\infty$

$$
\left\|\mu_{\Omega}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

But by using the same argument on p. 551 of [10], we find that $|\hat{\phi}(\xi)| \leqslant$ $C \min \left\{|\xi|,|\xi|^{-\gamma}\right\}$, where γ is any positive number less than $1 / 2 r^{\prime}$. Thus we have the following corollary of Theorem 6.

Corollary 1. Let \tilde{p}, \tilde{q} be the same as in Theorem 6 and $\Omega \in L^{r}\left(S^{n-1}\right)$. If $|\alpha|<2 /\left(r^{\prime} \tilde{p} \tilde{q}\right)$, then

$$
\left\|\left\{\int_{\mathbb{R}}\left|2^{-t \alpha} M(f)(\cdot, t)\right|^{q} d t\right\}^{1 / q}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)} .
$$

We can also define a g_{λ}^{*}-function $G_{\phi, \lambda, \alpha, q}(f)$ by

$$
\begin{aligned}
G_{\phi, \lambda, \alpha, q}(f)(x)=\left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}}\right. & 2^{-t n}\left\{2^{t} /\left(2^{t}+|x-y|\right)\right\}^{n \lambda} \\
& \left.\times\left|\mathcal{F}_{\alpha}(f)(y, t)\right|^{q} d t d y\right)^{1 / q}
\end{aligned}
$$

By the same proof as Theorem 2 in [9] and the above Theorem 6, we have
Corollary 2. Let $1<q \leqslant p<\infty, \lambda>1$ and α, ϕ be the same as in Theorem 6 . Then we have

$$
\left\|G_{\phi, \lambda, \alpha, q}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{F}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)} .
$$

This corollary recovers Theorem 2 in [9] if $\alpha=0, q=2$ and ϕ is defined as in (8.10).

9. A final remark

Following the definition of (3.5) we can define the Triebel-Lizorkin spaces on the product space $\mathbb{R}^{n} \times \mathbb{R}^{m}$. Let $U \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $V \in C^{\infty}\left(\mathbb{R}^{m}\right)$ satisfy $\operatorname{support}(U) \subseteq\{x, 1 / 2<|x| \leqslant 2\}$, $\operatorname{support}(V) \subseteq\{y, 1 / 2<|y| \leqslant 2\}$ and $U(x)>$ $c>0, V(y)>c>0$ if $3 / 5 \leqslant|x| \leqslant 5 / 3,3 / 5 \leqslant|y| \leqslant 5 / 3$. Let Φ and Ψ be the Fourier inverse of U and V, respectively. For $\alpha, \beta \in \mathbb{R}, 1<p_{1}, p_{2}, q<\infty$, let $s=(\alpha, \beta)$ and $\mathbf{p}=\left(p_{1}, p_{2}\right)$. The Triebel-Lizorkin spaces $\dot{F}_{\mathbf{p}}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ is the set of all distributions f on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
\begin{aligned}
& \|f\|_{\dot{F}_{\mathbf{p}}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)} \\
& \quad=\|\left\{\int_{0}^{\infty} \int_{0}^{\infty}\left|\left(\Phi_{t} \otimes \Psi_{s}\right) * f\right|^{q} t^{\left.-\alpha q^{-\beta q} d s d t\right\}^{1 / q} \|_{L^{\mathbf{p}}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)}<\infty}<l\right.
\end{aligned}
$$

where $\|\cdot\|_{L^{\mathbf{p}}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)}$ is the mixed norm.
It is possible to extend the results in this paper to the product spaces.

References

[1] J. Chen, D. Fan, Y. Ying, Certain operators with singular kernels, preprint, to appear in Canad. J. Math.
[2] L. Chen, On a singular integral, Studia Math. TLXXXV (1987) 61-72.
[3] L. Colzani, Hardy spaces on sphere, Ph.D. thesis, Washington University, St. Louis (1982).
[4] L. Colzani, M. Taibleson, G. Weiss, Maximal estimates for Cesàro and Riesz means on sphere, Indiana Univ. Math. J. 33 (1984) 873-889.
[5] A.P. Calderón, A. Zygmund, On existence of certain singular integrals, Acta Math. 88 (1952) 85-139.
[6] A.P. Calderón, A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956) 289-309.
[7] Y. Ding, S. Lu, Weighted norm inequalities for fractional integral operators with rough kernels, Canad. J. Math. 50 (1998) 29-39.
[8] Y. Ding, D. Fan, Y. Pan, On Littlewood-Paley functions and singular integrals, Hokkaido Math. J. 29 (2000) 537-552.
[9] Y. Ding, D. Fan, Y. Pan, L^{p}-boundedness of Marcinkiewicz integrals with Hardy spaces function kernels, Acta Math. Sinica (English Ser.) 16 (2000) 593-600.
[10] J. Duoandikoetxea, J.L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986) 541-561.
[11] D. Fan, DeLeeuw's theorem on Triebel-Lizorkin spaces, J. Math. Anal. Appl. 182 (1994) 540554.
[12] R. Fefferman, A note on singular integrals, Proc. Amer. Math. Soc. 74 (1979) 266-270.
[13] M. Frazier, B. Jawerth, G. Weiss, Littlewood-Paley Theory and Study of Function Spaces, in: AMS-CBMS Regional Conf. Ser., Vol. 79, Conf. Board Math. Sci., Washington, DC.
[14] D. Fan, Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997) 799-839.
[15] D. Fan, Y. Pan, L^{2} boundedness of a singular integral operator, Publ. Mat. 41 (1997) 317-333.
[16] B. Muckenhoupt, R.L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971) 249-258.
[17] J. Namazi, A singular integral, Ph.D. thesis, Indiana University, Bloomington (1984).
[18] F. Ricci, G. Weiss, A characterization of $H^{1}\left(\sum_{n-1}\right)$, in: S. Wainger, G. Weiss (Eds.), Proc. Sympos. Pure Math., Vol. 35, American Mathematical Society, Providence, RI, pp. 289-294.
[19] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
[20] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.
[21] H. Triebel, Theory of Function Spaces, in: Monographs in Mathematics, Vol. 78, Birkhäuser, Basel, 1983.

[^0]: * Corresponding author.

 E-mail addresses: jcchen@mail.hz.zj.cn (J. Chen), fan@uwm.edu (D. Fan), ymying@css.zju.edu.cn (Y. Ying).
 ${ }^{1}$ Supported by 973 project, Major project of NNSFC, NSFZJ and NECC.

