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Abstract-This paper deals with vector field interpolation, i.e., the data are W3 values located 
in scattered W3 points, while the interpolating function is a function from W3 into W3. In order to 
take into account possible connections between the components of the interpolant, we derive it by 
solving a variational spline problem involving the rotational and the divergence of the interpolant, and 
depending on a parameter p significative of the balance of the rotational part and of the divergence 
part, and on the order m of derivatives of the rotational and divergence involved in the minimized 
seminorm. We so obtain interpolants whose expression is a(r) = Cbi +(z, - zi)ai + p,_r(r)! 

where @ is some 3 x 3 matrix function, p,-r is a degree m - 1 vectorial polynomial, and where the uz 
are W3-vectors. Besides, the ai meet a relation generalizing the usual orthogonality to all polynomials 
of degree at most m - 1. For p = 1, we find the usual m-harmonic splines in each component of o. 
Numerical examples show the interest of the method, and we compare the so-obtained functions with 
the ones obtained by Matlab’s procedures. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Many applications, such as fluid mechanics and meteorology, need interpolate vectorial data 

located on W3 points: given n points (zi)ieli : nl in Iw3 and n W3 vectors (~~)~eli : nl, we must 

derive a function (T from lw3 to W3 such that Vi E [l : n], a(?) = zi. 

Of course, this can be done by working independently on each component, i.e., by independently 

deriving three functions 01, ~72, and us such that, for all i E [l : n], 01 (xi) = zi, ~(39) = 25, 

a3(xi) = zf . However, the so-obtained results are often of poor quality, since we cannot have in 

this way any kind of connection between the components of the function cr, while applications 

often require such a connection (such as rot 0 = 0, or 1 rot (T] “small” in a meaning specified below, 

or div o = 0, or 1 diva] “small”). So we must derive a vectorial function involving a criterion 

which can take into account such a connection between the components. 

Most of the authors who have defined interpolants with a relation between the components 

did so by using the variational spline theory: Atteia and Benbourhim [l] introduced the “elastic 

spline manifolds” (in i@), while Amodei [2,3] determined vectorial interpolants in two variables 

(deriving a function from R2 to Iw2 interpolating W2-data located in points in llX2). Handscomb 

studied, in [4], divergence-free interpolants. Let us also mention the paper [5] where Myers defines 
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multivariate interpolants, in any dimension, via the kriging approach. Finally, note that the codes 

used by Matlab for vectorial interpolants actually provide a scalar interpolant independently for 

each one of the variables. 

In this paper, we choose a seminorm which is based on the Helmholtz decomposition of vector 

fields into a rotational and a gradient part. Then, using the variational spline technique, we de- 

termine the vectorial function which minimizes this seminorm over all the functions in a suitable 

semi-Hilbert space which interpolates the data. The used seminorm is explicated below in (5). 

The so-obtained functions are not, in general, radial basis functions, not even for each of its 

components (however, in the particular case when p in (5) is equal to 1, we get the m-harmonic 

interpolating spline in each component of 0, and so have a componentwise radial basis function), 

but their general form is quite similar to the one of a radial basis function, since there exists a ma- 

tricial function Q, (nondependent on the data, and usually nonradial, but which can be expressed 

in terms of derivatives of a radial function), a degree m - 1 vectorial polynomial p,_l and n 

vectorial coefficients (az)g[lEn] meeting for any j = 1,2,3, Vp E lP,_i(IR3), Cy=“=, aip(z”) = 0, 

such that the interpolating vectorial function is a(s) = Cd, +(x - zi)ai + p,_i(z). 

Now, in order to derive the actual function CT interpolating some given data, we must solve a 

linear system similar to the one used for radial basis function s. The dimension of this system 

is 3n + 3(mz2), which may seem a large number, but the number of scalar data is 3n since we 

have n three-dimensional data, and the dimension of the space of three-dimensional polynomials 

of degree at most m - 1 is 3( “z2) = m(m + l)(m + 2)/2. This linear system presents the same 

drawbacks as are usual with radial basis functions (large condition number, zeros on the diagonal, 

. . . ). Besides, it is possible to derive B-spline-like matricial functions by discretizing the operator 

Pm,P(D) defined below in (lo), which allows three-dimensional B-spline like approximation, as 

presented in [6]. 

A possible application of this can be to solve partial differential equations (from IR3 to lR3) while 

controlling the global ratio between the divergence part and the rotational part of the solution, 

which is specially useful in fluid dynamics problems. 

The paper is organized as follows: in Section 2, we introduce our main notations and the 

minimized seminorm; in Section 3, we present the functional analysis tools necessary to solve the 

minimization problem; in Section 4, we state the two main theorems of the paper, giving the 

general form of the interpolant, and the linear system to be solved in order to derive the actual 

values of the coefficients; in Section 5, we show some numerical results. Finally, in Section 6, 

we briefly give some possible consequences or extensions of this work. The paper is written in 

such a way that a reader only interested in the results can drop Section 3 and so avoid the main 

theoretical development. 

2. SETTING THE INTERPOLATION PROBLEM 

2.1. Notations 

Numbers 

m is a fixed integer number such that m 2 2, and m’ = (“:“). 

n is a fixed integer number such that n 2 m’, while p is a nonnegative fixed real number. 

p and q being two integer numbers, [p : q] is the set of all integers j such that p < j 5 q. 

Multivariate tools 

11 l 11 is the usual Euclidean norm in lK3: 112~11~ = US + ZL$ + ZL~. 

Multi-integers: y and y’ stand for elements in N 3 = (Z+)3. We use standard multi-index 

notation: (y/ = yi + 72 + 73; y! = yl! y2! -y3!. 
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If f is a function from R3 to R, DYf is the order y derivative of f: D7f = $$-$g$f, 

and second derivatives of f are also denoted in the following usual way: a,“l,f is for &. 

