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Abstract

In the first part of this article we provide a geometrically oriented approach to the theory of orbispaces originally
introduced by G. Schwarz and W. Chen. We explain the notion of a vector orbibundle and characterize the good
sections of a reduced vector orbibundle as the smooth stratified sections. In the second part of the article we
elaborate on the quantizability of a symplectic orbispace. By adapting Fedosov’s method to the orbispace settinc
we show that every symplectic orbispace has a deformation quantization. As a byproduct we obtain that every
symplectic orbifold possesses a star product.
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Introduction

Deformation quantization has been introduced into mathematical physics by Bayen, Flato, Fronsdal,
Lichnerowicz and Sternheimer [1] more than 25 years ago. Since then, various existence and
classification results for star products on a symplectic or Poisson manifold have appeared [7,8,11].
A common feature of all these approaches is that the space to be quantized is not allowed to have
singularities. But many symplectic or Poisson spaces with strong relevance for mathematical physics are
singular. For instance, the phase spaces appearing in gauge theory or obtained by symplectic reductic
are in general not smooth and possess singularities. According to the work of Sjamaar and Lerman [22
such singular symplectically reduced spaces are stratified spaces, where each stratum carries a canoni
symplectic structure. So the natural question arises, whether an arbitrary symplectic or Poisson stratifiec
spaces has a deformation quantization as well. In this work we consider a particular class of Poissor
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spaces with singularities, namely symplectic orbispaces, and show for this class the existence of a sta
product. We achieve this by generalizing Fedosov’s construction to the orbispace setting.

Originally, orbispaces have been introduced by Schwarz [19] in his PhD thesis under the name of
“generalized orbit spaces” or “Q-manifolds”. The name orbispaces first appeared in the work of Chen
[5], where an independent and more topologically oriented approach to a theory of generalized orbit
spaces has been set up. By definition, orbispaces are topological spaces which locally look like orbit
spaces of compact Lie group actions. Thus, orbispaces comprise a natural generalization of orbifolds
and our results imply in particular that every symplectic orbifold carries a star product.

Our article is set up as follows. In the first section we recall the notion of a stratification and
elaborate on the canonical stratification of an orbit space by orbit types. Moreover, we introduce profinite
dimensional manifolds and differentiable categories with slices. Both concepts will be needed later in the
definition of a (possibly infinite dimensional) orbispace.

In Section 2 we provide an introduction to orbispaces. Since the applications we have in mind are of
a differential geometric nature we have adapted the original approaches of Schwarz [19] and Chen [5]
to our needs. Moreover, the approach presented here allows infinite dimensional orbispaces. Concernin
the subcategory of orbifolds let us mention that we do not make any restrictions on the codimension of
the fixed point sets of the local isotropy groups of the orbifold. This entails in particular that manifolds
with boundary or with corners can be regarded as orbifolds. In the second part of Section 2 we introduce
the notion of a vector orbibundle and of a reduced respectively good orbibundle. The main result is
Theorem 2.13, where we show that a continuous section of a reduced vector orbibundle is a good sectio
in the sense of Ruan [16], if and only if it is a stratified section which extends to a (vertical) derivation
of the algebra of smooth functions on the orbibundle. Theorem 2.13 is essentially a consequence of the
smooth isotopy lifting theorem of Schwarz [21].

In the third section we introduce riemannian and symplectic orbispaces. Moreover, we explain what
to understand by a metric respectively symplectic connection and show that for every symplectic
orbispace there exist symplectic connections. The explicit definition what to understand by a deformation
gquantization respectively a star product on a symplectic orbispace is also contained in Section 3. In
Section 4 we construct a star-product on a symplectic orbispace by localizing Fedosov’'s method to the
orbispace charts of an appropriate orbispace atlas. It is a consequence of Theorem 2.13 that this ide
works, indeed. In some more detail, we introduce the formal Weyl algebra bundle over a symplectic
orbispace and, given a symplectic connection, construct a flat connection for this bundle. The fiberwise
Weyl-Moyal product on its space of flat sections then gives rise to a star product for the symplectic
orbispace.

1. Preliminaries
1.1. Stratifications

In the presentation of the basics of stratification theory we follow Mather [12] (see also Pflaum [15,
Chapter 1] for further details).

By a decompositionof a paracompact second countable topological Hausdorff spacene
understands a locally finite partitiof of X into locally closed subspacesc X called piecessuch
that the following conditions are satisfied:
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(DEC1) Every pieces € Z is a smooth manifold in the induced topology. ~
(DECZ2) (condition of frontiej If R N S # ¢ for a pair of pieceRk, S € Z, thenR C S. In this case one
calls R incidentto S, or aboundary stratunof S.

Obviously, the incidence relation is a partial order on the set of pieces. The set of decomposifions of
is partially ordered by the “coarser”-relation. Hereby, a decomposi#ipof X is calledcoarserthan a
decompositionz,, if every stratum of2; is contained in a stratum ;.

By a stratification of X one now understands a mappi§gwhich associates to everye X the set
germsS, of a closed subset of such that the following axiom is satisfied:

(STRA) For everyx € X there is a neighborhootl’ of x and a decompositio® of U such that for all
y € U the germS,, coincides with the set germ of the piece®fof which y is an element.

The pair(X, S) then is called atratified spaceObviously, a decompositioZ induces a stratification
of X. The following proposition shows that the converse holds true as well; a proof of this result can be
found in [15, Proposition 1.2.7].

1.2. Proposition. Let S be a stratification onX. Then there exists a coarsest decompositiynof X
inducingS.

We will denote the decompositiaBis by S as well. Its pieces will be callestrata
1.3. Stratification of orbit spaces

Let G be a Lie group acting properly on a smooth maniféfd Denote for every compact subgroup
H C G by My the submanifold of all points a#/ having isotropy group equal t& and by My, the
submanifold of allk € M having isotropy group conjugate . If My, # ¢, we say that the conjugacy
class(H) is anorbit typeof M. The following propositions hold true.

(1) If M/G is connected, there exists a compact subgrépC G such that the subset® -y C M
andM-y/G C M /G are both open and dense. The &gt-)/ G is connected. Moreover, for every
x € M the groupG?® is conjugate to a subgroup of the isotropy graip

(2) The mappingS which associates to everythe set germ oM, is a stratification of\/. Moreover,
the mapping which associates to every ochitthe set germ oM,/ G is a stratification of the orbit
spaceM/G. The thus defined stratifications are called the stratificatioW aEspectivelyM /G by
orbit types The open stratun¥ -, is called theprincipal stratumof M and will be denoted by/°.

(3) If M/G is connected, then the largest normal subgroug; afontained inG° coincides with the
kernel of the canonical homomorphisth— Diff (M).

(4) If G is a finite group andV is connected, thew° is a normal subgroup an@° C G, for every
y € M. Moreover,G acts effectively onV, if and only if G° is trivial.

