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Abstract Tumor-associated macrophages play an important role
in tumor progression, but whether they exert a tumor-progressive
effect remains controversial. Here, we demonstrated that activated
macrophage-conditioned medium (AMCM) obtained from RAW
macrophages (RAW/AMCM) induced epithelial-mesenchymal
transition (EMT) and stimulated the migratory and invasive activ-
ities of HepG2 cells, whereas control conditioned media had no ef-
fect. Epithelial-cadherin (E-cadherin) and b-catenin staining
patterns were altered at the adherens junctions by RAW/AMCM
treatment, with an approximately 50% decrease in E-cadherin and
b-catenin in the cell membrane. Importantly, levels of b-catenin-
associated E-cadherin were also decreased. Following RAW/
AMCM treatment, enhanced activation of c-Src was seen prior
to increased tyrosine phosphorylation of b-catenin, and this led
to the destabilization of adherens junctions. Pretreatment of
HepG2 cells with the Src kinase inhibitor, PP2, completely abol-
ished the effects of RAW/AMCM on the EMT, migration, inva-
sion, and expression and association of E-cadherin and b-
catenin. AMCMs obtained from human THP-1 monocytes and
mouse peritoneal macrophages also caused disassembly of the
adherens junctions and migration of HepG2 cells. Furthermore,
inhibition of the epidermal growth factor receptor (EGFR) with
gefitinib partially prevented the downregulation of E-cadherin
and b-catenin at the adherens junctions and migration behavior in-
duced by RAW/AMCM. Our results suggest that activated mac-
rophages have a tumor-progressive effect on HepG2 cells which
involves the c-Src- and EGFR-dependent signaling cascades.
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by Elsevier B.V. All rights reserved.
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1. Introduction

The inflammatory microenvironment plays a key role in the

progression of solid malignant tumors [1,2]. In the past dec-

ade, tumor-associated macrophages (TAMs) have been exten-

sively studied and proposed as a major contributor to tumor

progression [3]. However, the interaction between TAMs and

cancer cells is extremely complicated and has not been clearly

elucidated. Most importantly, whether TAMs increase tumor-

progression remains a subject of controversy. For instance,

an increased number of TAMs is associated with a better

prognosis in lung cancer [4], but with a poor prognosis in

breast cancer [5]. These opposite effects might be explained

by tissue-type specificity. However, even in the same tumor

type, such as prostate cancers, conflicting results have been

obtained [6,7].

Cell adhesion molecules are essential for cell–cell and cell–

matrix interactions in both physiological and pathological con-

ditions. Of these molecules, epithelial-cadherin (E-cadherin), a

transmembrane glycoprotein, has been shown to maintain nor-

mal epithelial morphology through a Ca2+-dependent homo-

typic interaction [8,9]. Loss of E-cadherin in cancer cells

decreases adhesiveness and releases these cells from the pri-

mary locus into distant sites [10], a process called tumor metas-

tasis. Because of this adhesive function, E-cadherin has been

suggested as an invasion suppressor molecule [10]. Since

E-cadherin expression is inversely correlated with the degree

of invasiveness in hepatocellular carcinoma [11], E-cadherin

levels are considered as a potential biomarker of these tumors

[12]. The epithelial-mesenchymal transition (EMT), a process

in which epithelial cells acquire mesenchyme-like properties,

is characterized by loss of E-cadherin and is associated with

development and tumor progression. Several recent studies

have shown that Src kinase is involved in the EMT [13,14].

b-Catenin is an important factor regulating both cellular sig-

naling and adhesion. While cytosolic b-catenin is involved in

the Wnt-signaling pathway, membrane-bound b-catenin an-

chors E-cadherin to actin filaments by binding to the intracel-

lular domain of E-cadherin [9,15]. The existence of two

different localized pools of b-catenin may indicate crosstalk be-

tween the cellular adhesion and signal transduction machiner-

ies [16].

The structural integrity of the E-cadherin/b-catenin com-

plex is determined by the phosphorylation status of b-catenin

[17]. Tyrosine kinases, including Fer, Fyn, Yes, Src, and the

epidermal growth factor receptor (EGFR), have been shown
blished by Elsevier B.V. All rights reserved.
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to phosphorylate specific tyrosine residues in b-catenin, lead-

ing to dissociation of the E-cadherin/b-catenin complex [18–

21]. Conversely, inhibition of Src family kinases restores

E-cadherin-mediated cell adhesion in a wide variety of cancer

cells [22].