If f is a function from W3 to W3, Wf denotes the function from W3 to R3 such that, for any 

j E [l : 31, (Wf)j = DY(fj). 
div and rot have their usual meaning, 

3fl afi+ af3 
div.f=s+8X zl rotf = 

1 2 3 

af3 af2 --- 

8x2 8x3 

8fl af3 --- 
ax3 ax:, 
af2 afl --- 
ax:, ax2 I 

V is the gradient operator: for any j in [l : 31, (V f)j = $$. 
Applied to a function from R’ to R, A = ‘&=2 D+f is the usual Laplacian operator. If f is 

a function from R3 to W3, Af is the “vectorial Laplacian operator”, i.e., for any j in [l : 31, 

(Af)j = Nfj). 
Is is the 3 x 3 identity matrix. 

Data and interpolant 

(~?)~eIi :nI are the locations of the data (xi E lw3), while (,&Ii :nI are the data (,zi E rW3). 

u,,~ is the wanted interpolant, i.e., Vi E [l : n], (T,,~(cI$) = zi. 

For some functional space V, some constraints C and some seminorm 1 l Iv defined on V, 

9 = A;z$in {blv ; C} 

means that g E V and meets the constraints C, and that furthermore if f is in V and meets the 

constraints C, we have [glv < Iflv. 

Polynomials 

Pk(R3) is the set of scalar polynomials with variable in W3 and degree at most k. 

Pk(W3; R3) is the set of vectorial polynomials with variable in R3 and degree at most k, i.e., 

the set of functions p = (pi, p2, p3) where pi, pp, and ps are in &(R3). 

N is short for P,_i(R3;Iw3). 

For any k E N, a discrete set (bi)ieIi: k’l of k’ = (ki3) points in R3 is said to be Pk(lW3)- 

unisolvent if and only if for any set of k’ real numbers (~~)~eIi: p] there exists one and only one 

p E Pk(W3) such that Vi E [l : k’], p(bi) = yi. 

In the sequel, the set (zi)iEIi : no of the locations of the data is supposed to contain a Pm-i(W3)- 

unisolvent set, and without loss of generality, we suppose that the m’ first points of the set, i.e., 

Cxi)iE[l,m’]7 form a P,_ i (R3)-unisolvent set. 

Distributions 

As usual in distribution theory, z)(Iw3) denotes the set of compactly supported, infinitely deriv- 

able functions from R3 to R, and 2)‘(R3) is its topological dual, i.e., the set of distributions on 2). 

In the same way, D(B3;R3) = D(W3) x Z7(llX3) x Z7(W3) and D’(W3;lw3) is its topological dual. 

Finally, (C”(W3; R3))’ is the topological dual of C”(W3; W3), i.e., the set of compactly supported 
Radon measures. 

6 is the Dirac distribution in ‘o’(R3), (0 I 0) denotes the usual duality product, and * denotes 
the convolution product of a distribution by a measure. 
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Seminorms, norms, and Beppo-Levi spaces 

D-“L2(W3) is th e scalar Beppo-Levi space of order m, i.e., the set of functions (or distributions) 
from IR3 to IR whose all total order m derivatives (in the sense of distributions) are in L2(R3). 
Endowed with the semiscalar product (0, •)~ defined by 

D-mL2(IR3) is a semi-Hilbert space. The associated seminorm is denoted by 101~. 
D-mL2(IR3; R3) = FmL2(R3) x D-mL2(R3) x D-“L2(lR3) is the set of functions (or distribu- 

tions) from JR3 to R3 whose three components are in D-mL2(lR3). Endowed with the semiscalar 

product (0, •)~ defined by 

D-“L2(lrP; R3) is a semi-Hilbert space. The associated seminorm is denoted by 101~. Endowed 
with the scalar product 

((f,g))m = (f7g)m + c f (xci> .9 (4 3 
iE[l : m’] 

D-L2(R3; W3) is a Hilbert space. The associated norm is denoted by 11 l llm. We will need the 
following density relation: 

D-“L2 (R3; R3) = ?J (R3; W3) + P,_1 (8X3; IR3)““““. (3) 

2.2. The Seminorm to be Minimized 

The idea is to be able, via the seminorm to be minimized, to govern in some way the ratio 

I div fldiv/f rot f/rot of the interpolant, where I l ldiv is some scalar (semi-)norm and 1 l Irot is some 
vectorial (semi-)norm. To do so, we need a seminorm which takes into account the rotational and 
the divergence of the interpolant, giving the user the possibility to stress the one or the other, 
depending on the type of the desired result. This is why a (semi-)norm involving pi divf&, + 

I rot f IL seems something reasonable. Obviously, if p is large (or tends to infinity), the (seminorm 
of the) divergence of the so-obtained interpolant will be forced to be small (or tends to zero), 
while on the opposite if p is small (or tends to zero) (the seminorm of) its rotational will be 
forced to be small (or tends to zero). Note that here p is a nondimensional positive real number. 

Note also that when I l ldiv and I l Irot are seminorms (and are not norms), a large p forces the 
seminorm of the divergence of the interpolant to be small, which does not imply a priori the fact 
that the divergence of the interpolant is small. 

We now have to choose the seminorms / l Idi” and / l Irot. Two main motivations will guide us to 
choose these seminorms: first, we want the so-obtained interpolant to be a continuous function 
(in order to be uniquely defined on R3), and so we want the Dirac distribution in t (i.e., &: 
f ---) f(t)) to be a continuous one; but we usually want more, since a certain regularity of the 
so-obtained interpolant is often required from the real problem, and the user often wishes that the 
oscillations of some quantity linked to the interpolant are as small as possible (both these latter 
points are usually connected). We propose in this paper to use the two following seminorms, for 
some arbitrary fixed m > 2 (we use the seminorm I l Im-l of a scalar function, as defined in (l), 
and the seminorm ( l Im-l of a vectorial function, as defined in (2)): 

I l ldiv = 1 l Im-I and lo Lot = I l (m-l. (4) 
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Finally, the seminorm to be minimized is defined by 

If Izn,p = pIdivfl&_, + Irotfl~_l. (5) 

Of course, the minimization will be done over all functions whose all derivatives of total order m 

are in L2(R3; lR3), i.e., over the space D-mL2(lK3;i.R3). 

