On a homotopy relation between the 2-local geometry and the Bouc complex for the sporadic group Co_{3}

John Maginnis, Silvia Onofrei *
Department of Mathematics, Kansas State University, 138 Cardwell Hall, Manhattan, KS 66506, USA

Received 16 November 2004
Available online 18 May 2007
Communicated by Ronald Solomon

Abstract

We study the homotopy relation between the standard 2-local geometry Δ and the Bouc complex for the sporadic group Co_{3}. We also give a result concerning the relative projectivity of the reduced Lefschetz module $\tilde{L}(\Delta)$. Published by Elsevier Inc.

Keywords: Subgroup complexes; 2-Radical subgroups; Bouc complex; 2-Local geometry; Homotopy equivalence

1. Introduction

If G is a Lie group in natural characteristic p, then the Tits building is the simplicial complex on the maximal parabolic subgroups of G. The Bouc complex $\left|\mathcal{B}_{p}(G)\right|$, in this case the complex of unipotent radicals, is the barycentric subdivision of the Tits building.

In the 70s and 80s, Buekenhout [4], Ronan and Smith [11] and Ronan and Stroth [12] constructed various geometries for the sporadic simple groups in an attempt to generalize the Tits buildings for Lie groups. Also, Brown [5], Quillen [10], Bouc [6] and others were considering various collections of p-subgroups related to group cohomology.

In his expository paper, Webb [16] noted the connections between the group geometries and the subgroup complexes, and investigated the associated Lefschetz modules and the correspond-

[^0]ing homology decompositions. Webb's paper contains specific calculations, with details from various authors, on geometries and subgroup complexes.

The relationship between p-local geometries and the Quillen complex of elementary abelian p-subgroups or the Bouc complex of p-radical subgroups for certain sporadic groups was further investigated in papers by Ryba, Smith and Yoshiara [13] and Smith and Yoshiara [14]. In the latter paper, the authors studied the projectivity of the reduced Lefschetz module for some group geometries and observed that the sporadic groups of characteristic p-type behave similarly to the finite Lie groups in defining characteristic p.

There is no uniform approach for p-local geometries. A recent, comprehensive study of 2-local geometries for the 26 sporadic simple groups, with some general results for p-local geometries, can be found in Benson and Smith [3]. In the present paper, it is understood that a p-local geometry for a group G is a simplicial complex whose vertex stabilizers are suitably chosen maximal p-local subgroups of G.

For many of the sporadic simple groups, especially when $p=2$ and G has characteristic 2type, there is a 2-local geometry Δ, with vertex stabilizers maximal 2-local subgroups of G, such that the Bouc complex $\left|\mathcal{B}_{2}(G)\right|$ is equal to the barycentric subdivision of the geometry. For the remaining sporadic groups the relationship is not clear anymore; in fact, Δ and $\left|\mathcal{B}_{2}(G)\right|$ are not always homotopy equivalent; see [3] for example.

It is the purpose of this paper to give such a relationship for the Conway's third sporadic group Co_{3}. Section 2 provides some notation and reviews standard results which will be used in proofs. In Section 3 we describe in detail the 2-local maximal "parabolic" geometry Δ for Co_{3}. In Section 4 we describe the relevant elements of the Bouc complex $\left|\mathcal{B}_{2}\right|$ of Co_{3} in group theoretic and geometric terms. In Section 5 we prove that the 2 -local geometry Δ is G-homotopy equivalent with a subcomplex $\left|\hat{\mathcal{B}}_{2}\right|$ of the Bouc complex. In Section 6 we prove that the fixed point set Δ^{z} of a central involution z is contractible. Then, using a result of Thévenaz [15], we conclude that the reduced Lefschetz module $\tilde{L}(\Delta)$ is projective relative to the collection $\mathfrak{X}=\mathcal{B}_{2} \backslash \hat{\mathcal{B}}_{2}$ of subgroups of Co_{3}.

2. Notations, terminology and standard results

2.1. Subgroup complexes

Let G be a finite group and p a fixed prime which divides the order of G. A p-subgroup R of G is called p-radical if $R=O_{p}\left(N_{G}(R)\right)$. The p-subgroup R is p-centric if $Z(R)$ is a Sylow p-subgroup of $C_{G}(R)$.

A collection is a family of subgroups of G which is closed under G-conjugation and it is ordered by inclusion; hence it is a G-poset. The following two collections are standard in the literature:

$$
\begin{aligned}
\mathcal{A}_{p}(G) & =\{E \mid E \text { non-trivial elementary abelian } p \text {-subgroup of } G\}, \\
\mathcal{B}_{p}(G) & =\{R \mid R \text { non-trivial } p \text {-radical subgroup of } G\} .
\end{aligned}
$$

In what follows, if \mathcal{C} is a collection of subgroups of G then $|\mathcal{C}|$ will denote the associated simplicial complex, with simplices equal to the flags or chains of subgroups in the poset \mathcal{C}. The complex $\left|\mathcal{A}_{p}(G)\right|$ is known as the Quillen complex and $\left|\mathcal{B}_{p}(G)\right|$ is known as the Bouc complex. The two complexes are G-homotopy equivalent.

Define the following subcollection of the Bouc collection:

$$
\hat{\mathcal{B}}_{p}(G)=\left\{U \in \mathcal{B}_{p}(G) \mid Z(U) \cap Z(S) \neq 1, \text { for some } S \in \operatorname{Syl}_{p}(G)\right\}
$$

We shall call $\left|\hat{\mathcal{B}}_{p}(G)\right|$ the distinguished Bouc complex.
Let $\mathcal{E}_{p}(G)$ denote the collection of non-trivial elementary abelian p-subgroups of G whose elements lie in the smallest set which contains elements of order p in the center of a Sylow p subgroup, is closed under conjugation in G and is closed under taking products of commuting elements. This collection was introduced by Benson [2] in order to study the mod-2 cohomology of Co_{3}.

2.2. Homotopy techniques

Let us assume that Δ is a simplicial complex. We say that G acts admissibly on Δ if whenever $g \in G$ fixes a simplex $\sigma \in \Delta$ then g fixes every face of σ. If v is a vertex of Δ, then $\operatorname{Star}_{\Delta}(v)$ is the collection of simplices containing it, and the residue of v, denoted $\operatorname{Res}_{\Delta}(v)$ is the subcomplex of next lower dimension, obtained by deleting v from each simplex of $\operatorname{Star}_{\Delta}(v)$. Then $\operatorname{Star}_{\Delta}(v)=$ $v * \operatorname{Res}_{\Delta}(v)$, the simplicial join.

For $\sigma \in \Delta$, let G_{σ} be the stabilizer of σ under this action and let U_{σ} denote the kernel of the action of G_{σ} on the residue of σ. The following is inspired from a standard property of the finite groups of Lie type acting on their buildings:

The Borel-Tits property (BT). Let G be a group which acts admissibly on the simplicial complex Δ. For each non-trivial p-subgroup U of G, there exists a simplex σ of Δ such that $N_{G}(U) \leqslant G_{\sigma}$.

Notation 2.1. For $P \leqslant G$, denote by Δ^{P} the subcomplex of Δ fixed by P.
The following two lemmas are standard results which will be used in the proofs. They are given here in the form used by Ryba, Smith and Yoshiara in [13].

Lemma 2.2. (See [13, Lemma 2.1].) For a vertex v of a simplicial complex Δ, if the residue $\operatorname{Res}_{\Delta}(v)$ is contractible, then Δ is homotopy equivalent to $\Delta \backslash \operatorname{Star}(v)$.

Lemma 2.3. (See [13, Section 2].) Let $\Sigma \in \Delta$ be a simplex of maximal dimension with σ as a face. Assume that Σ is the only simplex of maximal dimension with σ as a face. Then the process of removing Σ from Δ, by collapsing Σ down onto its faces other than σ, is a homotopy equivalence.

3. The 2-local geometry $\boldsymbol{\Delta}$ of Co_{3}

The sporadic simple group $G=\mathrm{Co}_{3}$ has two classes of involutions [8], which we shall denote $2 A$ (the central involutions) whose centralizer is $2 \cdot S_{6}(2)$, and $2 B$ (the non-central involutions) whose centralizer is $2 \times M_{12}$; using the Atlas [7] notation. Note that central means that the elements are central in some Sylow 2 -subgroup of G. Given any two commuting central involutions, their product is a central involution. The product of a central involution and a noncentral involution (if an involution) is a non-central involution. The product of two commuting non-central involutions can be either central or non-central.

Let Δ denote the 2-local maximal "parabolic" geometry of G. This geometry was first mentioned in [12]; further details can be found in [3, Section 8.13]. This is a rank 3 geometry, whose objects will be denoted points \mathcal{P}, lines \mathcal{L}, and \mathcal{M}-spaces. The objects of this geometry correspond to pure central elementary abelian subgroups of G; this means that these subgroups contain central involutions only. The points correspond to rank one subgroups 2 , lines to 2^{2} and \mathcal{M}-spaces to 2^{4}. Incidence is given by containment. Δ can also be regarded as a simplicial complex of dimension two with three types of vertices.