In this study, we investigated the effects of macrophage

activation on adherent junctions of human hepatocellular

carcinoma cells. Our results showed that factors secreted

by activated macrophages promoted the migration and inva-

siveness of these tumor cells by activation of c-Src and tyro-

sine phosphorylation of b-catenin, leading to disruption of

the adherens junctions. We also showed that inhibition of

Src family kinase and EGFR signaling prevented the effects

of activated macrophage-conditioned media (AMCM) on the

properties of tumor cells. These results showing that acti-

vated macrophages increase the mobility and invasiveness

of hepatocarcinoma cells provide the basis for the tumor-

progressive effect of activated macrophages on cancer forma-

tion.
2. Materials and methods

2.1. Cell culture and preparation of macrophage-conditioned media
The HepG2 human hepatocellular carcinoma cell line, RAW264.7

murine macrophage cell line, and THP-1 human monocyte cell line
(American Type Culture Collection, Manassas, VA, USA) were main-
tained in growth medium [Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum (FBS), 100 units/ml of
penicillin, and 100 lg/ml of streptomycin; all from Gibco, Grand Is-
land, NY, USA] in a humidified atmosphere at 37 �C in 5% CO2.

To obtain mouse peritoneal macrophages, BALB/c mice were anes-
thetized with ether, then sterile phosphate-buffered saline (PBS;
137 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8 mM Na2HPO4,
pH 7.4) was injected into the peritoneal cavity, and the abdomen mas-
saged. After drainage of the peritoneal fluid, a mixture of macrophages
and other cells was collected by centrifugation and plated on culture
dishes. The macrophages were separated from other blood cells by dif-
ferential attachment; macrophages adhered to the dishes within 2 h
and the non-adherent blood cells were washed off.

For the preparation of conditioned media from activated or non-
activated macrophages, macrophage cell lines or primary culture of
macrophages were treated for 24 h with 500 nM phorbol myristate ace-
tate (PMA) (Biomol, Plymouth Meeting, PA, USA) in dimethyl sulfox-
ide (DMSO), 1 mg/ml of lipopolysaccharide (LPS, Sigma, St. Louis,
MO, USA) in ethanol, 500 units/ml of interferon-c (PeproTech EC,
London, UK) in growth medium, or with vehicle alone, washed once
with PBS, and cultured in serum-free growth medium for 4 h to elim-
inate residual stimulants. Except for the LPS-stimulated group, which
were left in serum-free growth medium, the cells were then briefly
washed with PBS and cultured in serum containing growth medium
for another 24 h, then the medium was collected and filtered to remove
debris. The filtrate from the PMA-treated RAW macrophages was des-
ignated as RAW/AMCM and that from the vehicle-treated control
cells as RAW/control macrophage-conditioned media (CCM). AMCM
and CCM obtained from human THP-1 monocytes and primary
mouse macrophages are referred to as THP/AMCM, THP/CCM,
mouse/AMCM, and mouse/CCM. For cytokine studies, interleukin
(IL)-4, IL-6, and IL-13 were purchased from PeproTech EC (London,
UK) and used at 1, 10, or 100 ng/ml in growth media containing 2%
FBS. PP2 was obtained from Biomol and gefitinib from AstraZeneca
(Macclesfield, UK).
2.2. Antibodies
The mouse primary antibodies used were anti-E-cadherin (Trans-

duction Labs, Franklin Lakes, NJ, USA), anti-b-catenin (Transduc-
tion Labs), anti-b-tubulin (Sigma), anti-b-actin (Sigma), anti-c-Src
(clone GD11, Upstate, Lake Placid, NY, USA), anti-Tyr416-phos-
pho-c-Src kinase (Cell Signaling, Beverly, MA, USA) [23], and anti-
phosphotyrosine (clone PY7E1 and PY20, Zymed, Carlsbad, CA,
USA). The secondary antibodies were fluorescein-isothiocyanate
(FITC)-conjugated goat anti-mouse IgG (Sigma) and alkaline phos-
phatase-conjugated goat anti-mouse IgG (Promega Corp., Madison,
WI, USA).

2.3. Immunofluorescence
HepG2 cells plated on glass coverslips were washed twice with PBS

and fixed with 10% formalin for 10 min at room temperature, then were
permeabilized for 5 min at room temperature with PBS containing 0.1%
Triton X-100. After blocking with PBS containing 5% skim milk (block-
ing buffer), the cells were incubated overnight at 4 �C with primary anti-
bodies diluted in blocking buffer. After three washes with PBS, the cells
were incubated for 1 h at room temperature with FITC-conjugated sec-
ondary antibody, then the coverslips were washed three times with PBS
and mounted on glass slides. Images were acquired using a Zeiss fluores-
cence microscope (Carl Zeiss AG, Oberkochen, Germany) equipped
with a Nikon DIX digital camera (Nikon, Tokyo, Japan).