Now, the interpolant function depends on the two parameters m and p, fixed by the user. It 

is denoted by urn+ and is defined by 

(f-3) 

3. FUNCTIONAL ANALYSIS TOOLS 

3.1. Semi-Hilbertian Subspaces and Associated Semikernels 

First, let us recall the definitions of a semi-Hilbertian subspace and of associated semikernels 

(see [71). 

DEFINITION. Let E be a vectorial topological space, separated and locally convex; let E’ be its 

topological dual. 

Let H be a vectorial subspace of E, endowed with a semiscalar product (0, l )H (the associated 

seminorm is 1 l IH), and NH the nullspace of the seminorm; NH is supposed to be closed in E. 

Let Ni be the orthogonal space of NH in E’. 

H is said to be a semi-Hilbertian subspace of E if the space H/NH, endowed with the quotient 

norm, is complete, and if the injection from H/NH into E/NH is continuous. 

THEOREM 1. Let H be a semi-Hilbertian subspace of E. Then there exists a linear map h 

from E’ to E meeting 

(i) Vf’ E N,$, h(f’) E H. 

(ii) v.f E H, (h(f’),f)H = (f’ I f)E',E. 

DEFINITION. h is called ‘semilcemel of H in E”. 

REMARKS. 

(a) h is usually not unique; actually, if h is a semikernel, then for any linear map p’ from E’ 

to NH, hl defined by hl = h + p’ is also a semikernel. 

(b) The semikernel of a semi-Hilbertian subspace will be of high interest in order to give an 

expression of the solution (T,,~ of the minimizing problem (6). 

3.2. A Particular Semi-Hilbertian Subspace 

Let us now prove that the minimizing problem (6) can be expressed in the context of semi- 

Hilbertian spaces. From now on, n/ is short for P,_i(JR3; R3). 

This is done by the following theorem. 

THEOREM 2. Endowed with the seminorm Io[~,~, D-mL2(IR3; R3) is a semi-Hi1 bertian su bspace 

of C0(R3; IRS). 

PROOF. The nullspace of the seminorm IoI~,~ is obviously N = Pm_1 (R3; R3). As a finite- 

dimensional space, N is closed in C”(R3; lR3). 

Let us prove that D-“L2(IR3;R3)/N, endowed with the quotient norm, is complete. 

Let (.&EN be a Cauchy’s series of elements of WmL2(R3; R3)/N. 

Let fn E D-“L2(R3;R3) and p, EN be such that fn +p, E f;l. 
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Using (5), for all E > 0, there exists some Ic E N such that, for all p and q in N such that p > k 
and q > k, we have 

p ldiv (f, - fs)l,-l < E, 

Irot (fp - fq)lm_l < E. 

So, for any y such that ]y] = m, (DYfn)ne~ is a Cauchy’s series in L2(IR3; IR3) and so converges 

towards some f, E L2(JR3; R3). 
Now, from [B], the equations (V y E N3, ]y] = m =S DYf = f,) have a solution f in D’(R3; R3) 

if and only if the usual compatibility conditions on f7 are fulfilled, i.e., if and only if 

V-Y, 7’ E N3, IyI = Iy’I -----T. D”f? = D7f.y. 

Using the continuity of the derivation in D’(lR3; IR3), we have, for any y and y’ in N”, 

(7) 

So there exists a f E D’(R3; R3) such that 

If-/E ws, IYI =m ===+ DYf = f, E L2(R3;R3). 

So f E DpmL2(R3; lR3). Using now the unicity of the limit, we get 

(8) 

v/y E P, ]r]=m-1 ===+ 
JFmD’ div f,, = D7 div f, 

lim Dy rot fn = Dy rot f, R’cm 

and so ( fi)nEN converges in DdmL2(R3; IR3)/N. 
Finally, it is classical (see, for example, [9]) that the injection from D-mL2(IR3;R3)/n/ to 

C”(R3; JR”)/N is continuous. 

3.3. An Associated Semikernel 

We will now give the expression 

notation. 

Notation 

1 

of an associated semikernel. We first need the following 

Let (0, l )m,p be the semiscalar product associated with the seminorm ]o]~,~, namely, for any f 
and g in D-mL2(lR3;lR3), 

(fydm,p = ddivf, d ivg),_r + (rot f,rotg),_r. (9) 

Let Pm,p(D) be the homogeneous differential operator of degree 2m defined by 

Pm,p(D) = (-l)mA--’ (pV div - rot rot) 

&I + a;2 + a;3 (P - 1) %2 

= (-yp-1 (P-WE al1 + $222 + a,23 

(P- m3 (P - 1) ai3 

(P - 1) a?3 

(P-V,23 

1 

00) 

a:, + a;2 + P% 

Let urn+1 be the function from !R3 to IR defined for any x in IR3 by 

vTz+1(x) = &lIxl12”-l. (11) 
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It is known (see [7,8]) that urn+1 meets the relation Am+l~m+l = 6, and so, taking the generalized 

Fourier transform of both members, S,+l(() = (-l)m+1/112~C112(m+1). 