Remark 3.1. There is also a class of pure central elementary abelian subgroups 2^{3} in G, which do not correspond to objects in Δ; each subgroup 2^{3} is contained in a unique subgroup 2^{4}; see [3, Section 8.13]. These 2^{3} subgroups will be referred to as planes.

The group G acts (faithfully) flag-transitively on the geometry. The stabilizers of the three types of objects are:

$$
\begin{array}{ll}
G_{p} \simeq 2 \cdot S_{6}(2) & \text { for a point } p \in \mathcal{P} ; \\
G_{L} \simeq 2^{2+6} 3\left(S_{3} \times S_{3}\right) & \text { for a line } L \in \mathcal{L} ; \\
G_{M} \simeq 2^{4 \cdot} \cdot L_{4}(2) & \text { for an } \mathcal{M} \text {-space } M .
\end{array}
$$

The flag stabilizers can be easily determined and they are:

$$
\begin{array}{ll}
G_{p L} \simeq 2^{2+6}\left(S_{3} \times S_{3}\right), & G_{p M} \simeq 2_{+}^{1+6} L_{3}(2) \\
G_{L M} \simeq 2^{2+6}\left(S_{3} \times S_{3}\right), & G_{p L M} \simeq\left[2^{9}\right] . S_{3}=\left[2^{10} 3\right]
\end{array}
$$

The geometry Δ is pure 2-local, in the sense of [14], that is, all the simplex stabilizers have nontrivial normal 2-subgroups. All vertex stabilizers are maximal 2-local subgroups. Δ has the diagram as shown in Fig. 1.

Notation 3.2. For $X \in\{\mathcal{P}, \mathcal{L}, \mathcal{M}\}$ and F a flag of Δ, we will denote by X_{F} the collection of all objects in X incident with F.

Notation 3.3. For $p \in \mathcal{P}$ let

$$
p^{\perp}=\{q \in \mathcal{P} \mid q \text { and } p \text { are incident with some common line }\} .
$$

In what follows it will be useful to regard Δ as a point-line geometry, that is, the lines and the \mathcal{M}-spaces are identified with the subsets of points they are incident with. We give below some of the properties of Δ :

Fig. 1. Diagram for the 2-local geometry of Co_{3}.
($\Delta 1$) For $p \in \mathcal{P}$ the residue $\operatorname{Res}_{\Delta} p=\left(\mathcal{L}_{p}, \mathcal{M}_{p}\right)$ is the collection of all lines and \mathcal{M}-spaces containing p. Then $\operatorname{Res}_{\Delta} p$ is isomorphic with the geometry of isotropic lines and isotropic planes of a polar space of type C_{3} over the field \mathbb{F}_{2}. Note there are 315 lines and 135 M spaces on a given point $p \in \mathcal{P}$.
($\Delta 2$) For $M \in \mathcal{M}, \operatorname{Res}_{\Delta} M=\left(\mathcal{P}_{M}, \mathcal{L}_{M}\right)$, the collection of points and lines lying in M is the truncation to points and lines of a projective space $P G(3,2)$. It is immediate that there are 15 points and 35 lines incident with M.
($\Delta 3$) For $L \in \mathcal{L}, \operatorname{Res}_{\Delta} L=\left(\mathcal{P}_{L}, \mathcal{M}_{L}\right)$ is a digon, a complete bipartite graph on the three points and the three \mathcal{M}-spaces incident with L.
($\Delta 4$) Given a point p and a line L with $p^{\perp} \cap L \neq \emptyset$, either $p^{\perp} \cap L$ is a single point or all of L. ($\Delta 5$) If ($p, M) \in \mathcal{P} \times \mathcal{M}$, either $p \in M$, or $p^{\perp} \cap M$ is at most a line.
($\Delta 6$) Two distinct \mathcal{M}-spaces intersect in at most one line.
The properties $(\Delta 1)-(\Delta 3)$ can be read from the diagram. For completeness we will provide arguments for ($\Delta 4$)-($\Delta 6$).

In order to prove $(\Delta 4)$, consider $(p, L) \in \mathcal{P} \times \mathcal{L}$ with $p^{\perp} \cap L \neq \emptyset$. But $p^{\perp} \cap L$ cannot consist of two points only, because if the involution corresponding to the point p commutes with two of the involutions in the 2^{2} subgroup corresponding to L, then it will commute with their product also. Thus $p^{\perp} \cap L$ can be a point or the entire line. The latter case occurs if p and L lie in the same \mathcal{M}-space.

Next we prove ($\Delta 5$). Let us assume that $p \notin M$. It is easy to see that $p^{\perp} \cap M$ cannot be the entire M, since there are no projective subspaces of rank 4 or greater in Δ; also, $p^{\perp} \cap M$ cannot be a plane, by Remark 3.1.

Finally, $(\Delta 6)$ is a direct consequence of Remark 3.1.
Remark 3.4. The Benson collection $\mathcal{E}_{2}=\mathcal{E}_{2}(G)$ contains four conjugacy classes of subgroups, of orders $2,2^{2}, 2^{3}, 2^{4}$; see [2]. Let \mathcal{E}_{2}^{-}be the subcollection of \mathcal{E}_{2} with the subgroups of the form 2^{3} removed. It is a direct consequence of Lemma 2.2 and Remark 3.1 that $\left|\mathcal{E}_{2}\right|$ and $\left|\mathcal{E}_{2}^{-}\right|$are G-homotopy equivalent. Note that $\left|\mathcal{E}_{2}^{-}\right|=\Delta$. Simplices in Δ correspond to flags, or chains of subgroups in \mathcal{E}_{2}^{-}.

Remark 3.5. Let $\tilde{\Delta}$ denote the involution geometry of G, the point-line geometry whose points are the involutions of G. Two involutions are collinear if they commute. Then Δ can be identified with a (geometric) subspace of $\tilde{\Delta}$ whose points correspond to the central involutions, that is every exterior line of $\tilde{\Delta}$ intersects Δ at a point or the empty set. Therefore, we can regard Δ as a "central involution geometry."

4. A geometric description of the distinguished Bouc complex of Co_{3}

In this section $G=\mathrm{Co}_{3}$ and Δ represents its 2-local geometry; further let $\mathcal{B}_{2}=\mathcal{B}_{2}\left(\mathrm{Co}_{3}\right)$ and $\hat{\mathcal{B}}_{2}=\hat{\mathcal{B}}_{2}\left(C_{3}\right)$. The Bouc complex of Co_{3} was determined in [1], from which we reproduce Table 1.

For $v \in\{\mathcal{P}, \mathcal{L}, \mathcal{M}\}$, the notation R_{v} is suggested by the complex Δ, specifically $R_{v}=$ $O_{2}\left(G_{v}\right)$. The subgroup R_{L} is not equal to a line L in Δ (the pure central subgroups 2^{2} are not 2-radical), but contains what we call a "line structure" \mathbb{L}; see below for details. Recall that $\operatorname{Res}_{\Delta} v$, for $v \in\{\mathcal{P}, \mathcal{M}\}$ is a "truncation," obtained from a geometry of type A_{3} or C_{3} by ignoring one of the usual vertex types. We let \square denote a vertex of that type in the residue; but note that

Table 1
Representatives for conjugacy classes of radical 2-subgroups of Co_{3}

Type	Name	R	$Z(R)$	$N_{G}(R)$
p	R_{p}	2	A^{1}	$2 \cdot S_{6}(2)$
-	R_{2}	2	B^{1}	$2 \times M_{12}$
-	R_{3}	2^{2}	B^{3}	$A_{4} \times S_{5}$
-	R_{4}	2^{3}	B^{7}	$\left(2^{3} \times S_{3}\right) F_{7}^{3}$
M	R_{M}	2^{4}	A^{15}	$2^{4} A_{8}$
$p \square$	$R_{p \square}$	2^{1+5}	A^{1}	$2^{1+5} S_{6}$
$p M$	$R_{p M}$	2_{+}^{1+6}	A^{1}	$2_{+}^{1+6} L_{3}(2)$
$M \square$	$R_{M \square}$	2^{3+4}	A^{7}	$2^{3+4} L_{3}(2)$
\mathbb{L}	R_{L}	2^{2+6}	A^{3}	$2^{2+6} 3 .\left(S_{3} \times S_{3}\right)$
$p M L$	$R_{p M L}$	$2^{4} .2^{2+3}$	A^{1}	$2^{4} .2^{2+3} . S_{3}$
$M L \square$	$R_{M L \square} \square$	$2^{4} .2^{2+3}$	A^{1}	$2^{4} .2^{2+3} . S_{3}$
$p M \square$	$R_{p M \square}$	$2^{4} .2_{+}^{1+4}$	A^{1}	$2^{4} .2_{+}^{1+4} . S_{3}$
$p L \square$	$R_{p L \square}$	[29]	A^{1}	$\left.{ }_{[2}{ }^{9}\right] . S_{3}$
$\underline{p M L \square}$	$R_{p M L \square}$	$\left[2^{10}\right]$	A^{1}	$\left[2^{10}\right]$

Among the 2-radical subgroups of G all but the first four conjugacy classes of groups are 2-centric. Also it is easy to see that $\hat{\mathcal{B}}_{2}$ equals the collection obtained by removing from \mathcal{B}_{2} the subgroups in the conjugacy classes of $\left\{R_{2}, R_{3}, R_{4}\right\}$.