2.4. Migration, wound healing, and invasion assays
For the migration assay, appropriate numbers of HepG2 cells were

seeded in the upper chamber of a Transwell apparatus with an 8 lm
pore size membrane (Costar, Acton, MA, USA). After attachment,
0.5 ml of CCM or AMCM was added to the lower well. After 20 h,
the polycarbonate membranes were fixed in 10% formalin for 10 min
and stained with Coomassie Brilliant Blue G250 (Sigma) for 5 min,
then the number of cells that had migrated to the reverse surface of
the membrane was counted in three randomly selected fields under
light microscopy. For the wound healing assay, HepG2 cells were
grown on glass coverslips in growth medium. After formation of a con-
fluent monolayer, straight wounds were created using a sterile pipette
tip and the medium replaced with CCM or AMCM. Microscopic pho-
tographs were taken at 0 and 24 h.

For the invasion assay, the same procedures were carried out as de-
scribed above except for addition of a layer of Matrigel (BD Biosci-
ences, Franklin Lakes, NJ, USA) on top of the upper chamber
membrane. The HepG2 cells were then placed on the Matrigel layer
and RAW/CCM or RAW/AMCM in the lower chamber. After 72 h,
the membranes were fixed and stained as described above.

2.5. Western blot analysis
To prepare whole cell lysates, the cells were collected, ultrasonicated

in lysis buffer (50 mM Tris–HCl, pH 7.4, 1% Triton X-100, 0.25% so-
dium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 lg/
ml of pepstatin A, 1 lg/ml of leupeptin, 1 mM NaF, 1 mM Na3VO4),
and centrifuged at 13000 · g for 30 min at 4 �C. The protein concen-
tration of the lysate was measured using a Bio-Rad protein assay kit
(Bio-Rad, Hercules, CA, USA), then equal amounts of the proteins
were boiled in Laemmli sample buffer (4% SDS, 20% glycerol, 10%
2-mercaptoethanol, 0.004% bromphenol blue, and 0.125 M Tris–
HCl, pH 6.8).

To prepare the membrane fraction, the cells were harvested in RIPA
buffer (150 mM NaCl, 1 mM PMSF, 1 mM EDTA, 1 lg/ml of aproti-
nin, 1 lg/ml of leupeptin, 1 mM Na3VO4, 1 mM NaF in 50 mM Tris–
HCl, pH 7.4) containing 1% Triton X-100. The cell suspensions were
briefly sonicated and centrifuged at 13000 · g for 10 min at 4 �C, then
the supernatants were discarded, and the pellets solubilized in RIPA
buffer containing 1% NP-40, the protein concentration measured,
and a sample treated with sample buffer as above.

For immunoprecipitation, HepG2 cells were treated with RAW/
CCM or RAW/AMCM for different intervals before incubation at
4 �C for 30 min with immunoprecipitation buffer (1% Triton X-100,
1 mM EDTA, 1 mM PMSF, 1 lg/ml of pepstatin A, 1 lg/ml of leupep-
tin in 50 mM Tris–HCl, pH 7.5). The cell suspensions were briefly ultr-
asonicated and centrifuged at 13000 · g for 30 min, then the
supernatants were collected and their protein concentrations deter-
mined. A sample containing 800 lg of protein was mixed with 2 lg
of anti-b-catenin antibodies or 5 ll of anti-Tyr416-phospho-c-Src ki-
nase antibodies (Cell Signaling) and the mixture incubated at 4 �C
for 3 h before addition of 100 ll of protein G–Sepharose beads (Phar-
macia, Uppsala, Sweden), followed by incubation at 4 �C for 30 min.
The Sepharose beads were extensively washed with immunoprecipita-
tion buffer, boiled in Laemmli sample buffer, and spun down, and
the released proteins used for Western blotting.
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Equal amounts of proteins were resolved by SDS–polyacrylamide
gel electrophoresis, and transferred to a nitrocellulose membrane
(Schleicher & Schuell BioSciences, Inc., Boston, MA, USA). The mem-
branes were blocked for 1 h at room temperature with Tris-buffered
saline (TBS; 150 mM NaCl in 50 mM Tris, pH 8.2) containing 1%
BSA and 0.1% Tween 20, then incubated overnight at 4 �C with pri-
mary antibodies. After washing with 0.1% Tween 20 in TBS, the mem-
branes were incubated for 1 h at room temperature with alkaline
phosphatase-conjugated secondary antibodies, and bound antibody
visualized by incubation with a substrate solution containing H2O2, ni-
tro blue tetrazolium, and 5-bromo-4-chloro-3-indolyl phosphate (Sig-
ma). The density of the bands was quantified by densitometry using
GelPro 3.1 (Media Cybernetics, Silver Spring, MD, USA).