Now, let the tensorial functions Pot, adi”, and @ be defined by 

a&%%+1 ~~,%+l 83%n+1 

a rot = (-1y a;,v,+1 a;2vm+1 g3%n+l 

af3vm+l a;3vm+1 a;3vm+1 

adi” = (-l)m (Av,+~ . I3 - Vot) 

(ai2 + a&) h+1 -a,2,th+l 

= -af2vm+l (a:, + ai,) h+1 

-af3h+l -a;321m+1 

a = Qdiv + &pt _ 
- (bn+l) .I3 + - 

1 - P@rot 

P P 

%I+1 1-pa;20m+l 
P 

= (-l)m %n+1 

I 

(12) 

The semiscalar product (0, •)~,~, the operator Pm,p (D) and the tensorial function @ are con- 

nected by the following relation (13). 

THEOREM 3. P,,,(D) and @ being defined as above, we have 

&&p(D)@ = 6.133, in D’ (R3,W3) . (13) 

PROOF. Let us take the generalized Fourier transform of (each component of) @. We get 

(-1Y cp (I) = (242” llClp-1) 

/ c,” + P cc22 + ci) 
PllCl14 

1 - P GG 

Pm 

1 - P GC3 

\ -am 

1 - P ClG 

PiEiF 

c; + P (r12 + G) 

PllCl14 
1 - P <26 
Pm 

1 - P Cl<3 

--a# 

1 -P tb 
PKiF 

c3" + P(C12 + c;> 

PllCl14 

Inverting this 3 x 3 matrix, we get 

PC? +c; +c32 (P- 1) Cl<2 (P - 1) Cl<3 

(-1)“(2in)2ml1~112(m-l) (P- 1) ClG c12 + P&f + <if (p- 1) c2c3 h(c) = 13. 

(P - 1) Cl<3 (P-1)<2<3 rf+<:++pC,” 

Now, taking the inverse Fourier transform of each component, we get 

pa?, + ai + az3 (P - 1) 82 (P-W:, 

(-l)mA’+’ (p-v% aTI + pai + a:, (P - 1) ai3 Cp = 6. Is, 

(P- wh (P- w:, a:, + a;, + pai, 

which is (13). I 

REMARK. In the particular case when p = 1, we have Pm,P(D) = (-l)“Am . I3 and ip = 

(-l)mAv,+l . 13 = (-l)“%~~ . Is. So Pm+,(D) is (-l)m times the mth Laplacian operator 

on each diagonal term, and 0 elsewhere, while Cp is (-1)“’ times vm on each diagonal term, 
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0 elsewhere. We so have a polyharmonic spline problem on each component, and no connection 

between the components. 

We can now give the expression of the semikernel of D-mL2(lW3; R3) in C”(R3; R3). To do so, 

we must use the space nil n (C”(R3; W3))‘, which is the space of compactly supported Radon 

measures orthogonal to n/ = I!?,-1(R3; Iw3), i.e., 

vp E N' n (Co (R3; R3))‘, Vp E Co (R3; R3) , (P 1 P) = &j I ~j) = k / Pj(t) dpj(t) 
J=l j=l IFi3 

and (p 1 p) = 0 whenever p E lP,_1(Iw3; Iw3). 

THEOREM 4. Let h be the application from (C”(Iw3; R3))’ into C”(W3; W3) defined by 

VP E (cO(lP;nP))‘, h(p) = @*p. 

Then we have the following. 

(14) 

(i) For any p in N’ f’ (C”(rW3; Iw3))‘, h(p) is in DmmL2(IW3; Iw3). 

(ii) h is a semikernel of DPmL2(IW3; rW3), endowed with the seminorm Io(~,~, in C”(Iw3; lw3), 

and so for all p E N-‘- n (C”(lFX3; W3))’ and all f E D-“L2(B3; Iw3), we have 

PROOF. 

(h(p), f)m,p = (@WJ)m,p = (PI f). (15) 

(9 

(ii) 

Condition (i) is a direct consequence of the following result, due to Amodei [2] and Ben- 

bourhim [lo]: f or any boundly supported Radon measure V, orthogonal to Pm-1(R3), and 

foranyyEP13 such thatm+l< IyI <2m+l, DYv,+~*YEL~(W~). 

For completeness we present here the proof of this result. Using the orthogonality of v 

and &+I(<) = (-l)m+1112~Cll-2(mf1), we have (C and Cl are two real constant numbers) 

v< E N3, II111 < 1 ===+ liD TG* v)(C)1 < Cll<ll-“+‘+. 

Now since v is compactly supported, we also have 

v< E I@, 11~11 2 1 ====s 1 (DrG* v)(()l 5 C111CII-2(“+1)+lyl. 

So we have the result by applying the above result to each component of v. 

Let us first prove (15) when f E D(Iw3; Iw3) 

(h(p) 1 f)m,p = (a *A f)m,p = (div(Q,*p),divf),_l + (rot(Q*p),rotf),_l. 

So we have, by integration by parts (in the sense of distributions), 

(f7g) m,p = -p(Vdivf,g),-1 + (rotrotf,g),-1, 

and then 

(h(P) 1 fhJ = -p(Vdiv(@ * II), fh,-I + (rotrot(@ * PL), .&-I 

= -p((-l)“-l~m-lVdiv(Q*~) I f) 

+ ((-l)“_l Am-’ rot rot(@ *p) I f) 

= (%AW@ *P) I f) = ((pm,,dDP) * CL I f) . 

which is, by using (13) (h(p), f)m,p = (6.&3 *CL I f) = (P I f). 
So (15) is true for all f E D(Iw3; Iw3). 

Now, (15) is obviously true for any f E IP,_l (rW3; R3) since then all members of (15) are 

trivially zero. So, using the density relation (3), (15) . t 1s rue for all f in D-“L2(Iw3; W3). 1 
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3.4. Setting a Variational Spline Problem 

Let us first recall the general theorem on variational spline (see [9,11] or [12]). 

THEOREM 5. Let X, Y, 2 be three Hilbert spaces. Let u (respectively, V) be a continuous linear 
map from X to Y (respectively, from X onto 2). Let us suppose u(X) to be closed in Y. Let us 
suppose Ker u + Ker v is closed in X and Ker u n Ker Y = (0). 

