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Abstract

We study the singular integral operator
fea ) = flx =1y,
defined on all test functiong’, whereb is a bounded functiong > 0, §2 is suitable
distribution on the unit spherﬂ”*l satisfying some cancellation conditions. We prove
certain boundedness propertiesief , on the Triebel-Lizorkin spaces and on the Besov
spaces. We also use our results to study the Littlewood—Paley functions. These results

improve and extend some well-known results.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let S~ be the unit sphere iR”, n > 2, with normalized Lebesgue measure
do =do (x), and leth be anL > function. In this paper we will study the singular
integral operatof,; , defined, on the test function spagéRr”), by

To.o(f)(x) = D-V-/b(IyI)Q(y/)IYIf"*“f(x —y)dy, 1.1

Rn
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wherea > 0, y' = y/|y| for y # 0, £2 is a distribution in the Hardy space
H" (8" 1) with r = (n — 1)/(n — 1+ «) and satisfies

for all spherical harmonic polynomials, with degreesn < [«]. It is easy to
check that, for each € R” and f € $(R"), |Te.«(f)(x)] < co.

DenoteTg o by Ty, if « =0. Then the operatdfy; is the well-known rough
singular integral operator initially studied by Calderén and Zygmund in their
pioneering papers [5,6]. In [6], using the method of rotation, Calder6n and
Zygmund proved that if2 € L Log™ L($" 1) satisfies the mean zero condition
(1.2), namelyx = 0, then the operatdf, with kernel$2(x)|x|™" is a bounded
operator on the Lebesgue spadégR"), 1 < p < co. This result was extended
and improved by many authors [12,14,15,18]. Particularly, it was discovered by
Fefferman [12] that if one adds an additional roughness on the radial direction,
namelyTg possesses the kerriglx|) 2 (x")|x| ™" with b € L*°, then the rotation
method used by Calderén and Zygmund cannot be adapted. However, by a Fourier
transform method, the following result was obtained independently by several
authors at an almost same time (see [2,10,17] and also [19] for a survey).

Theorem A. Supposeé € L®. If 2 € L"($" 1), r > 1, and satisfieg1.2) for
a =0, thenTg, is bounded or.? (R"), 1 < p < oc.

In a previous paper, we extended Theorem A to the case far 2ll0 and
obtained the following result.

Theorem B[1]. For1 < p < oo, letp =maXp, p/(p — 1)}. Leta > 0. Suppose
that 2 € H"(S"Y) withr = (n — 1)/(n — 1+ «) and thats2 satisfieg(1.2)for
all Y, whose degrees N with 2(N + 1) > ap. Then we have

H T.Q,O!(f) HLI’(R") < CHfHLg(]RU)’ (13)

whereL?, is the Sobolev space.

The first main purpose of this paper is to establish a more general theorem in
the casex > 0.

Theorem 1. For 1 < ¢g,p < oo, let p = maX{p, p/(p — 1}, ¢ = maxq,
g/(g—1}. Leta>0.1f 2 e H (" Yy withr =(n —1)/(n — 1+ «) and 2
satisfieq1.2)for all ¥,, whose degrees N with 4(N + 1) > pag, then

” T.Q,O!(f) H Fﬁ'q(R”) < CHfHFﬁ‘*”’vq(Rn)? (14)
H TQ,O!(f) HBqu (R”) g C”f”Bg‘H"q (R”)’ (15)

where g € R, F}f"’ and Bﬁ’q are the Triebel-Lizorkin spaces and the Besov
spaces, respectively.
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The constan€ in (1.4) and (1.5) depends anandC = 1/« asa — 0. Thus
if « =0, we assume of2 a stronger size conditiof? € L’ (§"~1) with r > 1,
for the sake of simplicity. Actually the conditio? € L Log™ L might be good
enough.

Theorem 2.Let1, p, g < co. If 2 € L" (5"~ 1) with r > 1 and satisfie§1.2)with
a =0, then

1720 g0y < O gt gy (15)

Before we recall the definitions of these various function spaces, in order to
clarify the relations between Theorems 1, 2 and Theorems A, B, we remark that
on the unit spherg¢” 1, L C Llogt LC H'CL'Cc H",0<r <1<s, and
all the inclusions are proper, while? = HY9 if 1 < g < oco. It is known in [13]
that onR", F0% = LP, Fe? = LL, LP C F*?if a <O and ¥r =1/p +a/n.
Letting X — Y denote that the identity map is a continuous map fidrto Y,
then Ff"’ — Bl’f’q. Clearly, our Theorem 1 is an extension of Theorem B and
Theorem 2 is an extension of Theorem A.