2.6. Statistical analysis
All results are expressed as the means ± S.D. Statistical differences

between means were assessed using Student’s t test, with a P value less
than 0.05 being considered significant.
Fig. 1. Effect of macrophage conditioned media on HepG2 cell
morphology. (A) Phase microscopy of HepG2 cells cultured in RAW/
CCM, RAW/AMCM, or RAW/AMCM + 10 lM PP2. HepG2 cells
were plated in growth medium for 1 day, then the medium was
changed to the indicated medium. The images shown are representative
of cells after 24 h of culture in the indicated medium. Bar = 100 lm.
Inset: Higher magnification. (B) Growth curves of HepG2 cells
cultured in RAW/CCM or RAW/AMCM for the indicated time. At
each time-point, the cells were trypsinized and counted and the cell
number used to calculate the fold increase. The data shown are the
means ± S.D. of triplicate experiments.
3. Results

3.1. Macrophage activation alters the morphology of HepG2

cells

To investigate the effects of activated macrophages on tumor

cell morphology, we cultured HepG2 cells in RAW/AMCM or

RAW/CCM. PMA was used to trigger macrophage activation,

since it has been shown to induce activation of macrophages

from several sources [24,25]. In this culture system, changes

in HepG2 cell morphology are dependent on factors secreted

from macrophages, but not on a direct interaction with macro-

phages. This strategy allowed us to mimic indirect interactions

between cancer cells and macrophages through chemical cross-

talk, rather than physical interaction between the two cell

types [2].

In the presence of RAW/CCM, HepG2 cells formed aggre-

gated islet-like clusters, with a typical polarized epithelial phe-

notype (Fig. 1A, CCM). This epithelial morphology was also

seen when HepG2 cells were cultured in growth medium,

showing that conditioned medium from non-activated macro-

phages did not affect the morphology of HepG2 cells. How-

ever, HepG2 cells cultured in RAW/AMCM showed a

striking morphological change. These cells showed loss of epi-

thelial morphology, became dissociated from the epithelial

clusters, and acquired a mesenchymal phenotype, a process

called the EMT (Fig. 1A, AMCM). To investigate whether this

phenomenon was associated with increased cell proliferation,

we measured the growth of cells maintained in RAW/CCM

and RAW/AMCM over time and found no significant differ-

ence between the two sets of cells over a 72 h incubation period

(Fig. 1B). Thus, the greater surface area covered by the RAW/

AMCM-treated cells was due to altered biological activities of

the HepG2 cells and not to an increased growth rate.
3.2. Macrophage activation enhances the invasive characteristics

of HepG2 cells

The morphological change described above implied weaken-

ing of cell adhesion in the RAW/AMCM-treated cultures. To

determine whether this weakened adherence led to a higher

mobility, we performed migration and invasion assays, both

of which are widely used to examine the metastatic characters

of tumor cells.

After 20 h of culture, cells in RAW/AMCM showed a great-

er than 10-fold increase in the number of migrating cells com-
pared to RAW/CCM-treated cultures (Fig. 2A and B). This

suggested that RAW/AMCM treatment increased the migra-

tory ability of HepG2 cells. This was confirmed by another

migration assay, commonly referred to as the wound-healing

assay. In accordance with their higher migration ability, cells

maintained in RAW/AMCM closed the wound cleft 2.5 times

faster than those in RAW/CCM (Fig. 2C; 15.6% closure dur-

ing the first 24 h in RAW/CCM versus 38.7% in RAW/

AMCM).

For the invasion assay, the procedures were similar to those

for the Transwell migration assay, except that a thick layer of

Matrigel was applied to the top surface of the Transwell mem-

brane; this assay therefore measures not only cell mobility, but

also the ability of the cells to digest the extracellular matrix, a

prerequisite for metastatic tumor cells. As shown in Fig. 3,

RAW/AMCM-treated cultures showed a 3-fold increase in

the number of invasive cells passing through the Matrigel com-

pared to RAW/CCM-treated cells. Together, these results

clearly indicated that conditioned media from activated mac-

rophages enhanced both the migratory and invasive abilities

of HepG2 cells.

3.3. Macrophage activation downregulates the E-cadherin/

b-catenin complex

We hypothesized that the observed increase in the migration

and invasiveness of HepG2 cells caused by RAW/AMCM

treatment might be attributable to altered cellular adhesion.

The involvement of the cadherin/catenin complex at cellular

junctions is well characterized in terms of the migratory and

invasive activities of tumor cells [26]. To determine whether

this cadherin/catenin system played a role in the RAW/

AMCM-induced biological changes in HepG2 cells, we exam-



Fig. 2. Conditioned medium from activated macrophages induces migration of HepG2 cells. (A) Migration assay using a Transwell apparatus.
HepG2 cells were plated in the upper chamber and RAW/CCM or RAW/AMCM in the presence or absence of 10 lM PP2 was added to the lower
chamber. After 20 h, the membranes were stained with Coomassie Blue and photographed. (B) Quantification of the data. Three fields were
randomly selected at 40· magnification and the number of stained cells counted. The data are the means ± S.D. for three independent experiments.
(C) Wound closure by HepG2 cells induced by activated macrophages. The wounds were made on a confluent monolayer of cells cultured in growth
medium, then the medium was changed to RAW/CCM or RAW/AMCM for the indicated time.