As mentioned in the previous section, the standard 2-local geometry Δ can be regarded as a pure central involution geometry. In this section we will describe the subcomplex $\left|\hat{\mathcal{B}}_{2}\right|$ in more geometric terms, using the properties of the central involutions of G.

We start with a weaker version of the Borel-Tits property mentioned in Section 2:
$(\mathrm{BT})^{c}$ For each non-trivial 2-subgroup U of G such that $Z(U)$ contains a central involution, there exists a simplex σ of Δ such that $N_{G}(U) \leqslant G_{\sigma}$.

Proposition 4.1. The pair (G, Δ) satisfies the property $(\mathrm{BT})^{c}$.
Proof. Let $U \leqslant G$ be a non-trivial 2-subgroup such that $Z(U)$ contains a central involution. Let H denote the set of central involutions in $Z(U)$. Recall that H is closed under taking products. Thus H is an elementary abelian subgroup of U of rank at most 4 . Then $N_{G}(U) \leqslant N_{G}(H)$. If $H \simeq 2^{3}$ then $N_{G}(H) \leqslant N_{G}\left(2^{4}\right)$. Otherwise $N_{G}(H) \in\left\{G_{p}, G_{L}, G_{M}\right\}$ and the conclusion follows.

Remark 4.2. Note that the pair $\left(G, \hat{\mathcal{B}}_{2}\right)$ satisfies the property $(\mathrm{BT})^{c}$. To see this let U be a 2-subgroup of G with the property that $Z(U)$ contains a central involution. It is a direct conse-
quence (of Proposition 4.1 and the fact that the stabilizers of vertices in Δ are normalizers of groups R which lie in $\hat{\mathcal{B}}_{2}$) that there exists $R \in \hat{\mathcal{B}}_{2}(G)$ with $N_{G}(U) \leqslant N_{G}(R)$.

In what follows we shall describe each of the subgroups of $\hat{\mathcal{B}}_{2}$ in geometric terms; this means that we describe the set of central involutions contained in each distinguished radical 2-subgroup. Recall a central involution is one lying in the center of a Sylow 2-subgroup of G.

Proposition 4.3. The Sylow 2-subgroup $R_{p M L \square}$ of G contains 55 central involutions. These points of the geometry Δ which are in $R_{p M L \square}$ lie either in a collection of three \mathcal{M}-spaces on a common line (which we refer to as a "line structure" \mathbb{L}, consisting of 39 points), or in a collection of 31 points on 15 lines, all containing a common cone point. These 31 points also form 15 planes, all containing the cone point, and these 15 lines and 15 planes can be thought of as forming a generalized quadrangle $G Q(2,2)$. The overlap $\mathbb{L} \cap G Q(2,2)$ consists of 15 points, forming 3 planes (one from each \mathcal{M}-space, and including their common line) and containing 7 of the 15 lines of $G Q(2,2)$.

Proof. A computation using GAP [9] verified the existence of the 55 central involutions. The Sylow 2-subgroup $R_{p M L \square}$ of G can be described as an extension $2^{4} . U_{4}$, where U_{4} is the group of upper triangular matrices in $L_{4}(2)$. Clearly $M=2^{4}$ contains 15 central involutions; we are looking for 40 others. Let $z \in R_{p M L \square}$ be a central involution such that $z \notin M$, and denote by \bar{z} the image of z in the quotient group U_{4}. It can be shown that all of the involutions in U_{4} lie either in the elementary abelian subgroup

$$
\left\{\left(\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

of rank four, or in the extraspecial group

$$
2_{+}^{1+4}=\left\{\left(\begin{array}{cccc}
1 & * & * & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

Write $\bar{z}=I+N$ where I is the identity matrix and N is nilpotent. In fact, $N^{2}=0$ since \bar{z} has order two.

The geometric condition that $p^{\perp} \cap M$ is at most a line, see property ($\Delta 5$), Section 3, implies that the set of elements of M fixed by the action of the matrix \bar{z} is at most 2^{2}. Thus \bar{z} cannot be a transvection, which would fix a plane 2^{3}. Since $\bar{z} v=v$ if and only if $N v=0$, we must have $\operatorname{rank}(N) \neq 1$. There are precisely ten upper triangular 4×4 matrices satisfying $\operatorname{rank}(N)=2$ and $N^{2}=0$, namely:

$$
N_{1}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad N_{2}=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad N_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& N_{4}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), N_{5}=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& N_{7}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), N_{6}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& N_{8}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), \quad N_{9}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& N_{10}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Denote by $\bar{z}_{i}, 1 \leqslant i \leqslant 10$, the corresponding unipotent matrix $\bar{z}_{i}=I+N_{i}$ (this is an abuse of notation, since we have not yet defined the element z_{i} in $R_{p M L \square}$). Note that $\bar{z}_{3}=\bar{z}_{1} \cdot \bar{z}_{2}=\bar{z}_{2} \cdot \bar{z}_{1}$, and we also have the commuting products $\bar{z}_{6}=\bar{z}_{4} \cdot \bar{z}_{5}, \bar{z}_{9}=\bar{z}_{1} \cdot \bar{z}_{8}=\bar{z}_{5} \cdot \bar{z}_{7}$ and $\bar{z}_{10}=\bar{z}_{1} \cdot \bar{z}_{7}=$ $\bar{z}_{5} \cdot \bar{z}_{8}$. Denote $M=2^{4}=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ as well as $p=2=\left\langle a_{1}\right\rangle, L=2^{2}=\left\langle a_{1}, a_{2}\right\rangle$, and $\square=$ $2^{3}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. We see that $\bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{6}$ each fix pointwise the line $\left\langle a_{1}, a_{2}\right\rangle, \bar{z}_{7}$ and \bar{z}_{8} fix the line $\left\langle a_{1}, a_{3}\right\rangle$, and \bar{z}_{9} and \bar{z}_{10} fix the line $\left\langle a_{1}, a_{2} a_{3}\right\rangle$.

If z and z^{\prime}, not in M, are two distinct central involutions in $R_{p M L} \square$ with the same image $\bar{z}=\overline{z^{\prime}}$ in U_{4}, then $z \cdot z^{\prime} \in M$, implying $z \cdot z^{\prime} \in z^{\perp} \cap M$. Since $z^{\perp} \cap M$ is at most one line containing 3 points, for each point z there are at most three other points z^{\prime} with $\bar{z}=\overline{z^{\prime}}$. We are counting the four elements in a coset $z \cdot 2^{2}$. Thus we have found at most $40=4 \times 10$ central involutions in $z \in R_{p M L \square}$ with $z \notin M$. Combining this with the fact that $R_{p M L \square}$ contains 55 central involutions (the aforementioned GAP computation) implies that we have described exactly 40 such central involutions not in M.

Let $z_{i}, 1 \leqslant i \leqslant 10$, denote a representative central involution in $R_{p M L \square}$ with image the matrix $\bar{z}_{i} \in U_{4}$.

Note that $M_{1}=M=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle, M_{2}=\left\langle a_{1}, a_{2}, z_{1}, z_{2}\right\rangle$, and $M_{3}=\left\langle a_{1}, a_{2}, z_{4}, z_{5}\right\rangle$ are three \mathcal{M}-spaces on the common line $L=\left\langle a_{1}, a_{2}\right\rangle$. These form the line structure \mathbb{L}, containing 39 points.

Let us now describe the generalized quadrangle $G Q(2,2)$. The fifteen lines, each spanned by $p=\left\langle a_{1}\right\rangle$ and one element of the following set $\left\{a_{2}, a_{3}, a_{2} a_{3}, z_{1}, a_{2} z_{1}, z_{5}, a_{2} z_{5}, z_{7}, a_{3} z_{7}\right.$, $\left.z_{8}, a_{3} z_{8}, z_{9}, a_{2} a_{3} z_{9}, z_{10}, a_{2} a_{3} z_{10}\right\}$, are the 15 lines on a common cone point p. The fifteen planes $\square_{i}, 1 \leqslant i \leqslant 15$ of the generalized quadrangle $G Q(2,2)$ are spanned by $p=\left\langle a_{1}\right\rangle$ and one of $\left\{\left\langle a_{2}, a_{3}\right\rangle,\left\langle a_{2}, z_{1}\right\rangle,\left\langle a_{2}, z_{5}\right\rangle,\left\langle a_{3}, z_{7}\right\rangle,\left\langle a_{3}, z_{8}\right\rangle,\left\langle a_{2} a_{3}, z z_{9}\right\rangle,\left\langle a_{2} a_{3}, z_{10}\right\rangle,\left\langle z_{1}, z_{7}\right\rangle,\left\langle z_{1}, z_{8}\right\rangle,\left\langle z_{5}, z_{7}\right\rangle\right.$, $\left.\left\langle z_{5}, z_{8}\right\rangle,\left\langle a_{2} z_{1}, a_{3} z_{7}\right\rangle,\left\langle a_{2} z_{1}, a_{3} z_{8}\right\rangle,\left\langle a_{2} z_{5}, a_{3} z_{7}\right\rangle,\left\langle a_{2} z_{5}, a_{3} z_{8}\right\rangle\right\}$.