(i) Then, for any .z in 2, the function u defined by 

a = A;%@$ { Ilu(.f)ll~; v(f) = z} 

exists and is unique. (T is called the interpolating spline relative to X, Y, Z, u, V, z. 
(ii) Now, let (m, l )x be the semiscalar product on X defined for any f and g in X by 

(fl dx = (U(f)? 'IlkT))Y. 

Let E be some vectorial topological space, separated and locally convex and suppose that 
(X, (0,0)x) is a semi-Hilbertian subspace of E. Let h be a semikernel of X in E. Suppose 
Z = R” for some k E N and let vi E E’ for any i = 1,. . . , k, (v(f))i = (vi 1 f)~j,~. Then 

there exists a = (ai)icp : q in R” and p E Keru such that 

i=l 

k (16) 
Vq E Ker u, &(% 1 q)E',E =o. 

i=l 

(iii) a and p are uniquely defined by the following linear system, where & is the dimension of 
Ker u and the (qj)jc[l : [I are a basis of Ker u: 

Vj E [l : k], (vj I ~)EI,E = z3, 

v'j E [l : a], &Cii(Vi 1 Q')E',E = 0. 
(17) 

i=l 

Let us now present the vectorial interpolation problem as a variational spline problem; to do 
so we need define the space E, the spaces X, Y, Z and their norms, the continuous maps u and v, 
and check the two conditions: Ker u + Ker u closed in X and Ker u n Ker v = (0). 

Let E = C”(W3; R3), and let X = D-“L2(lR3; IR3), endowed with II l Ilm. Let Y = (L2(lR3))m’ x 
(L2(R3; IEQm’, endowed with the scalar product (or 0)~ defined for any f, fl in (L2(lR3))m’ 
and g,gl in (L2(lR3;lR3))m’ by 

Let Z = (R3)n, endowed with the Euclidean norm in W 3n Let u (respectively, V) be the linear . 
map from X to Y (respectively, from X to Z) defined for any f in X by 

(respectively, by Vi E [l : n], v(f)i = f(s?)). 

Note that with these definitions, we have, for any f and g in X, (f,g)m,p = (u(f), u(g))y. So, 
we have a variational spline problem, since we have the following theorem. 
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THEOREM 6. With the above notation, we have: 

(i) u is a continuous map; 
(ii) v is a continuous linear map onto Z; 

(iii) u ( X )  is closed in Y;  
(iv) Ker u + Ker v is closed in X;  
(v) Ker u M Ker v = {0}. 

PROOF. 

(i) Condition (i) is a direct consequence of the definitions of X, Y, and u. 
(ii) Since m _> 2, the injection from D-mL2(R3;R3)  into C°(R3;]~ 3) is continuous; so, for 

all x in R 3, 6x : f 6 D-mL2(R3;  R 3) --* f ( x )  E R 3 is continuous; as a consequence, v is 
continuous. 

Let us now prove that  v (X)  = Z. Let r < (1/2)min~#j ]ix i -xJ l ]  and %b be the map 
from R 3 to R such that  ¢(x) = exp(-[lx[i2/(r 2 -I[x[[2)) if [[x[[ < r and ~(x) = 0 if 
IIx[[ > r. Then for any z • Z, the map fz defined by Vx • R 3, f z (x)  = ~ = 1  zi¢(z)  is 
in X and meets v( fz )  = z. 

(iii) Let u(fn)ne• be a Cauchy's series of elements of Y. By definition of u, (D~f~)~eN is a 
Canchy's series of elements of L2(R3; R 3) for [7[ = m. So from Schwartz [8], there exists 
f • / ) ' ( R a ; R  3) such that  D ~ f  = f~ and so f • D-m(R3;I~3). We obtain 

{ l i m D  ~d iv fn  = D r divf ,  

V ~ ' e N  3 , [7[ = m - 1  ~ limooD.~ rot f ,  ~ D~ rot f ,  

and so limn-oo u(fn)  • u (X) .  
(iv) We obviously have Keru  -- ?m_I(IRa;R 3) whose dimension is finite, so Keru  is closed 

in X. Besides Kerv is closed since v is continuous. So Ker u + Ker v is closed in X. 
(v) Besides since the set (xi)i6[l:n] is supposed to contain a ~rn_l(R3)-unisolvent set, any 

p • P m _ l ( R 3 ; R 3 )  s u c h t h a t V i • [ 1  :n], p ( x i ) = 0 i s 0 .  S o K e r u A K e r v = { 0 } .  I 

4 .  I N T E R P O L A T I N G  V E C T O R I A L  S P L I N E  

In this section, we give the general form of the interpolating vectorial spline am,p and the way 
how to derive its coefficients. 

4.1. Genera l  F o r m  of  am,p 

We can now set the following theorem. 

T H E O R E M  7. 

(i) Over all functions in D-mL2(•3; R 3) interpolating the vectorial values (x i, zi)ie[l: n}, there 
is one and only one which minimizes the seminorm [ * [,%p defined in (5). 