Proof. Proposition (1) is the well-known principal orbit type theorem due to Montgomery, Samelson and
Zippin [14]; see also Bredon [3] or [15, Section 4.3] for details. A proof of (2) can be found in Bierstone
[2, Chapter 2] or [15, Section 4.3].
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Let us show (3). To this end consider the canonical homomorpltiss Diff (M) of G in the
diffeomorphism group oM. Let L be its kernel. By definition of. one hasl. ¢ gG°g X forall g € G.
On the other hand, becauég°) C (G,) for all y € M, the inclusion( gG°g~1 C L holds as well,
hencel =(,.; ¢G°¢ ™

Now we come to (4) and assume tlgais finite. We will show that the isotropy groups of alke M°
coincide. Clearly, this suffices to prove (4). So Mt be the stratum of/ of codimension 1. Then
M° U M* is a connected open subspaceMf as the complement can be decomposed in strata of
codimension> 2. According to the slice theorem there exists for every poiatM an open connected
neighborhoodU, which can be mapped by@,-equivariant diffeomorphism onto @,-invariant open
ball around the origin of &, -representation spade,. Now, if x € M°, then every point € U, lies in
M° again and has isotropy group equaldg. In casex € M, we will consider the representation space
E, to prove that the isotropy groups of all elementdQfn M° coincide. By the slice theorem and the
assumptions oi/? the fixed point se£ ¢+ is a linear subspace @, and of codimension 1. Choose a
G, -invariant metric(-, -) on E, and letv be a unit vector in the orthogonal complemen#f:. Then we
haveG,v = {v, —v}.Let K C G, be the kernel of the ma@, > g — (gv, v) andh a group element such
that v = —v. Then the isotropy group of an element with A > 0 is identical toK and the isotropy
group of—v is given byrKh~t. ButhKh~! is equal toK, ask is normal. Hence the isotropy groups
of all elements of/, N M° coincide.

Now, asM° U M* is connected, one can connect any two points’ € M° by a finite chain ofU,
with y € M° U M*. In other words this means that there exigt. .., y, € M° U M* such thaty, = x,

y, =x"andU, NU,,, # ¢ for k <n.By the above considerations, the isotropy groups afdx’ then
coincide. This proves the claim.O

geG

The proof of (4) entails also the following technical result, which will be needed later.

(5) Let G be finite,x a point of M, the stratum of codimension 1, aBlC M a neighborhood which
is G,-equivariantly diffeomorphic to an open ball around the origin af arepresentation space.
ThenU N M? is connected an@ N M° has two connected components. Moreoegyr,acts trivially
onU N M?, and there exists a homomorphisiy — Z, with kernel G° such that every element of
G, \ G° interchanges the connected components of M°.

1.4. Profinite dimensional manifolds

A second countable topological Hausdorff spadeis called aprofinite dimensional manifo)df
there exists a projective syste¥;, ;)i < jen Of Smooth finite dimensional manifoldd; and surjective
submersiong;; : M; — M;, i < j, such thatV/ coincides with the projective limit, that means

M =Ilim M;.
If M is a profinite dimensional manifold, there exists a unique family of continuous surjegtions —
M; suchtha; = u;; ou; foralli < j and such thad carries the initial topology with respect to the.
By aprofinite dimensional vector spagee understand the projective limit
V=IlimYV,

ieN
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of a projective systentV;, ¢;;)i<en Of finite dimensional (real) vector spac&sand surjective linear
mapsg;; . V; — Vi, i < j. Clearly, every profinite dimensional vector space is a profinite dimensional
manifold. Examples of profinite dimensional vector spaces are the projective limit

R* =limR"

«—
neN

and the completed symmetric tensor algebra

Sym' (W) := lim Synt (W) /m"
neN
of a finite dimensional real vector spa®. Hereby, Syri(W) denotes the (complexified) symmetric
tensor algebra oV andm the kernel of the canonical homomorphism Syi#) — C. Note thatR” can
be naturally embedded as a subspacR¥f since for alln < N, R" is canonically embedded iR" via
the firstn coordinates.
Thesheaf of smooth functior a profinite dimensional manifold

M =Ilim M;

ieN

is defined as the shedf; with sectional spaces

CyU)={geCWU)|3TieN&g eC®(uU))stgomy=g}
whereU runs through the open subsetsidft Given a second profinite dimensional manifold

N =Ilim N;,
i

a continuous mag : M — N is calledsmooth if f.Ci; C Cy. Using Whitney’s embedding theorem
it is straightforward to check that for every smooth mapN — M there exists, possibly only after
passing to projective subsystems(f;, u;;) and(N;, v;;), a family of smooth mapg; : N; — M; such
fiov;, =u; o f for all i. In case thef; can be chosen to be immersions (respectively submersions,
embeddings or diffeomorphisms), one says th& an immersion (respectively submersion, embedding
or diffeomorphism). Using Whitney's embedding theorem again one proves that every profinite
dimensionalM can be embedded R>.

Obviously, the profinite dimensional manifolds and the smooth maps between them form a category
which we will denote byDtan,. Similarly, the profinite dimensional vector spaces with smooth linear
maps as morphisms form a category.

If a compact Lie groug acts on a profinite dimensional manifold

M =Ilim M;,
TN
one can construct @-invariant riemannian metric oM. Given a pointc € M, such a riemannian metric
gives rise to aG-invariant tubular neighborhood of the orbit through From this one concludes by
a standard argument that the slice theorem holds as well for compact Lie group actions on profinite
dimensional manifolds.
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1.5. Differentiable categories with slices

Consider a subcategory of the category of profinite dimensional manifolds and smooth maps. In this
article we will denote such a subcategory®ynd always assume that it satisfies the following axioms.

(DCAT1) For every morphismf:N — M in ¥ which is a smooth open embedding of profinite
dimensional manifolds, the imag&(N) is an open subobject . U ¢ M being an open
subobject hereby means thats open and that the canonical injectiin— M is a morphism
in <.

(DCAT2) For every object the set of open subobjects is a topologyMn

The categoryT=™ of T-objects with(compac} symmetriesconsists of the following object and
morphism classes. Objects are given by pawvs G), where M € Obj(%) and G is a compact Lie
group which acts smoothly o by elements of the automorphism group AG¥). Morphisms are
given by equivariant map&p, ¢): (N, H) — (M, G). This means that: H — G is a continuous group
homomorphism ang : M — N a morphism off such thaip(hy) = ((h) p(y) forall y e N andh € H.
Two equivariant mapse, ), (¢’,V): (N, H) — (M, G) are said to beequivalent if there exists an
elementg € G such that(e’, /') = (g, Adg) (¢, v).

With a view towards symmetries we assume additionally that the cat&gsayisfies the axiom (SLC)
below; a category for which (DCAT1), (DCAT2) and (SLC) are true will be calledifeerentiable
category with slices

(SLC) Let (M, G) be an object oft*™ andx € M a point. Then there exists &-slice for M at x
that means an embedding, A): (S, K) — (M, G) with A injective and a points € S such
that £(s) = x and such that&, A) is universal in the following sense. Assume to be given an
embedding(p,): (N, H) — (M, G) and a pointy € N where is injective andx = ¢(y).
Then there exists, after passing to appropriate open subobjects, an equivariant automorphisn
(@,id): (M, G) - (M, G) with ® = idy,c and an embeddingy, «): (S, K) — (N, H) such
thaty (s) = y and such that the following diagram commutes:

(S, k)% (M, G) (1.1)
(V,K) (®,id)
(N, H)-% (M, G).

As typical examples for a differentiable category with slices we have the following in mind; using the
slice theorem the reader will easily check that these categories satisfies the above axioms and in particul
(SLC):

(1) the categorylian of finite dimensional smooth manifolds and smooth maps,

(2) the categorytan, of profinite dimensional manifolds and smooth maps,

(3) the categoryl%ol of smooth vector bundles over finite dimensional manifolds; hereby the fiber
vector space is allowed to be a profinite dimensional vector space and the morphisms are given by
smooth vector bundle maps over smooth maps between the bases.
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Given a differentiable category with slic&sthe following properties of a morphistg, ) : (N, H) —
(M, G) in Y™ are easy to prove:

(SYMO) ¢ induces a continuous map. N/H — M /G between orbit spaces.
(SYM1) If ¢ is surjective ands acts effectively onM, thent is uniquely determined by.
(SYM2) If ¢ is injective andH acts effectively onv, thent is a monomorphism.

Let us introduce some useful notation. An objekf, G) of ¥ is calledreduced if G acts effectively
on M. Note that for arbitrary M, G) there exists a natural equivariant morphism frah, G) onto the
reduced objectM, Gy ef), WhereG y ¢ is the quotient group of; by the kernel of the homomorphism
G — Auts(M).