The overlap $\mathbb{L} \cap G Q(2,2)$ equals $\square_{1} \cup \square_{2} \cup \square_{3}$ where $\square_{1}=\square=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, $\square_{2}=$ $\left\langle a_{1}, a_{2}, z_{1}\right\rangle$, and $\square_{3}=\left\langle a_{1}, a_{2}, z 5\right\rangle$. Note that $\square_{i} \subseteq M_{i}$ for $1 \leqslant i \leqslant 3$. Also $M_{1}, M_{2}, M_{3}, \square_{4}$, $\square_{5}, \ldots, \square_{15}$ are the maximal pure central elementary abelian subgroups of $R_{p M L \square}$.

We now describe the other 2-radical subgroups of G, from both geometric and group theoretic points of view.
(1) $R_{p} \simeq 2$, generated by a central involution (which the Atlas [7] lists as the conjugacy class $2 A$), is a point of the geometry Δ.
(2) $R_{M} \simeq 2^{4}$, a pure central elementary abelian 2-group of rank four, is an \mathcal{M}-space of the geometry Δ. It contains 15 points, or central involutions, as well as 35 lines and 15 planes.
(3) $R_{p \square} \simeq 2^{1+5}$ is defined as a subgroup of $G_{p}=2 \cdot S p_{6}(2)$ as the inverse image of the unipotent radical of the parabolic subgroup $2^{5} . S_{6}$ in the quotient group $S p_{6}(2)$. Under the quotient map, a central involution of type $2 A$ lying in $2 \cdot S p_{6}(2)$ maps either to the identity or to an involution in the conjugacy class $2 B$ in $S p_{6}(2)$, using the Atlas [7] notation. A computation using GAP [9] shows that $R_{p \square}$ contains 31 central involutions (there are 15 involutions of type $2 B$ in $2^{5} \subseteq S p_{6}(2)$), and that these 31 points lie on the 15 lines through a cone point, the involution in the center $Z\left(R_{p} \square\right)$, and form the 15 planes of the generalized quadrangle $G Q(2,2)$. As a subgroup of a Sylow 2-subgroup $R_{p M L \square}=2^{4} . U_{4}, R_{p \square \square}$ is generated by $\left\langle a_{1}, a_{2}, a_{3}, z_{1}, z_{5}, z_{7}\right\rangle$, with image $\left\langle\bar{z}_{1}, \bar{z}_{5}, \bar{z}_{7}\right\rangle$ an elementary abelian subgroup of U_{4} of rank three. Thus $R_{p \square} \simeq 2^{3} .2^{3} \subseteq 2^{4} . U_{4} . R_{p} \square$ does not contain any \mathcal{M}-spaces. There are a total of 75 lines in $R_{p \square}$, the 15 lines on the cone point and 60 others, contained in the 15 planes but not through the cone point.
(4) $R_{p M} \simeq 2_{+}^{1+6}$ can be defined as a subgroup of $G_{p}=2 \cdot S p_{6}(2)$ as the inverse image of the unipotent radical of the parabolic subgroup $2^{6} . L_{3}(2)$ in the quotient group $S p_{6}(2)$. However, $R_{p M}$ can also be defined as a subgroup of $G_{M}=2^{4} . L_{4}(2)$ as the inverse image of the unipotent radical of a parabolic subgroup $2^{3} . L_{3}(2)$ in the quotient group $L_{4}(2)$. As a subgroup of a Sylow 2-subgroup $R_{p M L \square}, R_{p M} \simeq 2^{4} .2^{3} \subseteq 2^{4} . U_{4}$, with quotient group $2^{3} \subseteq U_{4}$ the group of matrices

$$
\left\{\left(\begin{array}{llll}
1 & * & * & * \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

Thus $R_{p M}$ contains only the 15 points of $M=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$. Of course, R_{M} is a subgroup of $R_{p M}$. Clearly $R_{p M}$ does not contain any subgroup conjugate to $R_{p \square}$ since the latter contains 31 points.
(5) $R_{M \square} \simeq 2^{3+4} \simeq 2^{4} .2^{3} \subseteq 2^{4} . U_{4}$ can be defined as a subgroup of $G_{M}=2^{4} . L_{4}(2)$ as the inverse image of the unipotent radical of a parabolic subgroup $2^{3} . L_{3}(2)$, stabilizing a plane, in the quotient group $L_{4}(2)$. The group $2^{3} \subseteq U_{4}$ is the group of matrices

$$
\left\{\left(\begin{array}{llll}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

and thus $R_{M \square}$ contains only the 15 points (and the \mathcal{M}-space) of $M=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$. Note $R_{M \square}$ is not isomorphic to $R_{p M}$ since their centers have different orders; $Z\left(R_{M \square)}\right)=2^{3}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $Z\left(R_{p M}\right)=2=\left\langle a_{1}\right\rangle$. As above, $R_{M \square}$ does not contain any conjugate of $R_{p \square}$.
(6) $R_{L} \simeq 2^{2+6}$ equals $O_{2}\left(G_{L}\right)=O_{2}\left(N_{G}\left(2^{2}\right)\right)$, and has center $Z\left(R_{L}\right)$ the line $L=2^{2}=$ $\left\langle a_{1}, a_{2}\right\rangle$. Note that $G_{L}=2^{2+6} 3\left(S_{3} \times S_{3}\right)$ with the first S_{3} permuting the 3 points of L and the second S_{3} permuting the three \mathcal{M}-spaces on L. Let M be any of the three \mathcal{M}-spaces on L; then $G_{L M}=G_{L} \cap G_{M}=2^{2+6} 3\left(S_{3} \times 2\right)$, which is isomorphic to $2^{2+6}\left(S_{3} \times S_{3}\right)$. Therefore $R_{M} \subseteq O_{2}\left(G_{L M}\right)=O_{2}\left(G_{L}\right)=R_{L}$. Thus R_{L} contains all three of the \mathcal{M}-spaces on L, which is the line structure \mathbb{L} consisting of 39 points. Also, R_{L} is the subgroup of $G_{M}=2^{4} . L_{4}(2)$ which equals the inverse image of the unipotent radical of the parabolic subgroup $2^{4}\left(S_{3} \times S_{3}\right)$ in
$L_{4}(2)$, stabilizing a line L. As a subgroup of a Sylow 2-subgroup $R_{p M L \square,}, R_{L} \simeq 2^{4} .2^{4} \subseteq 2^{4} . U_{4}$, with quotient group $2^{4} \subseteq U_{4}$ the group of matrices

$$
\left\{\left(\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

It follows that R_{L} contains precisely 39 central involutions. Also L is generated by its central involutions, $L=\left\langle a_{1}, a_{2}, a_{3}, a_{4}, z_{1}, z_{2}, z_{4}, z_{5}\right\rangle$. Further R_{L} does not contain any conjugate of $R_{p \square}$, since if $R_{p \square \subseteq} \subseteq R_{L}$ then at least 11 of the 31 points of $R_{p \square}$ would have to lie on one of the \mathcal{M} spaces M of R_{L}. Since $11>7$, these points would span M. But then $M \subseteq R_{p \square}$, a contradiction, since $R_{p \square}$ does not contain any \mathcal{M}-spaces.
(7) $R_{p M L} \simeq 2^{4} .2^{2+3} \subseteq 2^{4} . U_{4}$, with quotient group $2^{2+3} \subseteq U_{4}$ the group of matrices

$$
\left\{\left(\begin{array}{cccc}
1 & * & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

$R_{p M L}$ has precisely 39 points and three \mathcal{M}-spaces of the line structure \mathbb{L} contained in $R_{L} \subseteq R_{p M L}$.
(8) $R_{M L \square} \simeq 2^{4} .2^{2+3} \subseteq 2^{4} . U_{4}$, with quotient group $2^{2+3} \subseteq U_{4}$ the group of matrices

$$
\left\{\left(\begin{array}{cccc}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

$R_{M L \square}$ contains precisely the 39 points and the three \mathcal{M}-spaces of the line structure \mathbb{L} in $R_{L} \subseteq R_{p M L}$.
(9) $R_{p M \square}=2^{4} .2_{+}^{1+4} \subseteq 2^{4} . U_{4}$ with quotient group $2_{+}^{1+4} \subseteq U_{4}$ the group of matrices

$$
\left\{\left(\begin{array}{cccc}
1 & * & * & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