We also will use a transference method to obtain some analogous results on
then-torusT”. Let 2 € H"(§"~1) satisfy (1.2). Define informally

ra(8) :/b(|y|)|y|*"*ag(y/)[2m<y,§>dy_
Rn

We will prove thatig (§) = O(&]%) in Section 6. Since any € C*°(T") has
the Fourier serieg(x) = 3",y are?™“*), whereA = R"/T" is the unit lattice
which is an additive group of points iR" having integer coordinates, we define
To.« onallg e C(T") by

Tg,a(g)(x) = Z arhg (z)eZﬂi(Z,x)'
teA

Also denotel; o by To.

Theorem 3.Under the conditions of Theoremwe have that for aly € C°°(T")
|| T.Q,Ot(g) H Fl/?»q (Trz) < C||g||F5+°‘»‘1 ('ﬂ‘n)v (16)
H TQ,O[ (g) H Bg»q (T”) < C||g||3g+°‘»‘1 (T”)’ (17)

whereg € R, F/"¢(T") and B *(T") are the Triebel-Lizorkin spaces and the
Besov spaces on thetorus, respectively.
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Theorem 4.Under the condition of Theore®) we have that for alg € C°°(T"),
[T @ jpa pny < Cllgll g ey (1.6)

| T2 (@) 6 (omy < Cllgl g . (1.7)

If @ <0, then the integral operator defined in (1.1) is the fractional integral
operator. This operator was also studied by many authors. The reader can see
[7,16] and their references for more information. In Section 7 of this paper, we
will obtain a theorem on the fractional integral similar to Theorem 1, in the case
a € (—1/2,0). We also will obtain some results related to the Littlewood—Paley
functions in Section 8.

2. Hardy spaceH” (s"~1)

The Poisson kernel os* 1 is defined by
Py () =@ =13)/Ity =¥I",

where 0< 7 < 1 andx’, y' € §"~1. For anys2 € 8/(5"~1), we define the radial
maximal functionP* (£2)(x") by
PTR2(x')= sup |2, Py,
0<r<1

where$’ (5" 1) is the space of Schwartz distributions §tr .

The Hardy spacd?” (8" 1), 0 < r < oo, is the linear space of distribution
2 € 8/(s"71) with the finite norm|(| 2|l g (gu-1) = [|P* 21| 1r(gn-1) < 0. It is
known in [3] thatH" is the same as the atomic Hardy spagf(s"—1). Thus
by a standard atomic decomposition method (see [14] or [1]), it is known that to
prove Theorems 1 and 3, we can assume fhat') = a(y’) is an (r, oo) atom
with supportinB(1, p) N $”~1 and prove that the constan@sin the theorems are
independent of atom(y’), wherel= (1,0,...,0), and an(r, s) atom is anL?,
s > 1, functiona(-) that satisfies

suppa) C {x" € "L = xg| < p}

for somex} € §"~* andp > 0, (2.1)
/ a(y)Ym(y)o(y)=0 (2.2)
Sn—l

for all spherical harmonic polynomialg, with degree< N with 4(N + 1) >
apq,
lall ps(gn-1y < p@~DAS=LD), (2.3)

For more information on the Hardy spaces, the reader can see [3,4].
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3. The spacests’? and B5

Fix a radial functiond € C*(R") satisfying supp®) < {x, 1/2 < |x| < 2},
0<P(x)<land®(x) >c>0if 3/5< x| <5/3. Let®;(x) = &(2/x) and
require thap satisfies

> @jn?=1 forallr. (3.1)

j=—00

Itis easy to see sup@;) < (2-/-1, 2-/+1). Define the functiong; by ¥; (¢) =
@ (&), sothat(¥; * f)(§) = f(£)®;(¢). For1< p < 00, B e Rand 1< g < oo,
the Triebel-Lizorkin spacéﬁ’q(R") is the set of all distributiong satisfying