A morphism (¢,): (N, H) — (M, G) between objects of%¥™ is called anembeddingif ¢ is a
smooth embedding arigla homeomorphism onto an open subset of the orbit spga&. If additionally
@ is an open map, we say thap, ;) is anopen embeddingNote that for(¢, ) an embedding; heed
not be a monomorphism. Moreover, (SLC) implies that for every olgjetG) of T™ and every point
x € M there exists an embeddirig, idy) : (S, H) — (M, G).

The following further properties hold for finite symmetries in a differentiable slice category

(SYM3) Assume thatV is connected and that, H are finite. Let(¢,:) and (¢’,/) be two open
embeddings from(N, H) to (M, G) with the actions ofG and H effective. Then(g, 1) and
(¢', ') are equivalent, if and only if = ¢'.

(SYM4) Assume thatVv is connected and tha&t, H are finite. Let(p, ¢): (N, H) — (M, G) be an open
embedding and assume th@tacts effectively oM. Then, if gp(N) Np(N) # @ for g € G,
the relationgg(N) = ¢(N) holds true ang lies in the image of.

1.6. Remark. (SYM3) and (SYM4) correspond to Lemma 1 and Lemma 2 in [18], but note that in [18] the
additional assumption has been made {34t G) and (N, H) do not contain strata of codimension 1.

In the following we repeat Satake’s short proof of (SYM4), which also works in the general case of
strata of arbitrary codimension, and provide a new argument showing that (SYM3) is true without any
assumptions on the codimension of the strata.

Proof. Let us first prove the claim for the case whéras the category of (finite dimensional) smooth
manifolds and smooth maps. DenoteMy the open stratum of &@-manifold M and byM? the stratum
of codimension 1 with respect to the stratification by orbit types. Likewise dé¥fthand N*! for an
H-manifold N. Now, we will show first property (SYM4) and afterwards (SYM3).

So assume tha¥ is connected(yp, ¢) is an open embedding and thgt(N) N ¢(N) # @. Then there
existy, y' € N° such thatp(y) € M° and¢(y") = gp(y). As @ is injective,y andy’ have to lie in the
sameH -orbit, hencey’ = hy for someh € H. We then havey(hz) = g’ (z) forall z € N andg’ = «(h).
As ¢(y) € M° andG acts effectively, we havg = ¢’ = «(h) and consequentlyp(N) = ¢ (hN) = ¢(N).

This shows (SYM4).
Next we consider (SYM3). Assume that(y,) = ¢(y,) for somey, € N°. We will then show that
¢ = ¢ and/ = . Clearly, this will prove (SYM3). Using (SYM4) it is straightforward to check that

@(N°) C M° andg'(N°) C M°. Let us prove thap(N1) c M*. To this end choose for every pointe Y
an H,-invariant neighborhood, such that:V,NV, =@ for h € H \ H, and such thaV, is equivariantly
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diffeomorphic to anH,-invariant open ball around the origin in a linelg-representation space. In case
y € N1, we know by 1.3 (5) tha¥/, N N! is connected, tha¥, N N° has two connected components
and thatH, = Zz Hence, by (SYM2)Z2 = 1(Hy) C Gyy)- The subgroup(H,) acts trivially on the
manifold U«} = @(V, N N1), and the non-neutral element interchanges the connected components of
e(Vy N N°). As a consequence of 1.3 (4),,,, acts effectively on a neighborhood ¢fy) contained

in Uyy) :=@(Vy). So, if L(Hy) # G,(,), one can find by (SYM4) an elemehte G, \ «(H,) and a
point x € Uy, With kx € U,,, andkx ¢ ((H,)x. But this contradicts the fact thatis injective. Hence
G,y = Z, and consequently(N') C M. The same argument also prowesN?') C M*. We continue
with the proof of the equality’ = ¢. Let A be the sefy € N | ¢'(y) = ¢(y)}. Obviously, A is closed in

N and nonempty, since, € A. Let us show thatA N N° is also open. Ley € A N N° and assume that
there exists a sequengg,) C N°\ A converging toy. After transition to an appropriate subsequence
there existsg’ # e such thaty’'(y,) = g'¢(y,) for all n. By continuity ¢’(y) = g’¢(y) follows, hence
@(y) = g'¢(y). But this contradictsG,,) = {e}, SOA N N° must be open indeed. Now Igte N* and
assume thatt NV, N N° # @. 1.3 (5) entails thaV, can be decomposed in three connected sub@?éls
VS andV}, where the first two are the connected componentg, of N° and V! is equal toV, N N1. By
assumption ory there existso € V, N N°, let us sayzo € Vy’\‘, such thaty'(zo) = ¢(zo0). By the results
proven so far we know that'(z) = ¢(z) for all z € V' U V'. We now want to show that this holds
for z € V> as well. As it has been shown above, béthandG,,, are isomorphic t&,. Let h be the
non-neutral element aff,. Then both (k) and/'(h) coincide with the non-neutral element@f,,); this
implies in particular that'(h) = «(h). As hz € V) for z € V3, we obtain

¢'(2) =/ (W' (h'z) = e (h™'z) = ¢ (),

hencey’(z) = ¢(z) for all z € V,. Since every element df° U N! can be connected with, by a finite
chain of V, with eithery € N° or y € N, this shows thatv° U N is contained inA. As A is closed and
N° is dense inV, we thus obtaim = N. This proves the relatiop’ = ¢ under the assumption of finite
G and H. To show that’ = consider the open sét = H V, C N° and the imagé/ = ¢’ (V) = ¢(V).
Obviously, im’ c Gy :={g € G | gU C U}. Since¢’'(hy) = ¢p(hy) = 1(h)¢'(y) for y € V and asGy
acts effectively orUU, the relation’ = ¢ follows. This finishes the proof of axiom (SYM3).

For the case of profinite dimensional manifolds with finite symmetries

(M —lim M, G) and (N —lim N, H)
ieN ieN

one concludes the claim from the fact that axioms (SYM3) and (SYM4) hold true for the components
(M;, G) and (N;, H). The details of the corresponding straightforward argument are left to the reader.
Finally, an arbitrary differentiable slice categogysatisfies (SYM3) and (SYM4) since these axioms
hold true fordtan,. O

2. Orbispaces

2.1. Orbispace charts

Let X be a topological Hausdorff space afich differentiable category. By &-orbispace charfor X
we understand atrlpIeU G, 0) such that U, G) is an object off¥™ andp: U — U C X a continuous
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G-invariant map inducing a homeomorphig‘mﬁ/G — U onto an open subset &f. The setU will be
called thamageof the orbispace chart] its domain In case the symmetry group is finite, 0, G, 0)is
called a-orbifold chartfor X. A morphismbetween twat-orbispace chartéV, H, v) and(U, G, o) is
a morphism(g, 1) : (V H)— (U, G) in ™ such tha o ¢ = v. Note that for everyg-orbispace chart
(U G, Q) the trlple(U Gy ef» 0) IS aT-orbispace chart as well. tiU G,0) = (U Gy e 0), WE say
that(U, G, o) is areducedorbispace chart. The category of @lorbispace charts faX will be denoted
by (Zsym

Two <-orbispace chart$Ul, G1,01) and (Uz, G, 072) are calledgerm equivalentat a pointx e
Ui N Uy, |f there exist two embeddlngsao,,t ): (V H,v)— (U,, G;,0i),i=1,2, and a distinguished
pointx € V such thaty; (V)is a subobject ot/; and such that (x) = x. In other words germ equivalency
of orbispace charts means essentially that the slicés att some poink; € o7 (x) and of U, at some
point x; € o, 1(x) coincide (up to isomorphy). Using axiom (SLC) it is straightforward to check that
the germ equivalence of orbispace charts at a peiatX is an equivalence relation indeed. By a
T-orbispace atlafor X we now understand a covering &f by T-orbispace charts such that any two
of the orbispace charts are germ equivalent at every point of the intersection of their images. If every
element of an orbispace atlas iSarbifold chart, we call the atlas®-orbifold atlas. Obviously, the set
of X-orbifold atlases foX is partially ordered by inclusion, and for evetyorbifold atlasA there exists
a unigue maximak-orbifold atlas.Amax containing.A. Clearly, the same holds for orbispace atlases. We
arrive at the definition of &-orbifold; this is just a second countable paracompact topological Hausdorff
spaceX together with a maximak-orbifold atlas, usually denoted by . If ¥ is the category of finite
dimensional manifolds (respectively profinite dimensional manifolds);abifold is briefly called an
orbifold (respectively profinite dimensional orbifold).