This implies that $R_{p M \square}$ contains 39 central involutions, with 31 points in $R_{p \square} \subseteq R_{p M \square}$ and 15 points in $R_{M} \subseteq R_{p M}$. These two sets intersect in a set of 7 points, the plane $\square=$ $\left\langle a_{1}, a_{2}, a_{3}\right\rangle \subseteq M$.
(10) $R_{p L \square}=2^{4} .2^{2+3} \subseteq 2^{4} . U_{4}$ contains all 55 points of a Sylow 2-subgroup $R_{p M L \square}$ since $R_{p \square} \subseteq R_{p L \square}$ and $R_{L} \subseteq R_{p L \square}$. Using $z_{7} \in R_{p L \square}$ and $R_{L} \subseteq R_{p L \square}$, it follows that the quotient group $2^{2+3} \subseteq U_{4}$ equals the group of matrices

$$
\left\{\left(\begin{array}{cccc}
1 & \epsilon & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & \epsilon \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

the group of upper triangular 4×4 unipotent matrices $\left(x_{i j}\right)$ satisfying $x_{12}=x_{34}$.
(11) $R_{p M L \square}=2^{4} . U_{4}$ contains a unique conjugate of each of the groups $R_{p L \square}, R_{p M \square}, R_{L}$ and $R_{p \square}$. This can be seen for the groups $R_{p L \square}, R_{L}$, and $R_{p \square}$ by using their geometric structures, involving the line structure \mathbb{L} and the generalized quadrangle $G Q(2,2)$, and the fact that these three groups are generated by their central involutions. For $R_{p M \square}$, a simple counting argument applies. If $R_{p M \square} \subseteq R_{p M L \square}$ then $R_{p M L \square} \subseteq N_{G}\left(R_{p M \square)} \simeq R_{p M \square} \cdot S_{3}\right.$, and the latter group contains three Sylow 2-subgroups.

5. The homotopy relation

In this section we prove that the 2-local geometry Δ is G-homotopy equivalent to the distinguished Bouc complex $\left|\hat{\mathcal{B}}_{2}\right|$ of $G=\mathrm{Co}_{3}$. The complex $\left|\hat{\mathcal{B}}_{2}\right|$ can be equivariantly retracted to a subcomplex Δ_{1} formed from a subposet of $\hat{\mathcal{B}}_{2}$. Also Δ_{1} can be retracted to a subcomplex Δ_{0} which is homeomorphic to Δ.

Let Δ_{1} denote the simplicial complex corresponding to the subposet of \mathcal{B}_{2} with the three types of objects $\left\{R_{p}, R_{M}, R_{L}\right\}$. Let Δ_{0} denote the subcomplex of Δ_{1} obtained by removing those simplices corresponding to the chains $R_{p} \subseteq R_{L}$ and $R_{p} \subseteq R_{M} \subseteq R_{L}$ where the subgroup R_{p} is not normal in the group R_{L}.

Proposition 5.1.

(a) Δ_{0} is homeomorphic to Δ.
(b) Δ_{0} is G-homotopy equivalent to Δ_{1}.

Proof. (a) The homeomorphism from Δ to Δ_{0} is induced by the correspondence $p \rightarrow R_{p}$ (recall $p=R_{p}=2$), $L \rightarrow R_{L}$ (recall $R_{L}=2^{2+6}=O_{2}\left(N_{G}(L)\right)$ with $L=2^{2}=Z\left(R_{L}\right)$), and $M \rightarrow R_{M}$ (recall $M=R_{M}=2^{4}$). Next, we show that simplices in Δ correspond to simplices in Δ_{0}. Clearly $p \subseteq M$ corresponds to $R_{p} \subseteq R_{M}$. Also, $R_{p} \preccurlyeq R_{L}$ if and only if $R_{p} \subseteq Z\left(R_{L}\right)$ if and only if $p \subseteq L$. Finally, $L \subseteq M$ if and only if $R_{M} \subseteq R_{L}$, and $p \subseteq L \subseteq M$ corresponds to $R_{p} \subseteq R_{M} \subseteq R_{L}$ with $R_{p} \forall R_{L}$.
(b) We use Lemma 2.3 to remove those simplices in Δ_{1}, not lying in Δ_{0}, corresponding to chains $R_{p} \subseteq R_{L}$ and $R_{p} \subseteq R_{M} \subseteq R_{L}$ where the subgroup R_{p} is not normal in R_{L}, so that $R_{p} \nsubseteq$ $Z\left(R_{L}\right)=L$. Of course R_{p} does commute with elements of the center $Z\left(R_{L}\right)$, and they generate a group $2^{3}=\left\langle R_{p}, Z\left(R_{L}\right)\right\rangle$. This 2^{3} lies in a unique $2^{4}=M$, an \mathcal{M}-space satisfying $L \subseteq M$. Therefore the chain $R_{p} \subseteq R_{L}$ is a face of a unique chain $R_{p} \subseteq R_{M} \subseteq R_{L}$, and Lemma 2.3 allows to cancel these two simplices.

In this section we will prove the main theorem of the paper. The proof of this theorem will be the focus of all of this Section 5.

Theorem 1. The two complexes Δ and $\left|\hat{\mathcal{B}}_{2}\right|$ are G-homotopy equivalent.
We will reduce $\left|\hat{\mathcal{B}}_{2}\right|$ down to the subcomplex Δ_{1} in a number of steps; at each step we will perform a homotopy retraction, which will use one of the results given in Lemmas 2.2 or 2.3. We first apply Lemma 2.2 to retract $\left|\hat{\mathcal{B}}_{2}\right|$ to a subcomplex $\left|\hat{\mathcal{B}}_{2}^{I}\right|$ by removing all simplices (flags, or chains of subgroups) which involve groups of type $R_{p M}$ or $R_{M \square}$. Then Lemma 2.2 will allow us to retract $\left|\hat{\mathcal{B}}_{2}^{I}\right|$ to a subcomplex $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$ by removing all simplices which involve groups of type $R_{p M L}$ or $R_{M L \square}$.

Table 2
Orbits of flags in $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$ which do not lie in Δ_{1}

Rank 1 flags			Rank 3 flags		
$p \square$	$2^{10} \cdot 3^{2} \cdot 5$	1	$p \subseteq M \subseteq p M \square$	$2^{10} \cdot 3$	1,6,8
$p M \square$	$2^{10} \cdot 3$	1	$p \subseteq M \subseteq p L \square$	$2^{10} \cdot 3$	1,2, 12, 24
$p L \square$	$2^{10} \cdot 3$	1	$p \subseteq M \subseteq p M L \square$	2^{10}	1,2, 4, 8, 8, 16
$p M L \square$	2^{10}	1	$p \subseteq \mathbb{L} \subseteq p L \square$	$2^{10} \cdot 3$	1,2, 12, 24
			$p \subseteq \mathbb{L} \subseteq p M L \square$	2^{10}	1,2, 4, 8, 8, 16
Rank 2 flags			$p \subseteq p \square \subseteq p L \square$	$2^{10} \cdot 3$	1,2,12, 16
$p \subseteq p \square$	$2^{10} \cdot 3^{2} \cdot 5$	1,30	$p \subseteq p \square \subseteq p M \square$	$2^{10} \cdot 3$	1, 6, 24
$p \subseteq p M \square$	$2^{10} \cdot 3$	1,6, 8, 24	$p \subseteq p \square \subseteq p M L \square$	2^{10}	1, 2, 4, 8, 16
$p \subseteq p L \square$	$2^{10} \cdot 3$	1,2, 12, 16, 24	$p \subseteq p M \square \subseteq p M L \square$	2^{10}	1,2, 4, 8, 8, 16
$p \subseteq p M L \square$	2^{10}	1, 2, 4, 8, 8, 16, 16	$p \subseteq p L \square \subseteq p M L \square$	2^{10}	1, 2, 4, 8, 8, 16, 16
$M \subseteq p M \square$	$2^{10} \cdot 3$	1	$M \subseteq \mathbb{L} \subseteq p L \square$	$2^{10} \cdot 3$	3
$M \subseteq p L \square$	$2^{10} \cdot 3$	3	$M \subseteq \mathbb{L} \subseteq p M L \square$	2^{10}	1,2
$M \subseteq p M L \square$	2^{10}	1,2	$M \subseteq p M \square \subseteq p M L \square$	2^{10}	1
$\mathbb{L} \subseteq p L \square$	$2^{10} \cdot 3$	1	$M \subseteq p L \square \subseteq p M L \square$	2^{10}	1,2
$\mathbb{L} \subseteq p M L \square$	2^{10}	1	$\mathbb{L} \subseteq p L \square \subseteq p M L \square$	2^{10}	1
$p \square \subseteq p M \square$	$2^{10} \cdot 3$	1	$p \square \subseteq p L \square \subseteq p M L \square$	2^{10}	1
$p \square \subseteq p L \square$	$2^{10} \cdot 3$	1	$p \square \subseteq p M \square \subseteq p M L \square$	2^{10}	1
$p \square \subseteq p M L \square$	2^{10}	1			
$p M \square \subseteq p M L \square$	2^{10}	1	Rank 4 flags		
$p L \square \subseteq p M L \square$	2^{10}	1	$p \subseteq M \subseteq \mathbb{L} \subseteq p L \square$	$2^{10} \cdot 3$	1,2, 12, 24
			$p \subseteq M \subseteq \mathbb{L} \subseteq p M L \square$		1,2,4, 8, 8, 16
			$p \subseteq M \subseteq p M \square \subseteq p M L \square$	2^{10}	1,2, 4, 8
			$p \subseteq M \subseteq p L \square \subseteq p M L \square$	2^{10}	1,2,4, 8, 8, 16
			$p \subseteq \mathbb{L} \subseteq p L \square \subseteq p M L \square$	2^{10}	1,2,4, 8, 8, 16
			$p \subseteq p \square \subseteq p M \square \subseteq p M L \square$	2^{10}	1, 2, 4, 8, 16
			$p \subseteq p \square \subseteq p L \square \subseteq p M L \square$	2^{10}	1, 2, 4, 8, 16
			$M \subseteq \mathbb{L} \subseteq p L \square \subseteq p M L \square$	2^{10}	1,2
			Rank 5 flags		
			$p \subseteq M \subseteq \mathbb{L} \subseteq p L \square \subseteq p M L \square$	2^{10}	1,2, 4, 8, 8, 16

The main part of the proof involves the use of Lemma 2.3 to reduce $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$ down to a subcomplex Δ_{2} (in a sequence of 35 steps), which in turn can easily be retracted to Δ_{1}. We will give in Table 2 a list of all orbits of flags that lie in $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$ but not in Δ_{1}, and we proceed to cancel all but 44 of them to arrive at Δ_{2}. We then apply Lemma 2.3 to remove these 44 flags as well.