Fig. 3. Conditioned medium from activated macrophages induces invasiveness of HepG2 cells. (A) Invasion assay using a Transwell apparatus
coated with a layer of Matrigel. HepG2 cells were plated on the Matrigel layer in growth medium and RAW/CCM or RAW/AMCM in the presence
or absence of 10 lM PP2 was added to the lower chamber. After 72 h, invading cells were visualized by Coomassie Blue staining. (B) Quantification
of the data. Three fields were randomly selected under 40· magnification and the number of stained cell counted. The data shown are the
means ± S.D. for three independent experiments.
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ined the expression of b-catenin and E-cadherin in these cells

by immunofluorescence. As shown in Fig. 4A, in RAW/

CCM-treated cells, the staining pattern for both b-catenin
and E-cadherin was continuous and linear along the cell bor-

der, whereas, in RAW/AMCM-treated cells, staining was dis-

continuous, with a dotted appearance at the cell–cell



Fig. 4. Conditioned medium from activated macrophages decreases
the expression of E-cadherin and b-catenin in HepG2 cells. (A)
Distribution of E-cadherin and b-catenin in HepG2 cells treated with
RAW/CCM or RAW/AMCM in the presence or absence of 10 lM
PP2 for 24 h. The cells were fixed, permeabilized, and immunostained
for b-catenin and E-cadherin. Bar = 20 lm. Insets are representative
views of higher magnification showing the localization of these
proteins at adherens junctions. (B) Western blot analysis of E-cadherin
in HepG2 cells. Cells were cultured for 24 h in RAW/CCM or RAW/
AMCM, then whole cell lysates were analyzed for E-cadherin or b-
tubulin (loading control). The data shown are representative of the
results for three independent experiments. For the densitometric data
(means ± S.D. of three experiments), the intensity of the E-cadherin
band is expressed relative to that for the RAW/CCM-treated cells. (C)
E-cadherin and b-catenin in the membrane fraction of HepG2 cells.
After 24 h incubation in different conditioned media, the membrane
fraction was prepared and analyzed. Densitometric data showing the
means ± S.D. of the results for three independent experiments. E-cad:
E-cadherin. b-cat (n): native form of b-catenin. b-cat (m): mutant form
of b-catenin (*). (D) b-Catenin-associated E-cadherin. Whole cell
lysates of cells treated for 24 h with RAW/CCM, RAW/AMCM, or
RAW/AMCM + 10 lM PP2 were immunoprecipitated using mono-
clonal anti-b-catenin antibody and the immunoprecipitates analyzed
for E-cadherin and b-catenin. n = 2.
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junction. This finding was confirmed by Western blot analyses,

which showed that E-cadherin expression in whole cell lysates

of RAW/AMCM-treated cells was approximately half of that

in RAW/CCM-treated cells (Fig. 4B). b-catenin exists as cyto-

solic and membrane-bound pools. Analysis of the membrane

fractions revealed that levels of both the native form and the

truncated form of b-catenin, the latter characteristic of HepG2
cells [27], were substantially decreased by RAW/AMCM treat-

ment (Fig. 4C).

Recently, a Src family kinase inhibitor, PP2, was shown to

upregulate cadherin/catenin expression in human cancer cell

lines [21]. We therefore examined whether it was able to block

the effects of RAW/AMCM on cadherin/catenin expression in

HepG2 cells. Interestingly, pretreatment of RAW/AMCM-

treated cultures with PP2 resulted in cluster formation of

HepG2 cells (Fig. 1A, AMCM + PP2), similar to that seen in

the RAW/CCM-treated group (Fig. 1A, CCM), and com-

pletely restored the continuous distribution of E-cadherin

and b-catenin at the cellular junctions (Fig. 4A, AMCM

+ PP2). Further evidence for weakening of the adherens junc-

tion was provided by the observation that the amount of E-

cadherin detectable in b-catenin immunoprecipitates was

reduced after 24 h of RAW/AMCM treatment (Fig. 4D). Fur-

thermore, inactivation of Src family kinases by PP2 preve-

nted the decrease in the amount of E-cadherin associated with

b-catenin caused by RAW/AMCM (Fig. 4D). This observation

is consistent with the recent finding that PP2 decreases the

invasive activity of cancer cells by restoration of cadherin/cate-

nin expression [21].