Particularly convenient for the study of orbifolds are the so-calieear orbifold charts These
are orbifold chartg W, G, 0), where W is an open convex neighborhood of the origin of some finite
dimensionalG-representation space. In this situation we sometimes say that(0) € W is thecenter
of (W G,0) orthat(W G, o) iscentralizedat x. By the slice theorem it is clear that every orbifold germ
atx can be represented by a linear orbifold chart centralized at this point.

2.2. Orbispace functors

LetZ{ be an open covering of andl/ the category whose objects are given by connected components
of finite intersectiond/; N -- - N U, of elementd/y, ..., U, € U and whose morphisms are the canonical
inclusions. By aZ-orbispace functowe understand a functot defined onl/ and with values in the
category of orbispace charts &fsuch that the following conditions hold true:

(OSF1) For every objedt of U the orbispace chax(U) has imageJ .
(OSF2) The domaiw of every orbispace chax(U), U € U is connected.
(OSF3) For all object#/, V of U with V ¢ U the morphisnXy := X(V — U) is an open embedding.

A T-orbispacenow is a second countable and locally connected paracompact topological Hausdorff
spaceX together with a-orbispace functok:/ — I3™. Clearly, this functor uniquely determines a
maximal atlasdy of orbispace charts such thathas image indyx. From now on only the elements of

Ay will be called orbispace charts for thigorbispaceX.
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If ¥ is the category of finite dimensional manifolds (respectively profinite dimensional manifolds),
we use the same language like for orbifolds and briefly say orbispace (respectively profinite dimensional
orbispace) instead &-orbispace.

Using the paracompactness of an orbifaldthe following result can be easily derived from (SYM3)
and (SYM4). We leave the details to the reader.

sym

2.3. Proposition. For everyZ-orbifold X there exists &-orbispace functoX :if — Ay C T3
2.4. Stratification of orbispaces

Every orbispaceX has a canonical stratification. To construct this consider a poarid choose an
orbispace chartU, G, o) aroundx. Denote bysS, the set germ at of the stratification ofzU = ﬁ/G
by orbit types (recall Example 1.3). As a consequence of the slice thestednes not depend on the
particular choice olU, G, o). Since the set gerns, is locally induced by a decomposition, we thus
obtain a stratificatiorss, called thecanonical stratificatiorof the orbispace. Proposition 1.2 guarantees
the existence of a canonical decompositiotXahto smooth manifolds, called ttstrataof the orbispace.
Moreover, ifX is connected, there exists an open and dense stratum which coincides with the regular par
of X and which will be denoted by °. Thedimensiorof X is defined as the dimension &P.

2.5. Example. Every manifold with boundaryM carries in a natural way the structure of a finite
dimensional Ol’blf0|d To see this choose a smooth coliarM x [0,1) — M, denote bﬁo the interior
M \ oM and putUl =M x (—=1,1). ThenZ, acts onU; by (p,t,£1) — (p, 1), and the map
01: U, — ime, (p,1) = c(p,t t?) induces a homeomorphlsml/Zg — imec. It is now immediate to
check that(Uo, {e},id) and(Ul, 7, 01) comprise an orbifold atlas favf. Similarly, though technically
somewhat more involving, one proves that every manifold with corners is naturally a finite dimensional
orbifold.

Note that in the approach to orbifolds going back to Satake [17], manifolds with boundary or corners
are not regarded as orbifolds (or better V-manifolds in the language of [17]), since every orbifold chart
around a boundary point possesses a stratum of codimension 1.

2.6. Given an open coveringy of some locally connected topological spdteany faithful functor
Y: U — TY™ which satisfies axioms (OSF2) and (OSF3) above will be call&daabispace functar
too. Hereby, faithful means that the imagg, (Y (v)) is properly contained ity (u) for all v, u € U with
v C u. The following proposition shows that this new notation is justified indeed.

2.7. Proposition. LetY: U — T™ be a faithful functor satisfying axiom®SF2)and (OSF3) Then
there exists &f-orbispaceX, an order preserving injective map from U to the topology ofX and a
T-orbispace functok : U(Lt) — XY, ur> (U, Gy, 04) such thaty = F o X o U, whereF : T — /™

is the forgetful functoxU, G, ) — (U, G). Moreover, these objects are unique up to |somorphy in the
sense that ifX’, U" and X’ also have this property, then there exists a homeomorplfisii — X’ such
thatU' = foUando, = f oo, forall u e .
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Proof. To constructX, X and U let us first denote every objedt(u), u € i by (ﬁu, G,) and every
morhismyY,,, for v C u by (¢4, t.w). Then put

XI:Llﬁu/Gu/N,

ueld

where two pointsy € U,/G, andx’ € U,/G, are in relation~, if there existsv € i/ and a point

y € U,/ G, such thatx = ¢,,(y) andx’ = ¢,,(y). The setX carries a natural topology given by the
quotient topology from the (disjoint) topological sum of the orbit spatigsG,. Now let o, be the
natural map fronJ, to X, denote byU, the image ofg,, and letX be the functom +— (U,, G, 0w,

(v = u) = (Ppu, Luy)- Finally defineu by U(u) = U,,. Then the objectX, X andU satisfy the claim of

the proposition. The proof of uniqueness up to isomorphy is given by standard arguments, so we will
leave it to the reader. O

In the situation of the proposition we say that therbispaceX is inducedby Y. For convenience we
will also notationally identify the functorg andX.

2.8. Smooth functions on orbispaces

Let U C X be an open subset of the-orbispaceX. A continuous functiong:U — R is called
smooth if for every orbispace chartV, H, v) the compositionv*(g) := g o v,-1, IS smooth. The
algebra of smooth functiong: U — R will be denoted byC*(U). The spaceg> (U) then form the
sectional spaces of a sheaf of algebrasXorWe denote this sheaf bgy® or briefly C* and call it the
sheaf of smooth functioren X. By a smooth magbetween profinite dimensional orbispacésand Y
we understand a continuous mgp X — Y such thatf*Cy° C C¥. It is immediate to check that the
T-orbispaces together with the smooth maps between them form a category. Moreover, it follows by a
standard argument that the sheaf of smooth functions®iokbispace is fine.

Note that our definition of smooth maps is in correspondence with the smooth maps between orbit
spaces in [2,15,22], but that it is weaker than the notion of smooth maps as defined in [6,16,17] for the
case of orbifolds.

A particularly useful characterization of the smooth functions on a finite dimensional orbispace can be
given as follows. LetU = G xu W, G, o) be a twisted-linear orbispace chart fothat meand’ C G is
a closed subgroup aril an open and convex neighborhood of the origin of s@meepresentation space
0. Clearly, by the slice theorem there exists an atlasfa@onsisting of twisted-linear charts. Choose a
homogeneous Hilbert basjs= (p1, ..., px) of the algebraP(20)" of H-invariant polynomials oRy.