Let am,p be this function, i.e., 

: {I:I.,:; v i e  : : am,p ArgMin 2 [1 n], f ( x  i) z i } .  
f6D-mL2(Ra;R a) 

(ii) There exist n Ra-vectors a s (i 6 [1 : n]) and a vectorial polynomial p 6 It~m-I(R3;R 3) 
such that (~ was defined in (12)) 

i= ,  (18) 
n 

i i V j e [ 1  : 3], Vq6Pm_I(R3) ,  ~ ' ~ a j q ( x ) = O ,  
i = l  
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which can be written in the following way, where (YJm,p (J E [1 : 3]) are the three compo- 
nents of ~rm,p and for all x in ~3, Vm+l(X) = (-1/4~r(2m)!)[[x][ 2m-1 and where Pl,P2,P3 
are in I?.~_I(R 3) 

am,p1 _- ( _ l ) m  a~ 0121+022+023 V m + l ( . _ x i ) ~  l - P E  ia2012Vm+ 1 2  (. _ x i ) 
i=1 P i=1 

1 - - p n  ) 
+ E i 2  ( . -  P i=1 a3013Vm+1 x i) T p l ,  

(Tin, p2 = (_l)m. Ei=l a~ 0122ym.bl ( .  -- X i) -~ Ei=l a~ 0121 --]- ~022 -[- 0323 Urn_l_ 1 ($ x i ) 

) ~- a~3023Vm+l ( " -  X i) -k p2, 
P i=1 

" i 2 3 ----(--1)m Ea~lO213Vm+l(o--x i )+ 1 P E a 2 0 2 3 V m + 1 ( . - - x i )  O'm, p 
~=1 P i=1 

+Ea~ a~l+a~2+ og3 vm+l(o-x ~) +pa. 
i=1 

PROOF. O'm, p is the interpolating variational spline relative to X, Y, Z, u, v, z as defined in Sec- 
t ion 3.4. Equat ion (18) is then the direct application of (16) by using expression (14) of the 
semikernel h of D-mL2(R3;  R3); since (D-mL:(]~3; R3), ] • ira,p) is a semi-Hilbertian subspace of 
E = C°(]~3; ]~3) (Theorem 2). | 

4.2.  D e r i v i n g  am,p 

The coefficients a s and the polynomial p • ]~m_l(]~3; ~3) used in (18) can be derived via the 
following theorem. 

m+2 "' THEOREM 8. Let m'  = ( 3 ) be the dimension of]~m_l(]t;~3). Let (q~ )i'e[l:mq be a basis of 
]~m_l(]l~3), and b be the matrix of the coefficients of p E I~m_I(R3;R 3) by using this basis for 

lrt I 
each component of p, i.e., V j • [1 : 3], pj = ~-~=1 i i bjq . Let M be the 3n x 3m'  matr ix  defined 
by 

Vi • [1 : n], Yi '  • [1 : m'], Yj • [1 : 3], M3(i,l)+j,3(i_l)+ j = qi' ( x i ) ,  

Mke =O, if l ~ k  (rood3).  

Le t  [I)div and (I)r°t be the 3n x 3n matrices defined by 

Vi, i '  • [1 : n], Vj, j ' •  [1 : 3], (~div3(i-1)-kj,3(i'-l)+j, = ((~div ( x i - - x i ' ) ) j , j  , 

(~r°t3(i-1)-t-j,3(i'-l)+j' ": (~r°t ( x i - - x i ' ) ) j , j , .  

I 

Let • be the matrix 

Let  a be the 3n vector defined by 

1 _  (I) -- ~div q_ __~ (I)rot. 
P 

V i e  [1 : n], Vj  • [1 : 3], a3(i_l)+j = (a i ) j ,  
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b be the 3m / vector defined by 

Vi • [1 : re'l, Yj  • [1 : 3], b3(i-1)+j = (bi)y, 

z be the 3n vector defined by 

Vi • [1 : n ] ,  Vj • [1 : 3],  Z 3 ( i _ I ) T j  = (zi)j, 
and let 0 be the 3m ~ vector all components of which are 0. 

Then, the vectors a i (i • [1 : n]) and the coefficients b} of the polynomial p • ]~m_l(R3;]~ 3) 
in equation (18) meet the following linear system, whose size is 3n + 3m~ : 

PROOF. This is the particular case of Theorem 5(iii), applied to the vector am,p defined by 

Theorem 7. | 

4.3. R e m a r k s  

S i m i l a r i t y  w i t h  r a d i a l  bas i s  f u n c t i o n s  

It  is worthwhile to compare properties (18) of the proposed vectorial interpolant a,~,p and the 

radial basis function in the case of scalar interpolation. 
Form (18) of am,p is very similar to the general form of a radial basis function, say a -- 
n Y~=I A~(*  - x ~) + qm-l :  instead of the radial function ~, we now have a 3 x 3 tensor func- 

tion (I); each component of (I) is not radial, but is easily derived as a sum of derivatives of the 

common radial function Vm+l (see definitions (12) of (I) and (11) of Vm+l). Instead of the scalar 
coefficients Ai, we now have vectorial coefficients ai; for scalar radial basis functions, the vector A 
meets the orthogonal relation Vq E Pm-l (Rd) ,  ~-~in__l Aiq(x i) = 0 (d is the dimension of the 

space), while the second equation in (18) is similar to each of the vectors formed by the first (re- 

spectively, the second, the third) component of each vectorial coefficient a i. Lastly, we now have 

a vectorial polynomial p instead of a scalar polynomial qm-1. So we clearly see the difference, 
but also the similarity between interpolating each component of the z i data  independently from 

each other (and so find, for example, true radial functions in each component),  and interpolating 
globally all components of the z i data  and taking into account, via the minimized seminorm 

['atm-l' interactions between them. 
As a consequence, the form of the linear system (18) is very similar to the usual one for radial 

basis functions; it also presents the same drawbacks, such as high condition number when da ta  are 
numerous, and the way of deriving other linear systems is presently under s tudy (see Section 6.4). 

As a consequence of form (18) and as mentioned below (choice of m and p), am,p is C a 
everywhere except on the data  points, which is an important  property of radial basis functions. 

As for the differential operator Pm,p(D), we can compare the relation Pra,p(D)O = 5 .13  
(see (13)) with the vectorial equivalent of the one obtained for m-harmonic splines Am~ = ( -  1) m 5 
(or its Fourier equivalent @ = 11 " 112m--d), or more generally for a r-harmonic spline (r E R+, 

r > d/2 where d is the dimension of the space) q3 = II * II 2r. 