1/q
10 ey = (Z 27 P4 f|q>
k

the Besov spacéﬁ"’(IR{") is the set of all distributiong satisfying

< o0; (3.2)
LP (R

1/q
q
||f||35.q(Rn) = Z(Z_ﬁkllq’k * f”LP(R”)) } < 00. (3.3)
k
Forg(x) = ape® %) e C(T") we define?; x g by
Wik g(x) =Y ar®p(f)e 200, (3.4)

teA
In (3.2) and (3.3), replacing’ * f by ¥ * g, and LP(R") by L?(T"), we
similarly define the spaceéf"’(’ﬂ‘") and B,’f"’(’ﬂ‘"). It is well-known that the
dual space of?)? is (Fj")* = F,»¢ where ¥p + 1/p' =1/q + 1/q' = 1.
. . . /3’ . 7/3’ !
Similarly (B,4)* = B, T,
Remark. One also can define the Triebel-Lizorkin spaces and the Besov spaces

in a continuous version. Le¥ and @ be the same as before and Bt(x) =
t~"W(x/t). Then it is well-known that

o 1/q
||f||F.£.q(Rn) = :/nﬂw, *f|fitldt} , (3.5
0 LP(R")
o0 1/q
11 s oy = { / (11w f||Lp<Rn>)qr1dr} : (3.6)
0

The reader can learn more information on these spaces in [21].
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4. Some estimates

Suppose thatz(y’) is an (r,00) atom with support inB(1, p) N §"~1
and satisfies the cancellation conditions in Theorem 1. lk.dbe the interval
(2¢, 2k k=1,2,..., and

T f () = / b(Iy )y xn (1¥) £ x — y)dy.
Rn
It is easy to see thafi o f = ok.o * f SO that(jk,af)A(s) = &k,a(s)f(g), where
ok.« IS the measure defined by

/fdak,a = / SOy %a(y') dy.
R 2k<y|<2kHt

Thus we have

2k+1
bl (£) = f b(le)) e~ f a(y)e #E) do (y') dt.
2k Sn—l

By the cancellation condition af(y"), it is easy to see

2k+l
|&k,a<s>|<c/f1*“ /a(y’){ 20018 _ 1) 4o (y/)| dr,
2k Sn—l
because
/am{ 21018 1) do (y)
Sn—l

eZm’(l& / a(y){ —2mi(y S) —27Zl (1,§) }do_(y)

sn—1

So by the Taylor expansion and the cancellation and support conditiois’af
we have

|61, )] < C27F |2 pg VDD, (4.1)
Similarly, by the support and size conditionsadfy’) we have
|6k, ()] < C27F pA-1/N =D (4.2)

The constant€’ in (4.1) and (4.2) are independentigfp, andé.
In the casex = 0, we need a more precise estimatea(y’) = £2(y’) is in
L™ (8" 1), r > 1, and satisfies (1.2) withh = 0, then by [10] we know that there
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isay > 0 such that

|61.0(6)| < Cminf |2, 12|77 ). (4.3)
Fora > 0, we also have
lotal <C / Y20 dy. (4.4)

2k|y|<2k+l
It is easy to see that 2 (y") = a(y’) is an(r, co) atom, then for all K p < co

16k.aloo < Clok.o| < C27Fe pA=Y/N=D), (4.5)

su < Cp-1/n(-1) Hsu o—ka ’ ’ 46
H L Alok.al * fi) o S 6P up Ji Lo (4.6)
lowal * ficll Lpgny < CoE PO D27K fill Lo, (4.6)
whereC is independent of andp.
If 2 isinL"(S"1) with r > 1, then
Su <C n 4.7
|suptowol« £, ) < S I (@.7)

forall1 < p < o0.

5. Proof of Theorems 1 and 2

First, we remark that throughout this section and the next section, the condition
r=mn-21)/n—-1+a)in Theorems 1l and 3 is equivalentto— 1)(1— 1/r) +
a=0.