Since the Hilbert basig consists ofH -invariant functions, the map

pu U—RE x> p(v) withve W such thap([e, v]) =x

is well-defined and continuous. Moreoveyg; has the following properties:

(1) py is a homeomorphism onto its image,

(2) on every stratum of/, py restricts to a diffeomorphism onto a smooth submanifol&'af

(3) the sheal’jy coincides with the pullback sheaf;;Cr;; this is a consequence of the theorem of
Schwarz [20].



354 M.J. Pflaum / Differential Geometry and its Applications 19 (2003) 343-368

In other words these properties mean thatis a smooth chart for the stratified spaXen the sense of
[15, Section 1.3]. From that one can derive the following result.

2.9. Proposition. A continuous mapf: X — X' between orbisgaces is smooth, if and only if for all
twisted linear chart:{U G xpy W, G, Q) of X and(U’ G' xy W ,G', o) of X' suchthatf (U) c U’
there exists a smooth mafp, : O — R¥ defined on an open neighborhodc R* of py, (U) such that

fUU’ o py = Pb/ ° f|U-
2.10. Vector orbibundles

By a vector orbibundlewe understand an orbispade which is induced by amrbibundle functor
that means by an orbispace func®having values in the category of vector bundles. We denote an
orbibundle functor as follows:

u (E,. Gy,

W= u) = (Yo, tow) H(Ey, Gy) = (Ey, Gu).

A UBdl-orbispace chart foFE will be called anorbibundle chart Similarly to the manifold case, a
vector orbibundle gives rise to a base orbispace and a canonical projection. Let us show this in more
detail. Denote for every e i{ by U, the base of the vector bundkg, and byr, : E, — U, the canonical

projection. Moreover, lep,, U, — U, be the embedding on the level of base manifolds induced by the
morphismyr,,,. Then

E:lU — TBoI™, {

X : U — Man>™ {M}_)(ﬁ”’G“)’

(W= 1) = (Pous t) - (U, Gy) = (U, Gy)

is an orbispace functor. The resulting orbispatés the base orbispacef the vector orbibundleE.
Clearly, every orbibundle chatiE, G, n) of E now induces an orbispace ch&X, G, o) on X by the
same procedure. Note that evelif, G, n) is a reduced orbibundle chat¥, G, ¢) need not be reduced,
in general. Following Chen and Ruan [6] we say thats agood or reduced vector orbibund]ef for
every reduced orbibundle chai, G, ) of E the~induc§d chartX, G, o) on the base is reduced as well.

Next consider the canonical projections: E, — U,, u € U. Obviously, ther, induce a unique
smooth mapr : E — X calledprojectionsuch that

mon,=ouom, foralluell. (2.1)

Analogously like for vector bundles one definesextionof E as a continuous map: X — E such

that r o s = idy. We denote the space of continuous (respectively smooth) sectioBshyf I" (E)

(respectivelyI"’*° (E)). But unlike in the case of vector bundles, an orbibunille> X is in general not

locally trivial over the base, which implies in particular that the space of continuous respectively smooth

sections need not be linear. In the following, we will construct for every vector orbibundle a subspace
I'P (E) C I'°(E) which is aC*(X)-module in a natural way. The elementsigf° (E) will be called

smooth stratified sectiord E. To definel’S°(E) let (E G, n) be an orbibundle chart fd&t and(U G,0)

str

the induced orbispace chart for the base. For every pomU let E; be the (linear) subspace 6f;-
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invariant elements of the fibef:. Then for every closed subgroup c G

E(H) = u ’EV)?Q

xeU
(Gz)=(H)

is a smooth vector bundle over the stratifyy,, and E4,/G a smooth vector bundle ovﬁ(ﬁ)/G.
Moreover, one concludes easily by the slice theorem&hgf can be identified with the pullback bundle
of Exyy/G — U/ G by the canonical projectioty ;) — U/ G. Now, the union

E’jtl':= U E(H)/G
(H)CG
is a (in general not closed) subspace]?bfG which carries a canonical stratification given by the set

germs of the vector bundldé(H)/G. The only nontrivial part in the proof of this is to show that locally,
the condition of frontier (DEC2) is satisfied. To this end it suffices to prove that for all orbit types

(K) C (H) and every pointé € Uy N Uy, the fiber EZ* is contained in the closure df k). Let
us show this. By the slice theorem we can assume after possibly passing to conjugate subgroups th:
Gz = H, K C H and that there exists a sequence of poifjte Ux converging tat. By passing to an
appropriate subsequence @f,) we can achieve that the sequence of fib§f§converges in the bundle
of Grassmannians. B¥ C H one concludes that
EF c lim EX,
n—o0

whence the condition of frontier holds true. N

Next, consider an open embeddi,.,, t,.) : (Ey, Gy, ny) = (E., G,, n,) between orbibundle charts
of E. Then, the induced map between the orbit spaces restricts to a strata preserving open embedding

7 str. st Tstr
Yo cE) — E.

Restricted to a stratumy " is a smooth vector bundle isomorphism onto an open subbundle of the image
stratum. Hence, the union

Estr — U ﬁu(ELSttr) CE
ueld
carries a uniquely defined structure of a stratified space such that every one of the topological embedding
Ny EM/G — E is an isomorphism of stratified spaces fra@fi" onto an open subset &*". We will say
that E£" is thestratified vector bundle associatéalthe vector orbibundl&. A smooth section: X — E
with image in Es" now will be called asmooth stratified sectiorif it satisfies the following smooth
vertical extension property:

(SVX) For sufficiently smalk > 0 the map
EY x (—&,6) > E, (v,0) > v+1s(m(v)) (2.2)

can be extended to a smooth mep: £ x (—e,e) — E, which we call asmooth vertical
extension
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By construction ofES", the map in (2.2) is well-defined and continuous. Clearly, whether it can be
extended to a smooth,, depends only on the (maximal) orbibundle atlagadind not on the particular
defining orbibundle functoE. The space of smooth stratified sections will be denoted B\ E) or

' (E®"). The following proposition entails that for a reduced vector orbibundle the vertical extension
associated to a smooth stratified section is uniquely defined.

2.11. Proposition. Let E — X be a vector orbibundle. Then the following relations are equivalent

(1) E is areduced vector orbibundle.
(2) E"is dense inE.
(3) The projectionEfy. := E°N n~1(X°) — X°is a smooth vector bundle.

Proof. Let us first show that (1) implies (3). Lét — X be reduced and € X° be a point. Choose
a slice orbibundle char(tE — U G,n) around Q € E, andx e U with o(x) = x. By restriction to an
appropriate open subbundle af we can achieve thalT//G lies in the regular part ok. Moreover,
after passing to the reduced orbibundle chart, we can assumé& thets effectively onE. Hence, by
assumption acts effectively oni/. Since(E, G, n) is a slice for the orbibundle germ at @ E, the
orbichart (U, G, o) is a slice for the orbispace germ &t ThusG; = G for all y € U. But G acts
effectively onU, soG = {e}. From this one concludes that, = n—l(U) E, henceE|; C E°. By
definition of £/., (3) follows.

Clearly, Ey. — X° is a vector bundle, if and only Es' N r—i(X°) = Ey.. Hence (2) and (3) are
equivalent.

For the proof of the implication (3} (1) let (E, G, o) be reduced and € Ej. N n(E). Then
Grw = G, by definition of ES", HenceﬂgeG ) = ﬂgeG G, = {e}, so 1.3 (3) entails thaG acts

effectively onU. 0O

2.12. Example. Let X be an orbispace. Then thangent orbibundle functofX:i/ — LBoIY" is
defined to be the functor which associates to every orbispace(¢hatt, o) of X the object(T U, G)and
to every morphism(g, 1) = Xyy : (V H,v) — (U G, o) the morphism(T ¢, 1) : (TV H)— (TU G).
The (finite dimensional) orbibundle defined By will be called thetangent orbibundlef X and will
be denoted by X. Similarly, one defines theotangent orbibundl@* X . Note that both the tangent and
cotangent orbibundles are good orbibundles.