P a r t i c u l a r  case  w h e n  p = 1 

When p = 1, the differential operator Pm,o(D) reduces to ( - 1 ) m A  m on each diagonal te rm and 
to 0 on each nondiagonal term (see (10)). As a consequence, (I)(x) reduces to vm(x) = Ctlxll 2m-3 
(vm is such tha t  Amvm = 5, C is a constant) on each diagonal te rm (see (12)). So ~m,p reduces to 
a radial basis function on each component, which is precisely the m-harmonic spline interpolating 
the corresponding component  of the data  (zi)ie[1 : ~]. So when p = 1, the vectorial interpolation 
problem reduces to three independent scalar interpolation problems, one for each component  of 
the data,  and yields a radial basis function (m-harmonic spline) for each one. 
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Choice of m and p 

Of course, the choice of m and p does influence the resulting (T,+,. The influence of m is quite 

clear and usual, since corn+, is in WmL2(llU3; as), which is included in Cm-3/2(ll%3; R3). So the 

choice of m mainly depends on the regularity we require for the interpolant. Let us recall that 

u’m,p is actually Coo everywhere except at the data point where it is actually Cmm3i2. 

The choice of p is somewhat less simple. Remember that a small value of p implies a small value 

of 1 rot (~,,~(~._.r, whereas a big value of p implies a small value of ]div ~,+],_r. More precisely, 

it can be proven that ]rot ~~,~]~_i is a continuous increasing function of p, while ]div (~,,~],_i 

is a continuous decreasing function of p, and that we also have lim,,a (rot ~~,~],,_r = 0, 

lim,,, (div crm,,,lm_i = 0. 

All this can guide the user for the choice of p. In particular, if the data are supposed to be 

derived as zi = f(zi) where f is some function for which ]divf(,_i/]rotf],_, is known, the 

user can choose p iteratively so that the ratio (diva,,J,_,/]rot om,p(,_l be sufficiently close 

to (divf],_,/]rot f],_r. Let us mention that for a given om,p, the evaluation of I diva,,P],-r 

and I rot ~~,~]~-i is quite easy since it can be proved that I diva,,,]:_, = (l/p2)atWta and 

I roWdL = atFa. The monotonicity of the function p H ( diva,,,]&_,/] rot ~~,~(k_i 

makes the iterations easy to be done. 

Note, besides, that if the user wants div f = 0 or rot f = 0, he has to use other spaces and 

other functions, as shown in Section 6.2. 

5. NUMERICAL RESULTS 

We made a great number of tests from which we extract the following two, done by using 

Matlab. Before giving comments on the graphs, we must specify the problem of the representation 

of functions from R3 to R3. 

5.1. Graphical Representation of Vectorial IW3-Functions 

It is quite a challenge to represent in a significative way a function f from R3 to 1w3 on a sheet. 

Actually, in order to be meaningful, we must represent only a part of the whole information in f. 

We chose here two different ways. 

(a) Represent ]]f(z)]] in W3, or more precisely on some plans of R3. The representation of 

]]f(z)]] in each plan is made both by colorscale (or grayscale) and by contour lines. Though 

the information is not complete (direction of f(z) is not at all represented), it allows rather 

fair comparisons between close-by functions. This is what we used for the first numerical 

example, choosing the plans z = 10, y = -3, z = 0, and z = -3 since the function is 

studied in 10.1, lo] x [-3, 312. This uses the Matlab function slice. 

(b) Represent some planar slices of f, each value of f(z) being represented as an arrow 

proportional to the projection of f on the plan. This is what we used in the second 

numerical example, since it is the best way to “see” some rotational or divergence in f. 

This uses the Matlab function quiver3. 

For both representation types, stars represent the interpolation points which are on the shown 

plans. 

5.2. The flow Function 

The flow function from Matlab models the speed profile of a submerged jet in an infinite tank. 

The interpolation points are on a 5 x 5 x 5 grid covering the domain [O.l, lo] x [-3, 312 regularly 

in each direction. Four graphs are given. 

First (Figure l), the original flow as given by Matlab. The second graph (Figure 2) is obtained 

by the Matlab routine interp3 with the options “spline”; this routine does R3 scalar interpo- 
lation, here by using splines, independent for each component of the function. The third graph 
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Figure 1. Theoretical flow. 

Figure 2. interp3 with 125 data. 

(Figure 3) gives CYZJ, i.e., does three-dimensional biharmonic spline interpolation independently 

on each component. Lastly, the fourth graph (Figure 4) gives ~~s,r,, where p is computed such that 

) div as,pji/l rot as,yli z 1 div flow/i/l rot f lowli which is p z 0.2821. We clearly see in this result 

that as,p gives a result closer to the original flow function than the one given by the method 

used by interp3. us,1 is quite close to ~3, which is not surprising since F N 0.2821 which can 

be considered as quite close to one. Results obtained for very small or very large p (such as 10e8 

or 108) are not shown here, but they were not better than the interp3 one. 

5.3. Function V sin 1) 0 1) 

In this second example, we wanted to show the interest of using the proposed method when 

the underlying data is irrotational or divergence free. We generate an irrotational function by 

f = Vg for some function g from Iw3 to Iw. We chose g = sin 1) l I). Interpolation points are 6 x 6 x 6 
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Figure 3. 02.1 with 125 data 

Figure 4. qp with 125 data. 

on a regular grid covering [-K,x]~, and we show the slices of f (Figure 5) and interpolants for 
z = n/5 (in order to have interpolation points in the slice). 

Choosing p = 10V8 (Figure 6), we recover quite well the general shape of the function (a source 
in 0 and a circular sink close to ]]z]] = s/2). 

Choosing p = lo’, we have Figure 7. No rotational is obvious in this figure, but the divergence 
seems to be constant (which is correct since I div a,,108 ]I N 0), and the circular sink completely 
disappeared. This shows the influence of p. Choosing now p = 1, we have Figure 8. Though we 
still have the source and the circular sink, they are less important than in the original function, 
and in crs,rc--~ and the interpolant recovers the original function in a poorer way. 