To prove Theorem 1, as mentioned in Section 2, we can assume thgt=
a(y') is an(r, oo) atom with supportirB(1, p)N$"~1, and prove that the constant
C in the theorem is independent @fy’). Let {®;} and{¥;} be the same as in
Section 3. Following the proof of lemma in [10], we decompose the operator
TQ,a(f) by

TQ,a(f):Z<2Sj+k0k,a*sj+kf>ZZAjfv (5.1)
J k J

where(S; f)(§) = @ (2/ p&) f (). Let §* be the dual operator of;; it is easy to
check

£ 0 =

[e’s) 1/q
{ > |(2’p)"35}‘f|"}

j=—00

LP(R")

o0 1/(1
i > |<2fp>ﬂsjf|q}

j=—00

LP(R™)
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For anyg € Fl;ﬂ’q/, we have

(A f 8| = ’ / D Sk ok * (it f)(x)g(x) dx
k

= ’/ ZUk,a * (Sj+kf)(x)5;+kg(x) dx
k

1/q
/(Z\(Zkﬂ Pora* S f )| )

’

. N\ Y4
X<Z|(2k+fp)ﬁs;+jg(x)|") dx. (5.2)
k

Taking supremum ovey with I8l zpar <1 and by Holder’s inequality we have
p/

||Ajf||F5,q <C (5.3)

) 1/q
(Z|(2k+],0)ﬂ(7k,a * Sk+jf|q)
Lp

Now we use (5.3) to estlmatkaﬁijFﬁq for different pairs(p, q).
Forg = p, by (5.3) and (4.6,

1/q
14) Fllzpa < {Z(Zk“p) 'Bq/|0ka*Sk+jf(x)| dx}

Rn

: i 1/q
<c2e (Z(zkﬂp)—(”ﬁ)q / \sk+jf(x)\"dx) :

k R»

This shows
IIAijIF;,q < C2j“||f||F;+ﬁ,q. (5.4)

If p=g =2, we have

14, fIIFMZIIA f||L2 \CZ/@"W) 26| 0 % (Sj 4 /)0 Py

k gn
’”CZ/!«PM 1081) (2 0) P oo (6) f6)|? dt
k gn
<c Y [ loa@ i@l @ o ae.
K D
where
Dj={& 2777t <lgpl <277H)
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If j >0, noting 2%~/ = |&p| on D, using (4.1) we have

14, £15 b2 <C2 2IINED pn=DA=1/D = / |F©)[72 %5126 ag

K Dj
< C2 2N Y / |£®)|AE12e ) g
k Dy
Therefore, forj > 0, we have
14, F g2 < C2T DSl iz g (5.5)

Similarly, using (4.2), we have fgr < 0
147 f 1| pp2 < C2N f 1 sz . (5.6)

If p>gq,lets=(p/q) =p/(p —q). By (5.3), we can take a non-negative
h € LS (R") with ||| = 1 such that

o
||A f”Fﬂq <C Z /|(2k+jp)_ﬁ0k,a*(Sk+jf)|qhdx- (57)
k=—00 R~

Since|oy,« * (Sk+j f)19 is bounded by

C(p(n—l)(l—l/r))q/q 2—kqoc / |a(y’)||y|_”|Sk+jf(x . y)|q dy
2k |y|<2k+1
= C(p DAYy e g {154 £19) (),

where

Lif(x)= / laO"|IyI™" f(x — y)dy, (5.8)

2k |y|<2k+1

we have that

> [1@ 40 Pona s (a1

k Rn

C(p(n—l)(l—l/r))q/q’

x /{Z]2—k“(2f+kp)—ﬁsk+,-f(x)\q}Nah(x)dx,

R K
whereN,h(x) = sup,(L;h)(x), and

(Ligh)(x) = / V1" |a ") |h(x +y) dy.

zkg‘y‘<2k+l
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By the rotation method and thé” boundedness of the Hardy-Littlewood
maximal function, it is easy to see that

INahtllzs < Cp VA p| s < p~ DAY,

Thus by Hoélder’s inequality and (5.7), we have

) 1/q
(Z!(Zk“p)aﬂ&cﬂf\q)
%

which, together with (5.4), show that gf > ¢, then for any; € Z
14, 11l jpa < C2NS N g (5.9)

bl

LP(RM)

||A]f||F£vq (R™) g C2j0!