We then examined whether prevention of the decrease in

cadherin/catenin expression by PP2 prevented the migration

and invasiveness of HepG2 cells induced by activated macro-

phages. Pretreatment with 10 lM PP2 completely blocked

the increase in the migratory (Fig. 2A and B) and invasive

(Fig. 3) activities of HepG2 cells induced by RAW/AMCM,

resulting in basal levels of activity or even lower. We therefore

conclude that the increase in invasiveness of HepG2 cells

caused by RAW/AMCM is mediated, at least in part, by acti-

vation of Src family kinase.
3.4. Macrophage activation increases tyrosine phosphorylation

of b-catenin

The above data clearly showed that RAW/AMCM treat-

ment decreased the expression of b-catenins and E-cadherin

at cell junctions (Fig. 4). Tyrosine phosphorylation of b-cate-

nins by Src family kinases has been shown to destabilize junc-

tional b-catenin [20]. To investigate whether b-catenin

phosphorylation by Src family kinases was also responsible

for the RAW/AMCM-mediated decrease in junctional b-cate-

nin, we examined levels of tyrosine phosphorylated b-catenin

after RAW/CCM or RAW/AMCM treatment by immunopre-

cipitating b-catenin from treated cell lysates and performing

immunoblotting with anti-phosphotyrosine and anti-b-catenin

antibodies. Treatment with RAW/AMCM for 1 h significantly

increased the levels of tyrosine-phosphorylated b-catenin com-

pared to RAW/CCM-treated cultures, whereas total b-catenin

levels were unchanged (Fig. 5A). Since our data suggested that

Src family kinases played a role in the regulation of b-catenin

stabilization (Fig. 4A), we next examined the levels of active

c-Src, which can be detected using a specific antibody against

Tyr416-phosphorylated c-Src [23,28], and found that c-Src

was rapidly phosphorylated within 15 min by RAW/AMCM

treatment and that levels of phosphorylated c-Src remained

high (on average, 1.5-fold higher than basal levels) for at least

60 min (Fig. 5C and D). In contrast, RAW/CCM-treated cells

showed only a minor increase in the first 5 min (Fig. 5C and

D). To confirm this result, we performed immunoprecipitation

of lysates of HepG2 cells treated for 15 min with RAW/



Fig. 5. Conditioned medium from activated macrophages increases
tyrosine phosphorylation of b-catenin by activation of c-Src. (A)
Immunoprecipitation of tyrosine phosphorylated b-catenin. Whole cell
lysates of cells treated for 1 h with RAW/CCM or RAW/AMCM were
immunoprecipitated with monoclonal b-catenin antibodies, and ana-
lyzed for phosphotyrosine (pTyr) and b-catenin. The asterisks indicate
the mutant form of b-catenin. (B) Increase in c-Src phosphorylation
caused by RAW/AMCM treatment. HepG2 cells were incubated for
15 min in RAW/AMCM or RAW/CCM, then the whole cell lysate was
precipitated with anti-phospho-c-Src antibodies and subjected to
immunoblotting with anti-c-Src antibodies. (C) Time-course study of
c-Src activation by RAW/AMCM. HepG2 cells were treated with
RAW/CCM or RAW/AMCM for the indicated time period, then
whole cell lysates were subjected to electrophoresis and immunoblot-
ting with antibodies against phospho-c-Src (upper panel) or b-actin as
a loading control (lower panel). (D) Densitometric data derived from
three independent experiments performed as in (C) and are expressed
as the density of the band relative to the time zero result. The white
circles and black circles represent, respectively, RAW/CCM-treated
and RAW/AMCM-treated cells. (E) Membrane translocation of
phosphorylated c-Src kinase by RAW/AMCM. The cells were treated
with RAW/CCM or RAW/AMCM for 15 min, and processed for
immunostaining for phosphorylated c-Src. Bar = 20 lm.

Fig. 6. An EGFR inhibitor blocks the RAW/AMCM-induced migra-
tion and changes in E-cadherin and b-catenin at the adherens
junctions. HepG2 cells were treated for 24 h with RAW/CCM,
RAW/AMCM, or RAW/AMCM + 15 lM gefitinib, then tested for
(A) E-cadherin and b-catenin immunostaining or (B) migration.
Bar = 20 lm.
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AMCM or RAW/CCM using an excess of anti-Tyr416-phos-

pho-c-Src antibody followed by immunoblotting of the immu-

noprecipitated proteins using anti-c-Src antibody (Upstate,

clone GD11). This experiment confirmed that levels of phos-

phorylated c-Src in the immunoprecipitate increased by

50–60% after 15 min incubation (Fig. 5B). In parallel with

the biochemical data, immunostaining also showed membrane

translocation of phosphorylated c-Src after 15 min of RAW/

AMCM treatment (Fig. 5E, AMCM), whereas in RAW/

CCM-treated cells phosphorylated c-Src was localized mainly

on focal adhesions (Fig. 5E, CCM). Taken together with the

previous data, these results suggest that activated macrophages

cause disruption of the E-cadherin/b-catenin complex in

HepG2 cells by activating c-Src.
3.5. Cytokines IL-4, IL-6, and IL-13 are not responsible for the

macrophage-induced loss of adherens junction and the

morphological changes

To identify the factors responsible for the above described

effects, we incubated HepG2 cells for 24 h in medium contain-

ing 2% FBS and 1, 10, or 100 ng/ml of IL-4, IL-6, or IL-13.