So we see that, in this example, we get better result when choosing a p adapted to the underlying 
problem and shows the interest of taking into account the interaction between the components 
of the interpolant to derive a good interpolant. 
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Figure 6. LT~,~~- 8 with 216 data. 

6. CONCLUSION 

The family of functions crm,P, for various m and p, are an extension of splines for vectorial 

interpolation. Their form is rather close to the form of radial basis functions. The parameter m 

governs the reguiarity of CT~,~, while p governs the quantity of the divergence part or of the 
rotational part in it (more precisely the ratio [div g,,pl,_r/jrot ~,,~l,_r). For any fixed integer 

m 2 2 and nonnegative real number p, and for any data points (9, ~~)~e[r: nl whose locations 

(~~)~e[r : no form a IP,_r(R3)-unisolvent set, there exists one and only one CT,,~ interpolating the 
data. 

For m and p fixed (and eventually (~~)~eir:~] fixed), the set of (T,,~ form a vectorial space 

which can be used for most vector approximation problems, as are the spline spaces and spaces 
of the radial basis functions. 

We now present some extensions of this work. 



Radial-Basis-Like Functions 409 

Figure 7. g2,108 with 216 data. 

Figure 8. CT~,I with 216 data. 

6.1. Extension Similar to the Radial Basis Functions: “Shifted u~,~” 

As it has been done at the beginning of radial basis functions theory for scalar functions, 

the solution shown in this paper can be regularized by using the infinitely derivable function 

~,+r,~ = (11~11~ + c2)m-1/2 instead of the function w,+r in the corresponding tensor functions 
@div ) a@, and a., deriving so a C” function crm,p,c in the form (18). 

The vectorial coefficients (ai)ie[r :n~ and the coefficients (bi)rr :m,) of the vectorial polyno- 
mial pm_1 are then derived from the interpolating conditions o,,~(z?) = zi and the orthogonality 

conditions in (18), i.e., by the linear system (19) (where U,+I is replaced by v,+r,,). The same 

reflections as usual can be made about the choice of c and its influence on the regularity and the 

form of the so-obtained CT,,,,~, on the condition number of the linear system (19). 

Most of the interpolating properties of the vectorial spline presented in this paper should still be 

valid, but of course, by such a modification, we lose two important properties: the minimization 

property and the influence of p on div B~,~ and rot u~,~. 
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6.2. Interpolant with the Condition div o = 0 or rot 0 = 0 

The method and the interpolant presented in this paper uses ]div flm_i and ]rot flm_i, which 

allows the user to govern in some way these quantities, and, in particular, for extreme values 

of p (0 or 03)) to ensure that rot ‘T~,~ or div cr,+, is polynomial. This method cannot derive 

crm,@ such that divgm,@ = 0 or rot cm+, 3 0 (independently of the regularity we may require for 

the interpolating function; besides m = 1 is not allowed since the elements of D-*L2(R3;lR3) 

are not all continuous, and so we have no more Hilbertian subspaces, variational splines, : , and 

everything collapses). 

However, by considering for m 2 2 the spaces D -mL&_O = {f E 13-mL2(B3;lR3); divf = 

0) and D-mL&o = {f E D-“L”(B3;I@); rot f = 0}, we can prove they are Hilbertian 

subspaces of D-“L2(R3; R3) and we can derive their semikernels, and so obtain divergence-free 

or rotational-free interpolating functions. The method to solve this problem is different from 

the one presented in this paper since the equivalent of the differential operator Pm,p(c)) is not 

invertible and so we cannot derive a fundamental solution of it (the equivalent of @). This will 

be presented in a forthcoming paper. 

6.3. Towards PDEs 

It is expected that the vectorial spline o,,~ (and the function CT,,~,~ as defined in Section 5.1) 

can be used in order to solve vectorial PDEs, in a similar way as radial basis functions are used to 

solve scalar PDEs. The coefficient p can be used in order to govern the ratio /div fj,_,/]rot flm_i 

independently of the PDE. No experimentation has yet been done in that direction. 

6.4. Quasi-Interpolant and Improvement of the Condition Number 

Looking at the general form of CT,,@ (18) and the relation Pm,p(D)@ = 6.13 (see (13)), we 

may think that we can derive a quasi-interpolant by applying a discretization of P+(D), say 

P,,,(%, to Q. 
This is what actually happens on equidistant grids: as shown in [G], let for k- < m the ten- 

sor function BP{ = J’,,,i%@, where GJD) h is a P2k+r-exact discretizatioll of P,,,,(D), 

i.e., p,,,(D)h is in the form ~~,~(~)~~ = GeEZ3,jelIk Xef(o - Ch) where the Xe are real coef- 

ficients, and for any p E lF’~~+r(lR~;l’R~), P,,,(D)hp = P,,p(D)p, Then Br$ has many prop- 

erties of cardinal B-spline functions (or cardinal quasi-interpolants), as for example if aIt& = 

CiEZ3 BcjcP(o-ih)f(ih), then for any f E C”‘(R3;lR3), with k’ 5 2k-t1, ila~f~~~-Sll~h_06(ilk’), 

and ‘dp E lF’2k+l, OK&, = p. 

As for scattered data, the results given in [13] h s ow that in one dimension, a discretization 

based on the (~?)~eli : r&l, of the equivalent of Pm,p (I)) applied to the equivalent of v,+, or u,+,~ 

(see Section 6.1) gives bell-shaped functions which can be used to improve the form of the linear 

system to be used for deriving a urn,,, or u~,@,~ interpolating the data, in a similar way as proposed 

by David et al. in [14]. We expect to obtain similar results by discretizing P,,,(D) on (~~)~elr :nl. 
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