Proposition 5.2. $\left|\hat{\mathcal{B}}_{2}\right|$ is G-homotopy equivalent to the subcomplex $\left|\hat{\mathcal{B}}_{2}^{I}\right|$, where $\hat{\mathcal{B}}_{2}^{I}$ is the subposet of $\hat{\mathcal{B}}_{2}$ obtained by removing the groups of the form $R_{p M}$ and $R_{M \square}$.

Proof. There exists a unique R_{M} in $R_{p M}$, and there are exactly 15 central involutions in $R_{p M}$, all contained in R_{M}. It follows that any group R in $\hat{\mathcal{B}}_{2}$ which is incident with $R_{p M}$ (either $R \subseteq R_{p M}$ or $R_{p M} \subseteq R$) is also incident with R_{M}. In the simplicial complex $\left|\hat{\mathcal{B}}_{2}\right|$, the residue of the vertex $R_{p M}$ is a cone on the vertex R_{M}, so is contractible. According to Lemma 2.2, we can remove the vertices of the form $R_{p M}$ together with their stars.

Similarly, there exist a unique R_{M} in $R_{M \square}$, containing all 15 central involutions in $R_{M \square}$. Any group R in $\hat{\mathcal{B}}_{2}$ which is incident with $R_{M \square}$ is also incident with R_{M}. In $\left|\hat{\mathcal{B}}_{2}\right|$, the residue of the
vertex $R_{M \square}$ is contractible, a cone on the vertex R_{M}. Another application of Lemma 2.2 gives the result.

Proposition 5.3. $\left|\hat{\mathcal{B}}_{2}^{I}\right|$ is G-homotopy equivalent to a subcomplex $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$, where $\hat{\mathcal{B}}_{2}^{I I}$ is the subposet of $\hat{\mathcal{B}}_{2}^{I}$ obtained by removing the groups of the form $R_{p M L}$ and $R_{M L \square}$.

Proof. There exists a unique R_{L} in $R_{p M L}$ which contains all 39 central involutions in $R_{p M L}$. In the poset $\hat{\mathcal{B}}_{2}^{I}$, having already removed the groups of type $R_{p M}$, any group R in $\hat{\mathcal{B}}_{2}^{I}$ which is incident with $R_{p M L}$ is also incident with R_{L}. In the simplicial complex $\left|\hat{\mathcal{B}}_{2}^{I}\right|$, the residue of the vertex $R_{p M L}$ is contractible, a cone on R_{L}. Similarly, there is a unique R_{L} in $R_{M L \square}$ which contains the 39 central involutions of $R_{p M L}$. Since we have removed the groups of type $R_{M \square}$, any group R in $\hat{\mathcal{B}}_{2}^{I}$ which is incident with $R_{M L} \square$ is also incident with R_{L}. In $\left|\hat{\mathcal{B}}_{2}^{I}\right|$, the residue of $R_{M L \square}$ is a cone on R_{L}. Therefore two applications of Lemma 2.2 prove the proposition.

Let us remark on the importance of doing these retractions in a particular order. We must remove the groups of type $R_{p M}$ before removing the groups of type $R_{p M L}$, since in the original poset $\hat{\mathcal{B}}_{2}, R_{p M}$ is incident with $R_{p M L}$ but not with R_{L}.

5.1. Flags in $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$

Let $F: x_{1} \subseteq x_{2} \subseteq \cdots \subseteq x_{n}$ be a flag in $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$. Each group x_{i} will have a type which is a subset of $\{p, M, L, \square\}$, but we sometimes abbreviate this by saying x_{i} has "type i." The normalizer of the group x_{n} acts on the collection of groups of type i contained in x_{n}; in many cases this action is not transitive. In the first column of Table 2 we give the type of a flag F, for those orbits of flags in $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$ but not in Δ_{1} (so that each flag contains a group x_{i} whose type involves \square). In the second column of Table 2 we give the order of the normalizer of the group x_{n} of F, and in the third column we give the number of elements in the orbits of the action of $N_{G}\left(x_{n}\right)$ on the collection of groups of type 1 contained in x_{n}.

To prove Theorem 1, we must remove all of these flags from $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$ to obtain Δ_{1}, using Lemma 2.3. In a sequence of 35 steps, we first remove the flags occurring in any orbit after the first orbit listed in the third column, obtaining a subcomplex Δ_{2}. The remaining 44 orbits of flags in Δ_{2} but not in Δ_{1} can easily be removed using Lemma 2.3, where each flag Σ with $x_{1}=R_{p}$ is free over a flag σ, the face of Σ with σ not containing the group of type p.

Recall that a maximal simplex Σ is free over some maximal face σ, if Σ is the only maximal simplex with σ as a face. In this case we can use Lemma 2.3 to collapse Σ down onto its faces other than σ. This means that we can remove Σ and σ from the complex to obtain a homotopy equivalent subcomplex. Note that Σ is not necessarily a simplex of maximal dimension; it has to be a maximal simplex, in the sense that it is not a face of a larger simplex in the complex.

Since this method depends on the maximality of Σ and since the removal of some simplices might make other simplices maximal, the sequence of homotopy retractions we are performing has to be done in the order indicated here.

The 35 steps mentioned above are given in Tables 3 and 4 below. In the first four steps given in Table 3, we can remove all flags of the stated type. In the next 31 steps given in Table 4, we remove only some of the orbits at each stage.

We begin by homotopically retracting the pairs of simplices listed in Table 3.

Table 3
The first four steps of the homotopy retraction from $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$ to Δ_{2}

Step	Σ	σ
1.	$p \subseteq M \subseteq \mathbb{L} \subseteq p L \square \subseteq p M L \square$	$p \subseteq M \subseteq \mathbb{L} \subseteq p M L \square$
2.	$M \subseteq \mathbb{L} \subseteq p L \square \subseteq p M L \square$	$M \subseteq \mathbb{L} \subseteq p M L \square$
3.	$p \subseteq \mathbb{L} \subseteq p L \square \subseteq p M L \square$	$p \subseteq \mathbb{L} \subseteq p M L \square$
4.	$\mathbb{L} \subseteq p L \square \subseteq p M L \square$	$\mathbb{L} \subseteq p M L \square$

Table 4
The remaining 31 steps of the homotopy retraction from $\left|\hat{\mathcal{B}}_{2}^{I I}\right|$ to Δ_{2}