More generally, ifF is a functor on the category of (finite dimensional) real or complex vector spaces
andE:U — TBo¥™ an orbibundle functor, then the fiberwise applicationFofo every one of the
objectsE(u) leads to a new vector orbibundle functor denotedrly Generalizing this even further
to covariant and contravariant functors in multiple arguments it is then clear what to understand by the
direct sum, the tensor product and so on of vector orbibundles over a common base orKisjrattee
remainder of this work we will use such constructions of vector orbibundles without further explanation.

2.13. Theorem. Let E be a reduced orbibundle over an orbispake Then the spacé& .’ (E) of smooth
stratified sections carries a natural structure of’& (X)-module. Moreover, i#{ is an open covering of
X andE:U — VB[ an orbibundle functor of inducing the orbispace functot on the base, then
a continuous section: X — E is a smooth stratified section, if and only if it is a good sectiobeing a
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good section hereby means that there exists a fa@yly, .;; of smooth sections; : U — Ey such that
the following conditions hold true

(GSEC1) For every orbispace chgl(tﬁ, G, o) of X the sectionyg is G-equivariant.
(GSEC2)If (pvuy,tvy) = Xvu 1 (V,H,v) - (U,G,p) is a morphism andyryy,tyy) = Eyy the
corresponding morphism between the vector bun@igs H) and (Ey, G), then

S o@vy = Yvu osy. (2.3)
(GSEC3) For every(ﬁ, G, o) the following relation holds true

Ny oS =S5 00. (2.4)

If s is a smooth stratified section, then the family;) satisfying(GSEC1)to (GSEC3)is uniquely
determined.

2.14. Remark. The notion ofgood mapsetween orbifolds has been introduced by Chen and Ruan [6]

in their work on orbifold Gromov—Witten theory. The essential feature hereby is that the pull-back of
a vector orbibundle by a good map is a well-defined concept, whereas the pull-back orbibundle of an
arbitrary smooth map does in general not exist. Moreover, good maps between orbifolds correspond tc
the morphisms of orbifolds as defined in the groupoid approach to orbifolds. See Moerdijk [13] for more
on this.

Proof. Clearly, the second claim implies the first, so we only show thiata smooth stratified section

if and only if it is a good section. The existence of a family;) satisfying (GSEC1) to (GSEC3) is
obviously sufficient fors to be a smooth stratified map. Hence it remains to prove that the existence of
such a family(sy) is also necessary. For simplicity we assume tiiatonsists only of one connected
open setl or, in other words, thak is the orbit space of the orbibundle ché#, G, n) = E(U). The
general case can easily be deduced from this particular situation. Under the assumption nfade for
let s be a smooth stratified sectionU/G — E/G. Now, given f € C*(E/G) we define a function

3 f € C*(E/G) as follows:

8 f(v) = %f(vs(v, n)|,_, forallveE/G, (2.5)

where V; is the uniquely defined smooth vertical extension associates. By construction, ;
is a derivation onC*(E/G). Hence, according to the Smooth Lifting Theorem of Schwarz [21,
Theorem 0.2], there exists@-invariant smooth vector field: E — T E such that
E(fon)=6,f forall feC®E/G).
Obviously, & is a vertical vector field, since the restriction &f to EX. is vertical. One concludes
s 00 =1o0&j, whereU has been identified with the zero sectionof Let us putsy := &g. Then,
sg is a smoothG-invariant section o and satisfies
nosy=sop. (2.6)
Thus (GSEC1) and (GSEC3) hold true.
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Next let us show that th&-invariance and Eq. (2.6) uniquely determinye To this end check first
thatsy (x) € Ef for all ¥ € U. Second recall that for evenye U the fiberE$" coincides naturally with
Ef wherex € o~1(x). By Eq. (2.6) this entails tha; is uniquely determined.

Finally, if ¢/ is an arbitrary open covering of, axiom (GSEC2) follows immediately from the
uniqueness of the sectiong, since forV,U € U with V. C U the compositiomp;ll] o Si o @yy IS
also aG-equivariant section ovéer satisfying (GSEC3), hence it must coincide with This proves the
claim. O

2.15. Remark. According to the theorem one can identify a smooth stratified section of a reduced vector
orbibundle with a family(s)g.,, having properties (GSEC1) to (GSEC3), and every farGiy) .,

which fulfills (GSEC1) and (GSEC2) gives rise to a unique smooth stratified section such that also
(GSECS3) holds true. In the rest of this work we will very often make use of these canonical identifications.
For example we denote vector fieldlsX — T X briefly by (§5) and assume from now on that the index

U runs through the domains of the orbispace charts of the defining orbifold fukclokewise, we
denote differential forms o, tensor fields and so on.

3. Symplectic orbispaces

3.1. Let X be an orbispace, arid, X like before. By ariemannian metriqrespectivelysymplectic
form) on X we understand a family of-invariant riemannian metricgy; (respectively symplectic
forms wg) on U where (U G, 0) runs through the charts of, such that for every morphism
(g, 1) =Xyy: (V H,v)— (U G, o) between two orbispace charts the relation

v*giy =gy respectively (3.2)
¢ oy = oy (3.2)

is satisfied. We will denote such a riemannian metric (respectively symplectic formjghy
(respectively(w)). An orbispace with a riemannian metrig;) (respectively symplectic forniwg))
will be called ariemannian(respectivelysymplecti¢ orbispace likewise one definesiemannianand
symplectic orbifoldsNote that by Theorem 2.13gj) (respectively(a)U)) corresponds to a smooth
stratified sectiory € I';P(T*X ® T*X) (respectivelyw € I'((T*X ® T*X)).

Since for every orbispace chait/, G, o) there exists aG-invariant riemannian metric ol and
because the sheéf? is fine, it is easy to construct a riemannian metricXor

Like in the manifold case, natural examples of symplectic orbispaces are given by cotangent
bundles. To see this, 16t*X be the cotangent orbibundle ¢k, X) and consider the orbispace chart
(T*U, G, T*p) induced by(U G,0). Then T*U carries a canonical symplectic foray.;; and this
symplectic form is invariant with respect to the lifte@-action. Moreover, if(p,:): (V, H,v) —
0, G, 0) is a morphism and(T*¢, 1) = (¢, 0): (T*V,H,T*v) — (T*U, G, T*o0) the induced
morphism of orbispace charts & X, then(T*¢)*w;+5 = wr+i7, hence thew,.; define a symplectic
formonT*X.

3.2. Example. As a specific example of a symplectic orbifold consider the cotangent orbibundle of the
real half lineY = [0, o0). A global orbifold chart forY is given byR with the Z,-action such that the
nonzero element acts by inversion. Therefdréy is the quotientR?/Z,, where the nonzero element
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of Z, acts again by inversion. A Hilbert basis of tHe-invariant polynomials orR? is given by the
polynomialsp? + g2, p?> — g% and 2vq, where(p, q) are the coordinates of an elementRst. Now,

2 2
(P*+4%) = (p*— 4%+ 2pg)>,
hence the orbifoldR?/Z, is diffeomorphic to the standard corféxy, xz, x3) € R® | x2 + x3 = x3}.
Moreover, the symplectic orbifol®R?/Z, has a natural stratification by two symplectic strata, where

the top stratum is given big2/Z, with R2 = R2\ {0} and the second stratum is given {§} or in other
words by the cusp of the cone.

3.3. Proposition. Let X be a symplectic orbispace. Then every stratum of the orbispace stratification
carries in a canonical way the structure of a Poisson manifold. Moreové,iff an orbifold, the strata
are symplectic.