Takingg = 2 in (5.9) and by duality, it is easy to check that for akkIp < oo
147 f 1 ppz < C2N f | jussa. (5.10)

By interpolating (5.5), (5.6) and (5.10) (see [21]), and by the choi¢é,afe have
a positive numbef, which is less than, but arbitrarily close {@(N +1) —ap)/p
such that for 1< p < oo

185 fllgp2 <2 S N garsz i j 20, (5.11)
147 F 1 ppz <270 [l gss 1 j <O, (5.11)

Interpolating between (5.11), (5/35&nd (5.9), we obtain a positive numbkes
min{e, y}, wherey is less than, but arbitrarily close t&}(N + 1) — pag)/pq.,
for1 < g < p < oo, such that

147 £ 110 < 2V £l s (5.12)
From (5.1) and (5.12), we have that forlg < p < o0
H T.Q,oz(f) ” F]/f»q < C||f||p;t+ﬂ.q- (5-13)

Noting thatg is an arbitrary real number, by duality we obtain (5.13) fopad R,
1<gq, p <oo. This proves (1.4) in Theorem 1. Now (1.5) of Theorem 1 follows
by an interpolation resultF;"", Fi**)g., = By (see [21]).

The proof of Theorem 2 is exactly the same by letting 0, p = 1 and using
(4.3) instead of (4.1) and (4.2).

6. Proof of Theorems 3 and 4
We prove Theorem 3 only, since the proof of Theorerw4= 0) is similar

and easier than the case> 0. Similar to the proof of Theorem 1, it suffices to
show the boundedness on the Triebel-Lizorkin spaces. Also, we can assume that
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() =a(y) is an(r, oo) atom supported iB(1, p) N $*~1 and show that the
bound is independent afy’). Forn > a > 0, let R, be the Riesz potential dR"
which is defined by(R,, f) (&) = Cy|E]7® £ (£), and letR,, be the Riesz potential
onT" defined by

Rug(x)=Cu Y 0] %are™ ) forg(x) =) are®™ ¥, (6.1)
Le A\{0} leA

where C, is a constant depending an It is known~thatRa has the “lift”
property, and so doeg,. This means thai, (also R,) is an isomorphism

=B.q na+p.q ~
between the spiaceg, and F, and ||f||F5,q(Rn) = ||Raf||F§+ﬂ.q(Rn) and
llgll p.q = |Ru gl petpq - Thus to prove the theorem, it suffices to show
Fp (T Fp (T™)

that, for anyy € R,

H RoTo o(f) H ELY (R < C||f||F;vq(Rn)
implies

H RO( T.Q,Ol (g) H ﬁqu(']rn) < CHg“FIJ;q (Tn) -
If we further use the “lift” property and note that, andR, satisfy the semigroup

propertyRy R, = Rq+,,. Then it is easy to see that to prove Theorem 3, we only
need to show the following proposition.

Proposition 1. If ||RaTg,a(f)||Fg,q(Rn) < C”f”Fg’q(]R") for all f € 8(R"), then
forall g € C(T")

|| Eot T.Q,Oé (g) || F,?'q (Tm) < C“g”F,?'q ()"

Proof. Let RyT o = T andR,To o = T. They are convolution operators so that
(TF)(€) = (&) f(&). By the main theorem in [11], to prove the proposition, we
only need to verifyu € L*, and thatu (&) is continuous at each # 0. First we
show thatu(¢) € L°°(R"). By the definition and (4.1), (4.2), for agy# 0

@) <CIEIT™* Y |6ra®)]

k

SCIET™ D |ka®]+CET D [bra®)|

[2kpg|>1 [2¢pg|<1
< Clo(nfl)(lfl/r) Z |2k§|70(
[2kpg|>1
+ Cp(l‘t—l)(l—l/r)+(N+l) Z |2k§|(N+1)—ot <C.
2k<1/1pé|

Sou e L.
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Next, fix ane > 0; for any& # 0,

M(§)=Ca|§|“{p.v. / b(1y)lyl " a(y)e 208 gy

lyl<e

[ nren(yanhe 0 ay
lyI=e

Thus using the cancellation condition aiy’) it is easy to check that () is
continuous at each = 0. The proposition is proved.O

Remark. In the casex = 0 (Theorem 4), by checking the proof of the main
theorem in [11], it suffices to prove that the symhal) of T o is bounded
and eachh € A\{0} is a Lebesgue point ofi(£). But this was pointed out on
p. 263 in [20].