Step	Σ	σ	Points in σ
5.	(8) $p \subseteq$ (3) $M \subseteq p L \square \subseteq p M L \square$	(24) $p \subseteq p L \square \subseteq p M L \square$	$p L \square \backslash p \square$
6.	(16) $p \subseteq p \square \subseteq p L \square \subseteq p M L \square$	(16) $p \subseteq p L \square \subseteq p M L \square$	$p \square \backslash \mathbb{L}$
7.	(24) $p \subseteq p \square \subseteq p M \square \subseteq p M L \square$	(24) $p \subseteq p M \square \subseteq p M L \square$	$p \square \backslash M_{1}$
8.	(8) $p \subseteq M \subseteq p M \square \subseteq p M L \square$	(8) $p \subseteq p M \square \subseteq p M L \square$	$M_{1} \backslash p \square$
9.	(12) $p \subseteq$ (3) $M \subseteq \mathbb{L} \subseteq p L \square$	(36) $p \subseteq \mathbb{L} \subseteq p L \square$	$\mathbb{L} \backslash L$
10.	(8) $p \subseteq$ (3) $M \subseteq p L \square$	(24) $p \subseteq p L \square$	$p L \square \backslash p \square$
11.	(16) $p \subseteq p \square \subseteq p L \square$	(16) $p \subseteq p L \square$	$p \square \backslash \mathbb{L}$
12.	(24) $p \subseteq p \square \subseteq p M \square$	(24) $p \subseteq p M \square$	$p \square \backslash M_{1}$
13.	(8) $p \subseteq M \subseteq p M \square$	(8) $p \subseteq p M \square$	$M_{1} \backslash p \square$
14.	(8) $p \subseteq p \square \subseteq p L \square \subseteq p M L \square$	(8) $p \subseteq p \square \subseteq p M L \square$	$\left(\square_{2} \cup \square_{3}\right) \backslash L$
15.	(4) $p \subseteq$ (2) $M \subseteq p L \square \subseteq p M L \square$	(8) $p \subseteq p L \square \subseteq p M L \square$	$\left(\square \square_{2} \cup \square_{3}\right) \backslash L$
16.	(16) $p \subseteq p \square \subseteq p M L \square$	(16) $p \subseteq p M L \square$	$p \square \backslash \mathbb{L}$
17.	(8) $p \subseteq$ (3) $M \subseteq p M L \square$	(24) $p \subseteq p M L \square$	$\mathbb{L} \backslash p \square$
18.	(4) $p \subseteq$ (2) $M \subseteq p M L \square$	(8) $p \subseteq p M L \square$	$\left(\square_{2} \cup \square_{3}\right) \backslash L$
19.	$\begin{aligned} & \text { (3) } p \subseteq(2) M \subseteq p L \square \subseteq p M_{1} L \square \\ & M \in\left\{M_{2}, M_{3}\right\} \end{aligned}$	(3) $p \subseteq$ (2) $M \subseteq p M L \square$	L
20.	$\begin{aligned} & \text { (4) } p \subseteq p \square \subseteq p L \square \subseteq p M_{i} L \square \\ & i \in\{1,2,3\} \end{aligned}$	(12) $p \subseteq p \square \subseteq p L \square$	$\left(\square_{1} \cup \square_{2} \cup \square_{3}\right) \backslash L$
21.	(4) $p \subseteq M \subseteq p L \square \subseteq p M L \square$	(4) $p \subseteq p L \square \subseteq p M L \square$	$\square_{1} \backslash L$
22.	(4) $p \subseteq p \square \subseteq p M \square \subseteq p M L \square$	(4) $p \subseteq p \square \subseteq p M L \square$	$\square_{1} \backslash L$
23.	(4) $p \subseteq M \subseteq p M \square \subseteq p M L \square$	(4) $p \subseteq p M \square \subseteq p M L \square$	$\square_{1} \backslash L$
24.	$\begin{aligned} & \text { (2) } p \subseteq M \subseteq p M \square \subseteq p M L_{i} \square \\ & i \in\{1,2,3\} \end{aligned}$	(6) $p \subseteq M \subseteq p M \square$	$\square_{1} \backslash p_{1}$
25.	$\begin{aligned} & \text { (2) } p \subseteq p \square \subseteq p M \square \subseteq p M L_{i} \square \\ & i \in\{1,2,3\} \end{aligned}$	(6) $p \subseteq p \square \subseteq p M \square$	$\square_{1} \backslash p_{1}$
26.	(2) $p \subseteq M_{1} \subseteq p L \square \subseteq p M_{1} L \square$	(2) $p \subseteq M_{1} \subseteq p M_{1} L \square$	$L \backslash p_{1}$
27.	(2) $p \subseteq p \square \subseteq p L \square \subseteq p M L \square$	(2) $p \subseteq p \square \subseteq p M L \square$	$L \backslash p_{1}$
28.	(2) $p \subseteq$ (3) $M \subseteq \mathbb{L} \subseteq p L \square$	(2) $p \subseteq$ (3) $M \subseteq p L \square$	$L \backslash p_{1}$
29.	(4) $p \subseteq$ (3) $M \subseteq p L \square$	(12) $p \subseteq p L \square$	$\left(\square_{1} \cup \square_{2} \cup \square_{3}\right) \backslash L$
30.	$\begin{aligned} & \text { (2) } p \subseteq p M \square \subseteq p M L_{i} \square \\ & i \in\{1,2,3\} \end{aligned}$	(6) $p \subseteq p M \square$	$\square_{1} \backslash p_{1}$
31.	(4) $p \subseteq M \subseteq p M L \square$	(4) $p \subseteq p M L \square$	$\square_{1} \backslash L$
32.	(2) $p \subseteq p L \square \subseteq p M L \square$	(2) $p \subseteq p M L \square$	$L \backslash p_{1}$
33.	$\begin{aligned} & \text { (2) } M \subseteq p L \square \subseteq p M_{1} L \square \\ & M \in\left\{M_{2}, M_{3}\right\} \end{aligned}$	$\begin{aligned} & \text { (2) } M \subseteq p M L \square \\ & M \in\left\{M_{2}, M_{3}\right\} \end{aligned}$	
34.	$\begin{aligned} & \text { (2) } p \subseteq p \square \subseteq p L_{i} \square \\ & i \in\{1, \ldots 15\} \end{aligned}$	(30) $p \subseteq p \square$	$p \square \backslash p_{1}$
35.	(2) $p \subseteq \mathbb{L} \subseteq p L \square$	(2) $p \subseteq p L \square$	$L \backslash p_{1}$

We will use the notation: $\left(k_{1}\right) x_{1} \subseteq \cdots \subseteq\left(k_{n-1}\right) x_{n-1} \subseteq x_{n}$ to denote $k_{1} \cdot k_{2} \cdots \cdots k_{n-1}$ simplices of the form $x_{1} \subseteq \cdots \subseteq x_{n}$, for which there are k_{i} choices for the vertices of type $i \in\{1, \ldots, n-1\}$. This notation is needed to record the sizes of the orbits being removed in each step of Table 4.

We will give a detailed description of only one of these steps below. In this description, as well as in the tables, we abbreviate a flag by using the types for its groups. Since $R_{L} \neq L$, we abbreviate R_{L} as the line structure \mathbb{L}.

Step 5: We will discuss this step in detail since the approach we use here will be repeated. Consider a simplex $\Sigma: p \subseteq M \subseteq p L \square \subseteq p M L \square$. We consider here the points $p \in p L \square \backslash p \square$. There are 8×3 such points, 8 points in each of the three \mathcal{M}-spaces of $p M L \square$. This means that for a fixed $p L \square \subseteq p M L \square$, there are 24 simplices Σ of the type chosen above. We write this as (8) $p \subseteq(3) M \subseteq p L \square \subseteq p M L \square$. Fix one such simplex Σ. This is a simplex of maximal dimension and free over the face $\sigma: p \subseteq p L \square \subseteq p M L \square$. To see this note that $p \notin L$. Thus $\langle p, L\rangle$ is a plane on L and thus lies in a unique \mathcal{M}-space. Note the simplex $p \subseteq \mathbb{L} \subseteq p L \square \subseteq$ $p M L \square$ was removed in Step 3. Thus Σ is free over σ. Finally we can apply Lemma 2.3 and remove these two simplices.

The remaining steps are listed in Table 4. In the first column we number the steps. In the second column we give the maximal simplex Σ and in the third column we give a face σ of Σ such that Σ is free over σ. In the fourth column we specify the collection of points in σ being removed. We use the notation described above.

After these steps we are left with the complex Δ_{2}. There are still 44 orbits of flags remaining in $\Delta_{2} \backslash \Delta_{1}$, all of these corresponding to the first orbit listed in the third column of Table 2. But these can easily be canceled in pairs, with a flag Σ having $x_{1}=R_{p}$ of type p being free over its face σ which does not involve the group of type p. Recall that by Proposition 5.1, Δ_{1} is homotopy equivalent to Δ_{0} which, in its turn, is homeomorphic to Δ. This ends the proof of Theorem 1.

6. On the Lefschetz module

Let $G=\mathrm{Co}_{3}$ and let Δ be the 2-local geometry of G described in Section 3 .
Proposition 6.1. Let z be a central involution in G. The set Δ^{z} is contractible.
Proof. Recall that $C_{G}(z)=G_{p}$ for the point $p=\langle z\rangle$. It follows that $p * \operatorname{Res}(p)=\operatorname{Star}(p) \subseteq \Delta^{z}$. It is easy to see that a point $q \in \Delta^{z}$ if and only if $q \in p^{\perp}$. The main idea of the proof is to use Lemma 2.2 to homotopically remove those lines and \mathcal{M}-spaces from Δ^{z} that do not contain p, as well as those points in p^{\perp}.

It follows from $(\Delta 4)$, Section 3, that if a line L is an element of Δ^{z} then p is collinear with one or all the points of L. Thus there are three types of lines we have to consider: lines on p, already included in $\operatorname{Res}(p)$; lines with only one point fixed, the other two points being interchanged; lines with all three points fixed. By ($\Delta 5$), given a point, \mathcal{M}-space pair (p, M), the set $p^{\perp} \cap M$ is at most one line or $p \in M$. This implies that an \mathcal{M}-space $M \in \Delta^{z}$ can have one point in Δ^{z}, three points forming a line in Δ^{z} or $p \in M$. This is easily seen if we recall that M contains 15 points, thus under the action of z, at least one point is fixed.