Proof. We show the claim for the case, where the orbispace is given by the orbit space of a symplectic
G-action on a symplectic manifolalf. Clearly, this suffices to prove the proposition, since the claimed
property of X is essentially a local statement. So let us assume Xhat M/G. Then it is well-
known that for every orbit typ€H) the manifold M of points of M with isotropy group equal to

H inherits from M a symplectic structure [10, Proposition 27.5]. Moreover, the canonical projection
7wy My — M /G onto the stratunM 4,/ G is a principal fiber bundle with typical fibevs(H)/H,
whereNg (H) is the normalizer o in G. Now, given two functionsf, g € C*(M )/ G) the Poisson
bracket{ f oy, g o my} With respect to the canonical symplectic structureM is Ng (H)-invariant,

hence there exists a uniqfig, g}y € C*°(M)/G) such that

{f.glnomg={fony,gomy}.

Clearly, {-, -}y is antisymmetric and satisfies the Jacobi identity, hence is a Poisson bracket on
C*®(My/G). Thus, M,/ G carries the structure of a Poisson manifold and this Poisson structure is
natural in the sense that it is invariant under equivariant symplectic diffeomorphisiis of

Under the assumption that the symmetry gradpis finite the zero mapyf — {0} provides a
momentum map for the symplect@-action, so by Sjamaar and Lerman [22, Theorem 2.1] the strata
M)/ G are symplectic in this case. This proves the proposition.

3.4. A family (Vg) of G-invariant (affine) connections/; defined on1~“°°(Tl7) is called a
connectionon X, if for every vector field(é;) on X and every morphisnip, ¢): (V, H,v) — (U, G, 0)
between charts @i the compatibility relation

9" (Vgéy) = Viéy (3.3)
holds true. Note that every connectio¥i;) on X gives rise to a&ovariant derivativei.e., a linear map
V:re(TX)— I(T*X ® TX) such that

V(f&)=df @&+ fVE forall f eC™®(X)andé e Iy (TX). (3.4)

If (¢7) is a riemannian metric o, then the family(Vs®), which associates to evely the Levi-
Civita connection with respect tgy, provides a torsionfree connection an Obviously, (VIE]C) leaves
the riemannian metri¢g) invariant and will be called theevi-Civita connectiorf (gg). In case(wy)
is a symplectic form orX, a connection(Vy) is calledsymplecticif Vywg = 0 holds for allU .
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More generally, let us assume now that— X is a reduced vector orbibundle, where the typical
fiber V is a profinite dimensional vector space. Bgannectionon E we then understand a linear map
D:TP(A*X Q@ E)— I';°(A°X ® E) of antisymmetric degree 1 such that

str

D(@As)=daAs+(-D*aAnDs foralla el (A*X)ands e Iy (E). (3.5)

str

Given a Satake atlag for X and a bundle atla§ Ey, G, n7)) i<y Overid, Theorem 2.13 entails that a
connection can be regarded as a faniily;;) of connectionDg : I'*°(A*U @ Ej) — I'*°(A°U ® Eg)
such that for every smooth secti®r= (s;7) one has

(Ds)g = Dysy forall U cU. (3.6)

The curvatureof a connectionD is the two-formR € I'°(A%2X ® End(E)) with

str

R(,¢)s =[Dg, Dc]s — Dig s forall €,¢ € Iy’ (TX) ands € Iy (E). 3.7)

str str

Obviously,R = (Ry), whereRj is the curvature oDj;.
3.5. Proposition. For every symplectic orbispace there exists a torsionfree symplectic connection.

Proof. First fix a riemannian metri¢g;) on X and use the corresponding Levi-Civita connechhUC)
to define a contravariant 3-tensor fi({ld’ﬁ) onTX:

1 ~ ~
A% (81, 62, E3) 1= §(V5ng(éa, £1.6) + Vi w62, 61.83)), E1.6.E3€T:U, X€U. (3.8

Note that(A’U) is symmetric in the last two variables. Next lift the first variable{n%) with the help of
(wi) and denote the resulting tensor field@yy), that means the equality; (-, Ay) = A} is satisfied

over each. Then by construction, the connectiovi;;) defined by

consists ofG-invariant and torsionfree local connections. Moreover, it is also clear by construction that
these connections satisfy the compatibility conditioiV; = Vi for every morphism(e, ¢) like above.
Finally, (Vi) is symplectic by the following computation:

Viwg (€1, &2, &) = Vi w1 &2, §3) — 0p (Vi (61, £2), &3) — o (52, VEC (61, £3))
— V5o Ea, o ) — (A6 1,60 — A6 1.62)
1
= Vi oy (€1 &2, £3) — §(V(L7Ca’z7 (63, 62,60 + Vi 0p (1. &2, §3)
— Vit (62, 63.61) — Vi wp (€1, €3, £2))

1
= 5 (V5 0o &, 8) + Vi 0y (&, &, 1) + Vi 0y (6, &1, £2)

= dwﬁ (519 E3’ 52) = 0 O (310)
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3.6. Given a symplectic form{wg) on X one can define a natural Poisson bracket on the algebra
C>(X) as follows. For every point € X choose an orbispace chatf, G, o) aroundx, letx € U be a
point with o(x) = x and denote by-, -} the Poisson bracket aft°(U). Then define

{f.g}(x):={fo0,go0lg(x) forf,gel™(X). (3.11)

By the compatibility relation (3.2), the valu¢f, g}(x) is independent of the special choice of the chart
W, G, 0),S0{f, g} € C*(X) is well-defined. Using the corresponding properties of the Poisson brackets
{-,-}5 one now checks immediately that -} is antisymmetric in its arguments and satisfies the Jacobi
identity, hencq, -} is a Poisson bracket @ (X). Note that the symplectic foritw;;) also gives rise to

the Poisson bivector fieldT = (IT) on X, whereT; is the Poisson bivector field o corresponding

to wjy.

The well-known definition of a formal deformation quantization of a symplectic manifold by Bayen,
Flato, Lichnerowicz and Sternheimer [1] can be easily extended to the orbispace arena. Let us provide
the details. Consider the spaC® (X)[A] of formal power series in the variableand with coefficients
in C*(X). A C[x]-bilinear associative product

«1CP(X)[A] x CC(X)[A] = ¢=X)[A]

is called aformal deformation quantizationf C*°(X) or astar product if for all f, g € C*(X) the
following holds:

(DQ1) f *g = cnmx(fs g)AF, where thew :C®(X) x C®(X) — C>(X) are bilinear maps and
o = u is the pointwise product o> (X),

(DQ2) [f, gl. — ir{f. g} € XA2C=(X)[7], where[ £, g]. is the commutator » g — g x f,

(DQ3) fxl=1xf=f.

The deformation quantization is calléstal, if for all k e N

suppuk (f, g) C suppf N suppg, (3.12)

and differential if all the ., are bidifferential operators oX. By a bidifferential operatoron X we
hereby understand an operatf (X) ® C™(X) — CZ(X) which in every orbispace chafU, G, o) is
induced by aG-invariant bidifferential oriJ.

3.7. Example. Consider the symplectic con€ = R?/Z, of Example 3.2. Let be the Moyal-Weyl
product onR? that means

—ix\* -

frg= Z(_;> nw(I(f®g) forall f, g eC®R, (3.13)
keN

wherelT(f®¢) =2 f® Lg— L f®Lgandu(f ®g)= f g Since the operatal is Zy-invariant,

» can be restricted to an associative product on the sgae®?)%2[1], whereC>*(R?)%2 denotes the

algebra ofZ,-invariant smooth functions oR2. But C*(R?)?2 is canonically isomorphic t€>(C),
hence we obtain a star product Gr
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4. Fedosov’'s quantization for orbispaces

4.1. In this section we will show how Fedosov’s method for the construction of a (differentiable)
star-product can be transferred to the arena of orbispaces. The essential point hereby is to check that ¢
of Fedosov’s constructions can be performed in a manner which is natural with respect to morphisms
of orbispace charts and invariant with respect to the involved symmetries. We proceed analogously tc
Fedosov [9, Chapter 5] (cf. also [4, Section 21]). In particular, we will define the Weyl algebra bundle
WX of a symplectic orbispac¥ and then construct a flat connectidnon the Weyl algebra bundle such
that the space of formal power series(dfY (X) can be (linearly) identified with the subalgebra of flat
sections ofWX. Via this identificationC*°(X) then inherits a star-product fromvX.