Phase-contrast microscopy and immunostaining showed that

none of these cytokines induced the EMT or caused downreg-

ulation of b-catenin at the adherens junctions (data not

shown).

3.6. An EGFR antagonist partially blocks the RAW/AMCM-

induced phenotypic change

In order to examine whether EGFR was involved in the

downregulation of E-cadherin/b-catenin at the adherens junc-

tions, we used the EGFR inhibitor, gefitinib, to block the

EGFR pathway. Pretreatment with 15 lM gefitinib partially

prevented RAW/AMCM-induced downregulation of E-cad-

herin and b-catenin at the adherens junctions (Fig. 6A) and de-

creased the stimulatory effect of RAW/AMCM on the

migratory ability of HepG2 cells (Fig. 6B).

3.7. The effects of activated macrophages are not species-specific

and are not dependent on the method used to activate the

macrophages

To determine whether the effects of AMCM were restricted

to RAW 264.7 macrophages stimulated by PMA, we prepared

conditioned media from RAW macrophages or macrophages

from other sources (human THP-1 monocyte cell line and

mouse peritoneal macrophages) treated with PMA, LPS or

interferon c. Conditioned medium from interferon c-treated

RAW macrophages did not affect the behavior of HepG2 cells

(data not shown). After 24 h incubation, AMCMs from THP-1

cells activated with PMA, RAW cells activated with LPS, and

mouse peritoneal macrophages activated with PMA decreased



Fig. 7. Conditioned media from macrophages from various species
activated by different methods alter the b-catenin distribution and
migration of HepG2 cells. (A) Immunostaining for b-catenin. HepG2
cells were cultured in CCM or AMCM obtained from PMA-treated
human THP cells (THP), LPS-treated RAW (LPS), or PMA-treated
mouse peritoneal macrophages (mouse) for 24 h, then immuno-
stained for b-catenin. (B) Migration assay. HepG2 cells were plated
in the upper chamber and THP/AMCM, mouse/AMCM, or the
respective control medium added to the lower chamber. After 20 h,
the membranes were stained with Coomassie Blue and photo-
graphed.
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b-catenin expression at the adherens junctions (Fig. 7A).

Fig. 7B shows the increased migration of HepG2 cells caused

by THP/AMCM or mouse/AMCM. These results clearly

indicate that the functional components responsible for the

disruption of the adherens junctions and the migration are

secreted by human THP-1 cells, RAW macrophages, and

mouse peritoneal macrophages activated by PMA or LPS,

but not by interferon.
4. Discussion

In this study, we investigated the effect of activated macro-

phages on the metastatic behavior of HepG2 human hepato-

cellular carcinoma cells. We showed that conditioned media

from macrophages from various sources activated in different

ways significantly increased the migration and invasiveness

of HepG2 cells. In accordance with this finding, levels of

E-cadherin and b-catenin in the membrane fraction and the

association between them were substantially decreased by

treatment with AMCM. In addition, tyrosine-phosphorylation

of b-catenin and c-Src was increased by the same treatment.

Furthermore, both the Src family kinase inhibitor, PP2, and
the EGFR inhibitor, gefitinib, abrogated the AMCM-induced

downregulation of E-cadherin and b-catenin at the adherens

junctions, providing a mechanistic explanation for the

AMCM-induced events.

As mentioned earlier, the role of TAMs in tumor progres-

sion has not yet been clearly defined. It was previously shown

that co-culture of hepatocarcinoma cells with macrophages,

resulting in macrophage activation, increases the invasive

capacity of the tumor cells and that this effect is cell contact-

dependent [29]. In our study, conditioned medium from acti-

vated macrophages was able to increase the invasive ability

of the HepG2 cells, whereas conditioned medium from non-

activated macrophages did not, showing that factors secreted

by activated macrophages were responsible for the behavioral

changes of HepG2 cells. It has been known for a long time that

cancer is frequently associated with inflammation and that

constant inflammation may aggravate the transformation of

precancerous tissues [1]. A wide variety of chemical substances,

such as cytokines and chemokines, are released by activated

macrophages [24,30]. Several lines of evidence show that

TAMs can play a dual role in the transformation of neoplasms

[31]. For example, cyclooxygenase-2 secreted by activated mac-

rophages has been shown to induce tumorigenic progression

by downregulating E-cadherin in normal intestinal cells [32],

while reactive nitrogen intermediates released by activated

macrophages have been shown to have anti-tumor activity

[33]. TAMs play an important role in tumor angiogenesis

[24], but their role in tumor progression remains controversial.