Let us consider the case when the line L does not contain p and has only one point q fixed by the action of z. Then the collection $\operatorname{Res}_{\Delta^{z}}(L)=\{q\} *\{$ some \mathcal{M}-spaces on $L\}$ is a cone on q, and thus contractible. It follows that we can remove all such lines from Δ^{z}, yielding a homotopy equivalent subcomplex $\Delta_{1}^{z} \subseteq \Delta^{z}$.

Let $M \in \Delta_{1}^{z}$ be such that $p^{\perp} \cap M=L$, a line: this means all three points of L are in Δ_{1}^{z}. Then $\operatorname{Res}_{\Delta_{1}^{z}}(M)$ consists of L and the three points on L, which is a cone on L and thus contractible. The other lines of M are either not stabilized by z or were removed at the previous step, so are not in Δ_{1}^{z}. We can remove all such \mathcal{M}-spaces from Δ_{1}^{z}, yielding a homotopy equivalent complex $\Delta_{2}^{z} \subseteq \Delta_{1}^{z} \subseteq \Delta^{z}$.

Let us now consider a line L whose three points are all fixed by the action of z. Then p and L generate a plane $\langle p, L\rangle$ which lies in a unique \mathcal{M}-space M. The other \mathcal{M}-spaces from Δ^{z} through L were deleted at the previous step. Thus $\operatorname{Res}_{\Delta_{2}^{z}} L=\{M\} *\{3$ points on $L\}$, again a cone on M and thus contractible. Remove these lines, yielding $\Delta_{3}^{z} \subseteq \Delta_{2}^{z}$. Now all the lines of Δ^{z} which are not on p have been removed.

Let $M \in \mathcal{M}$ be such that $p^{\perp} \cap M=\{q\}$, a single point. Then $\operatorname{Res}_{\Delta_{3}^{z}} M$ is the point q itself. Remove these \mathcal{M}-spaces, yielding $\Delta_{4}^{z} \subseteq \Delta_{3}^{z}$.

Next, consider the collection of points collinear with p and look at their residues in Δ_{4}^{z}. Let $q \in p^{\perp}$. Since we have already contracted all the lines on q which do not contain p, the residue $\operatorname{Res}_{\Delta_{4}^{z}}(q)$ contains a unique line $\langle p, q\rangle$ and the three \mathcal{M}-spaces on that line, therefore this residue is contractible. So we can remove these points to retract Δ_{4}^{z} to $\operatorname{Star}(p)$. Of course, $\operatorname{Star}(p)$ is contractible, a cone on p.

In what follows we will use the following results due to Thévenaz; see [15], Theorem 2.1 and Corollary 2.3. A group B is called cyclic mod p if the quotient group $B / O_{p}(B)$ is cyclic.

Theorem 6.2. (See [15].)
(a) Let \mathfrak{X} be a class of subgroups of A which is closed under subconjugacy. Let Δ be an admissible A-complex such that the reduced Euler characteristic $\tilde{\chi}\left(\Delta^{B}\right)=0$ for every subgroup B which is cyclic mod p and satisfies $O_{p}(B) \notin \mathfrak{X}$. Then the reduced Lefschetz module $\tilde{L}(\Delta)$ is a $\mathbb{F}_{p} A$-virtual module projective relative to the collection \mathfrak{X}.
(b) Let $p^{n}=|A|_{p}$ be the p-part of A, and let p^{k} be the highest power of p dividing the order of some subgroup belonging to \mathfrak{X}. Then $\tilde{\chi}(\Delta)$ is a multiple of p^{n-k}.

We let $\mathfrak{X}=\mathcal{B}_{2} \backslash \hat{\mathcal{B}}_{2}$, the family of the radical 2-subgroups of $G=C_{3}$ which are pure noncentral; these are subgroups in the conjugacy classes of $\left\{R_{2}, R_{3}, R_{4}\right\}$. It is clear that \mathfrak{X} is closed under subconjugacy.

Remark 6.3. The subgroups Q in $G=\mathrm{Co}_{3}$ which are cyclic mod 2 and such that $Z\left(O_{2}(Q)\right)$ contains no central involutions have $O_{2}(Q)$ in \mathfrak{X}. To see this, let Q be a cyclic mod 2 subgroup of G; set $R=O_{2}(Q)$ and $H=\Omega_{1} Z(R)$. Thus R is contained in a member of $\operatorname{Syl}_{2}\left(N_{G}(H)\right)$. Let us assume H contains no central involutions; then H is of the form $2,2^{2}$ or 2^{3}; see [8, Section 5]. The normalizers of R_{2}, R_{3} and R_{4} are given in Table 1, at the beginning of Section 4. It is easy to see from Table 1, that the Sylow 2-subgroup of $N_{G}(H)$ has the form $H \times K$ with K some 2subgroup. If $H \leqslant R \leqslant H \times K$ then $R=H \times K_{1}$ for some subgroup $K_{1} \leqslant K$. But $Z(R)=H \times$ $Z\left(K_{1}\right)$, where $Z\left(K_{1}\right)$ is non-trivial if K_{1} is non-trivial. Thus $\Omega_{1} Z(R)=H \times \Omega_{1} Z\left(K_{1}\right)=H$. It follows that $\Omega_{1} Z\left(K_{1}\right)=1$ and also $Z\left(K_{1}\right)=1$ which, in its turn implies $K_{1}=1$. Finally $R=H$.

Furthermore, G acts admissibly on Δ and $\tilde{\chi}\left(\Delta^{z}\right)=0$, for every central involution $z \in G$, according to Proposition 6.1. Now, by P.A. Smith theory, it follows that $\tilde{\chi}\left(\Delta^{B}\right)=0$ also, for every
subgroup B which is cyclic mod 2 and such that $O_{2}(B) \notin \mathfrak{X}$. Thus, all the necessary conditions required by Theorem 6.2 are in place and we can formulate the following:

Theorem 2. Let $G=\operatorname{Co}_{3}$ and let $\mathfrak{X}=\mathcal{B}_{2} \backslash \hat{\mathcal{B}}_{2}$. Let Δ denote the 2-local geometry of G. The reduced Lefschetz module $\tilde{L}(\Delta)$ is a virtual $\mathbb{F}_{2} G$-module projective relative to the collection \mathfrak{X}. Furthermore $\tilde{\chi}(\Delta)$ is a multiple of 2^{7}.

Remark 6.4. Note that $|G|_{2}=2^{10}$ and that the 2-part of $\tilde{\chi}(\Delta)$ is 2^{7}. Also, the largest subgroup in \mathfrak{X} has order 2^{3}. Thévenaz' result tells us that the reduced Euler characteristic is a multiple of 2^{7}, without giving an upper bound.

Acknowledgments

We would like to express our gratitude to S.D. Smith for suggesting the problem and for helpful comments. We would also like to thank the referee whose suggestions led to an improved exposition of the paper.

References

[1] J. An, The Alperin and Dade conjectures for the simple Conway's third group, Israel J. Math. 112 (1999) 109-134.
[2] D.J. Benson, Conway's group Co_{3} and the Dickson invariants, Manuscripta Math. 85 (1994) 177-193.
[3] D.J. Benson, S.D. Smith, Classifying spaces of sporadic groups and their 2-completed homotopy decompositions, preprint, available at http://www.maths.abdn.ac.uk/~bensondj/html/archive/benson-smith.html, 2006.
[4] F. Buekenhout, Diagrams for geometries and groups, J. Combin. Theory Ser. A 27 (2) (1979) 121-151.
[5] K.S. Brown, Euler characteristics of groups: The p-fractional part, Invent. Math. 29 (1) (1975) 1-5.
[6] S. Bouc, Homologie de certains esembles ordonnés, C. R. Acad. Sci. Paris Sér. I Math. 299 (2) (1984) 49-52.
[7] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985.
[8] L. Finkelstein, The maximal subgroups of Conway's group C3 and McLaughlin's group, J. Algebra 25 (1973) 58-89.
[9] The GAP group, GAP-Groups, algorithms and programming, http://www-gap.dcs.st-and.ac.uk/~gap, 2006.
[10] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math. 28 (1978) 101-128.
[11] M.A. Ronan, S.D. Smith, 2-Local geometries for some sporadic groups, in: The Santa Cruz Conference on Finite Groups, Univ. of California, Santa Cruz, California 1979, in: Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, RI, 1980, pp. 283-289.
[12] M.A. Ronan, G. Stroth, Minimal parabolic geometries for the sporadic groups, European J. Combin. 5 (1984) 59-91.
[13] A.J.E. Ryba, S.D. Smith, S. Yoshiara, Some projective modules determined by sporadic geometries, J. Algebra 129 (1990) 279-311.
[14] S.D. Smith, S. Yoshiara, Some homotopy equivalences for sporadic geometries, J. Algebra 192 (1997) 326-379.
[15] J. Thévenaz, Permutation representations arising from simplicial complexes, J. Combin. Theory Ser. A 46 (1987) 121-155.
[16] P.J. Webb, Subgroup complexes, in: The Arcata Conference on Representations of Finite Groups, Arcata, CA, 1986, in: Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 349-365.

[^0]: * Corresponding author.

 E-mail addresses: maginnis@math.ksu.edu (J. Maginnis), onofrei@math.ksu.edu (S. Onofrei).