7. Fractional integral operators

Letn > a > 0,2 € LY($"~1). The fractional integral operatdt; ,, is defined
onall f € $(R") by

Fo.u(f)(x) = / IR0 £ — y)dy.
Rn
Letty x(y) = [y "2 (") x1, (Iy]) with I = (2%, 28711, Then we have

Foo(HN)= Y tar* f(x).

k=—o00

Itis easy to check
|fa i (€)] < C2%. (7.1)

By checking p. 551 of [10], we find that i? € L" (5" 1), r > 1, then for any
less than 12r’
|fak (€)] < C24¢|2% 7. (7.2)

Now replacing (4.1) and (4.2) by (7.1) and (7.2), using the exactly same proof
in Theorem 1, we have the following theorem for the fractional integral operator.

Theorem 5. Let 2 € L' ($" 1), r > 1. For 1 < g, p < o0, let p = maxp,
p/(p—D}andg =maxgq,q/(q —D}. f0<a <2/r'pg (orr > 2/(2—apq)
with 2 — a pg > 0), then for any real numbes
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H F.Q,(X(f) H Fﬁ'q(R”) < C”f”f"llj_‘"vq(Rn)’

” FQ,D((f) H Bﬁ’q(R”) < C”f”Bg_"‘v‘I(Rn)'

8. Littlewood—Paley functions

For anL1(R") function ¢, we defineg, (x) = 27"p(x/2"), t € R. Then the
Fourier transform ofg; is ¢,(&) = ¢(2'&). The Littlewood—Paleyg-function
g4 (f) onR" is defined onf € 8(R") by

1/2
g f(x)= </|¢, * f(X)|2dt> . (8.1)

R
The following theorem is the main result in [8].

Theorem C.For ¢ € LY(R"), if ¢ satisfies

() I SURcg 1l * flliLr@n < CllfllLe@n forall f € S(R™) andallp € (1, 00),
(i) 19(&)] < Cmin(&|8, |&|7#) for somes > 0,

then we have

|86 (D Lp@ny < CIflLrny forall f e S@RM. (8.2)

If we defineg; x f(x) by £ (f)(x, 1), then (8.2) can be written as
|| ”‘?:'(f)HLz(R) ||LP(R”) g CHf”ngz(Rn) (82)
Now we define, for any real number
Fo (), 1) =27 % f(x) =27 F (f)(x,1).

In this section we extend Theorem C to the following more general theorem.

Theorem 6.For 1 < p,q < oo, let p andg be as in Theoremd. Suppose that
¢ € LY(R") satisfieq(i), (i) in Theorem C. It € (-8, ) satisfiesa| < 48/p4,
then we have

PO NLa@ | Ly < CILE N . (83)
Proof. We use the equivalent definition (3.5) to study the Triebel-Lizorkin

spaces. Choose a radial functigne $(R") as in the definition of the Triebel—
Lizorkin spaces, namely satisfies
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/q?(?)ds:l, Y(y)>c>0 if3/5<]|y|<5/3,
R
supp¥) C {y e R™: 27 < |y| < 2}.

Itis easy to see that for any test functigre §(R")

f%ﬂ{llls*fds.

So by the Minkowski inequality, we have that

120 ey = ( /

R

< / las f () ds,

R

q 1/q
dt)

/(Ws+z # 271 % f)(x)ds
R

where
1/q
Ins f(x)= (/’(q/ert*z_ta(ﬁz*f)(x)’th) .
R

Let

Lo s(f)(x, 1) =Wsqq * 2_m¢t * f(x) = Wsqr x Falx,1).
Then

IOt,Sf(-x) - H WS-‘:—I * ?‘a(x’ t) HLq(R,dl‘) - HL(X,S(f)(xﬂ )HL‘I(R)
Itis easy to see that

I Zas (ONza) | Loy = NLas (Dlla@n | o)

1/q
( / |2f°‘ws+,*f|qdr>
R
This shows

I Zeas (OLa@ | Lo ggeny < CZNS N gt eny-
By the proof of (2.5) in [8] we find that if > 0,

<C

L4(R")

[Zas (D ll2@ | 2y < €27 PN f 1z 227 PN f 1 pa .