However, no correlation has been found between macrophage

activation and the weakening of the adherens junctions in liver

cancer cells. Macrophage conditioned medium has been shown

to decrease E-cadherin expression at the adherens junctions in

colon cancer cells [32]. A body of evidence supports the roles of

Src and EGF in the downregulation of b-catenin at the adher-

ens junctions [20,21,34], but their contribution to the macro-

phage-mediated deregulation of E-cadherin or b-catenin

awaits elucidation. In the present study, we demonstrated that

the c-Src- and EGFR-driven modulation of the adherens junc-

tions may contribute to an enhanced aggressive phenotype of

HepG2 cells in the microenvironment of activated macro-

phages. Although several tumor-progressive and tumor-regres-

sive substances can be released by activated macrophages [24],

our data suggest that, for liver cancer cells, the overall effects

of activated macrophages tend to be tumor-progressive.

In this study, we ruled out the possibility that IL-4, IL-6, or

IL-13 was involved in mediating the effects of AMCM. Our re-

sults agree with a previous finding that IL-6 does not affect cell

adhesion in HepG2 cells [35]. IL-4 and IL-13 have been shown

to regulate the expression and distribution of E-cadherin and

b-catenin in a keratinocyte model [36]. In contrast, the present

study showed that neither IL-4 nor IL-13 caused changes in

cell morphology and b-catenin immunostaining patterns in

HepG2 cells. The conflicting effects of IL-4 and IL-13 in these

studies might be due to tissue specificity. One of the candidates

in AMCM might be EGF, since inhibition of the EGFR by

gefitinib partially blocked the AMCM-induced disassembly

of the adherens junctions and the increase in migration. The

identification of other potential tumor-progressive factors se-

creted by activated macrophages would be helpful for clinical

cancer therapy.

The Src kinase is overexpressed in hepatocellular carcinoma

cells [37]. Activation of c-Src kinase is linked to tumor-progres-
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sive activities, such as mobility, invasion, and adhesion, by

increasing focal adhesion kinase (FAK) activity and weaken-

ing adherens junctions [38]. In this study, pretreatment with

PP2 effectively blocked the AMCM-induced mobility and

invasiveness of HepG2 cells. However, the action of PP2 can

be mediated by other pathways, such as the phosphatidylinosi-

tol-3 kinase-Akt cascade, as reported in a bladder cancer cell

invasion model [39]. Thus, we cannot exclude possible involve-

ment of the Akt pathway in the inhibitory effect of PP2 on cell

invasion. In addition, Src kinase phosphorylates E-cadherin,

which is then ubiquitinylated and degraded [40]. We noted

translocation of active Src kinase to the cell membrane in

AMCM-treated cells, which might favor the interaction be-

tween Src kinase and E-cadherin/b-catenin. Consistent with

the above observations, some of the E-cadherin appeared as

punctuate staining in the cytosol (Fig. 4A), which might repre-

sent internalized E-cadherin. This degradation may account

for the Src kinase-dependent decrease in E-cadherin seen at

adherens junctions in the present study.

NF-jB and JNK play important roles in macrophage-in-

duced tumor-progression [41–43], and this pathway is consid-

ered a potential target for cancer treatment [44]. A recent

study indicates that c-Src activation leads to IKK/NF-jB acti-

vation in PC-12 cells [45]. Thus, it is possible that, in addition

to phosphorylating b-catenin, c-Src might exert its tumor pro-

gression effects via cross-talk with the IKK/NF-jB signaling

pathway.

Our data showing that gefitinib partially blocked the

AMCM-induced downregulation of b-catenin at the adherens

junctions point out the involvement of the EGFR in the pro-

cess of tumor progression. c-Src is involved in the transactiva-

tion of EGFR [46,47]. It is also known that phosphorylation of

b-catenin Tyr654 is modified by EGFR-related proteins [21]. It

is plausible that direct modification of b-catenin by the EGFR

and/or transactivation of the EGFR by c-Src may mediate the

AMCM-induced downregulation of b-catenin at the adherens

junction.

Taken together, our results clearly demonstrate that that

tyrosine phosphorylation of b-catenin plays an important role

in activated macrophage-dependent regulation of the E-cad-

herin/b-catenin complex and that conditioned medium from

activated macrophages have a tumor-progressive effect on

hepatocellular carcinomas. Whether these effects are limited

to HepG2 cells or certain types of cancers awaits further inves-

tigation.
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