Similarly, by the proof of (2.8) in [8], we find that if < O, then
ILas (2 | Loggny < €2 UL N oz -

(8.4)

(8.5)

(8.6)

(8.7)
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If p > ¢, using the same argument to prove (5.9), we obtain
[ Zes (Do @ | o ny < C2°NF W e (- (8.8)

If ¢ > p, thenp’ > ¢’. Now for all g(x, 1) satistying|lllgll o gl L @y = 1, WE
have

(Las (1), &) < NF* @ Lot @y | 1o oy

1/q
( / |2—’“ws+,*f|th)
R

= H ”-?:'*(g) ”Lq/(]R) HLp’ (Rn)zsa ”f”ng (R™)»

X

LP(R")

where

f*(g)(x,o=/¢,<y>g<x+y,r>dy.

R»

Lets = p’/q’ > 1 and lets’ be the dual exponent of There is a positive function
he LY ®"), |l g, = 1, such that

I ”‘?j*(g)”Lq/(R) ||ZP/(Rn)

-]

R* R

< c/<su£/|¢t<x - y>|h<x)dx) /|g<y, D\ dr dy
te
Rn Rn

Rn

s 1/s
q/
e f(fir )

Rn

/

q
dth(x)dx

/¢z(y)g(x +y,0)dy

R»

< C|[sup|g:| x h

teR

q/
< Cllall o oy 181 0 @ | gy = €
This shows, for aly > p,
IZas (Dlza@ | Lp gy < C2Nf 1l 29 oy - (8.8)

By interpolating among (8.5)—(8)8and the conditioria| < 48/ pg, we obtain a
§>0:

Lo (DlLa@ | Loy < €252l 24 ny- (8.9)
Thus by (8.4) and (8.9),
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112 o | g < / Ml ds
R

< It gy d5 < NSz
R

The theorem is proved.O
Next we give two applications of Theorem 6.
Let 2 € L1($"1) satisfy [,-1 2(x") do (x') =0 and let
¢ () = xp(@) x| "R (), (8.10)

where xp is the characteristic function on the unit b@ll= {x: |x| < 1}. Let
M(f)(x,t) =¢; * f(x); then

1/2
ne(f)= :/!M(fxx,ojzdt}
R

is the well-knownr-dimensional Marcinkiewicz integral defined by Stein. It is
knownin [8] thatif2 e L", r > 1, thenforall 1< p < o0

lnellzr®ey < CIfllLe®ey-

But by using the same argument on p. 551 of [10], we find tidat)| <
C min{|&], |€|77}, wherey is any positive number less thapi2t’. Thus we have
the following corollary of Theorem 6.

Corollary 1. Let j,§ be the same as in Theorefhand 2 € L' (5" 1). If
la| < 2/(r' pg), then

1/q
:/yzmM(f)(.,r)yth}
R

We can also define gf-functionGy 3 .«.4(f) by

G raq(NHX) = (//2’”{2/(2 +1x =y}
R

s
R 1/q

< C”f”ﬁ;‘*q([[gny
LP(R™)

x |%(f)(y,r>|thdy)
By the same proof as Theorem 2 in [9] and the above Theorem 6, we have

Corollary 2. Letl < g < p <00, A > 1anda, ¢ be the same as in Theorein
Then we have

1Go.aq (] Loy < CIF N4 -
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This corollary recovers Theorem 2 in [9]df = 0, ¢ = 2 and¢ is defined as
in (8.10).

9. Afinal remark

Following the definition of (3.5) we can define the Triebel-Lizorkin spaces
on the product spac®” x R™. Let U € C*®(R") and V € C*®(R™) satisfy
supportlU) < {x,1/2 < |x| < 2}, supportV) < {y, 1/2 < |y| <2} andU(x) >
c>0,V(y)>c>0if3/5< x| <5/3, 3/5< |y| <5/3. Let® and¥ be the
Fourier inverse o/ andV, respectively. For, 8 € R, 1 < p1, p2,q < oo, let
s = (a, B) andp = (p1, p2). The Triebel-Lizorkin spaceBy ! (R" x R™) is the
set of all distributionsf onR” x R™ such that

” f ” 1}5»51 (R xIR™)
1/q

o0 0
= H //|(¢>, @ W) * |1t s P4 ds dr < 00,
00 LD(R”XR’")

where|| - || Lo rn xrm) iS the mixed norm.
It is possible to extend the results in this paper to the product spaces.
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