4.2. LetV be a finite dimensional Poisson vector space Anids Poisson bivector. One can then
associate td/ the formal Weyl algebraWWV and thecompleted formal Weyl algebr@/V as follows.
As a (complex) vector spac&V coincides with Syr(V*)[A], the space of formal power seriesin
with coefficients in the algebra of complex valued polynomial functions/orrhe completed formal
Weyl algebraWV v hasS/y\m°(V*)[[)L]] as underlying linear space. Note that Syi*) = P, Sym’ (V*)
is a graded algebra, where the product is givenulythe pointwise product of functions, and the
homogeneous component Syi¥i*) consists of-homogeneous polynomials. The profinite dimensional
vector spac&ym (V*) coincides with[ [, . Sym’(V*) and carries a natural descending filtration given
by the powersm”, wherem is the kernel of the canonical morphis8ym (V*) — C = SynP(v*).
Moreover,Sym (V*) is complete with respect to the topology defined by this filtration.

By construction,WV is a subspace oV V. Every element: € WV now has a unique representation
of the form

a= Z agrt, “4.1)
keN, seN

wherea,, € Sym’ (V*) and where only finitely many,, do not vanish for fixed, if « € WV. Next recall
that the Poisson bivectd? can be written as a finite sufd = ) ., ITy; ® I1y; with ITy;, IT5; € V and that
the elements oV act by derivations on Syhv*). Therefore, the operator

TSyt (V*) @c Syt (V*) — Synt (V*) @c Synt (V*),
f®g— Y Iif ® Mg

1

is well-defined and continuous with respect to the Krull topology definednb)Hence,ﬁ can be

extended byC[A]-linearity and continuity to an operator aVV ®c WV. The Moyal-Weylproduct

on WYV then is given as follows:

(—in)*
k!

aob:=p(exp—irl@®b)) = w(lf*@a®b)) fora,becWyv. (4.2)

keN

Thus (WV, o) becomes an associative algebra, afd a subalgebra. The (completed) formal Weyl
algebra carries a (descending) filtratiG, V),,n defined by thd-edosov-degree

deg-(a) =min{s + 2k | ay #0}, aeWV. (4.3)
This means thatV, V is the subalgebréa € WV | deg(a) > n}.
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Additionally toWv we consider the algebIA‘WV = AV @z WV of alternating forms with values
inWv. The product on WV and the exterior product on*®V induce a product ort* WV, denoted by
o as well. Moreover, the filtration 3V V induces a filtration ofA*WV .

The following result is crucial for all our further considerations. As the proof is obvious, we leave it
to the reader.

4.3. Proposition. Associate to every finite dimensional Poisson vector spatee completed formal
Weyl algebraWV and to every linear Poisson mgp: W — V the linear map

WfWY > WW, a= Y awd> DY frart. (4.4)
keN, seN keN, seN

Then, W is a contravariant functor with values in the category of profinite dimensional vector spaces.
Likewise,A*W can be regarded as a functor defined on the category of finite dimensional Poisson vector
spaces with values in the category of profinite dimensional vector spaces.

4.4. Nextlet us consider a symplectic orbispdde (wy)). Without loss of generality we can assume
that everyU appearing as an index @by) is an orbispace chart of some orbispace fungtsuch that
(wy) is an openG-invariant subset aR?", such thaiG acts by linear symplectic maps &#* and finally
such that the symplectic formU is given byZ] 1de A dX,yj, Where(xy, ..., X,) are the natural

coordinate functions ovel/ ] R2". Given an elementU, G, o) €U, every flber ofTU is a Poisson
vector space, so we can ap[W fiberwise and thus obtain the Weyl algebra buridlé . Likewise, the
bundle of forms of the Weyl algebra*W{ is constructed. Following Fedosov [9, Chapter 5] we will
now introduce a convenient representation of the sections of these bundlgégxLet ., dxz,) be the
local frame of7'*U corresponding to the coordinat€s, ..., X,) and denote by; for j =1,...,2n the
canonical image afx; in the sectional space* (Synt (T*U )). Hereby, Syrhis regarded as aflberW|se
acting functor on the category of finite dimensional vector bundles. As a (topologrtf’z(x[)') -module,
F“(Sym‘(T*U)) is generated by the sectio§$ = Jit--- ¥, wherea € N, With these notational
agreements, a sectiary € FOO(A‘WU) respectively an eIemem;C € FOO(WU) (with x denoting the
footpoint) can be represented in the form

so g~ ~ ok
ac = E E ao kajpjy Y dXj Ao ANdXj A (4.5)
keN, aeN2, [eN 1< i<<ji<2n

where< is one of the symboIS/ or x, and the elementsy 4, ;,...; € C°°(U) respectlvelyax kajr-j; € C

are uniquely defined. To simplify notation we writg not only for an element oW T with footpoint
but also for the evaluation of a sectiap € FOO(A’WU) atx.

4.5. In the following step we will lift theG-action toWU. Denote byl, the action of some group
elementg on U. Then the derivative; l, is a linear Poisson map, so by Proposition 4.3
G x WU — WU, (g,az) — W(nglg—l)(ag)

is a G—Qction onle. Given a second elemem7, H,v) e U and a morphism of orbispace charts
(p,0):(V,H,v)— (U, G, o) the pair

We,0:(WV,H)— (WU,G), (az, h) = (W(T30)ay), )
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induces a morphism in the category of profinite dimensional vector spaces with symmetries, since by
Proposition 4.3

W(p(ha)) = W(Thﬂp) 1(ha)) = (Th)lh 10 (Thye)™ )(ay)
= W(Ty(w oly)” (ay) = (T (L o®)) (ai)
= W(Z(h)(p(ﬁ)lt(h)*l)ww(af) = L(h)WQD(ay)- (4.6)

Thus we obtain an orbibundle funct®¥X which associates to everyy the palr(WU G) and to
every morphismgp, 1) between elements ¢f the morphlsn”(W<p, 1). The functorix induces a vector
orbibundleWx — X, called theWeyl algebra orbibundlef X, and an orbibundle atla(WU G, WQ)
Likewise, one constructs the vector orblbun(ﬂeWX — X of so-calledforms of the Weyl algebra
orbibundle By construction, the orbibundlé& X and A*WX are reduced, hence Remark 2.15 applies
to sections of WX and A*WX.

4.6. Proposition. The sectional space Oo(WX) and F;i;’(A‘WX) carry in a natural way aC[A]-

str

bilinear associative product such that

(aob)g=agoby foralla,be I'°(WX) (respectivelys, b € A°T;

str

X (WX)). (4.7)

str

Moreover, the spacé’°(A*WX) thus becomes a graded and filtered algebra, where the graduation
degree is given by the form degree and the filtration degree by the Fedosov degree. The topology define
by the Fedosov filtration provides;’ (A*WX) with the structure of a complete topological vector space.

The graded commutator dﬂ‘;f(A’WX) with respect to the produetwill be denoted by, -].

Proof. Using theG-invariance of the symplectic fora it is straightforward to check that

gay o gby = glag oby) forallag, by € F®(WU). (4.8)
Moreover, if (¢, t) is a morphism like above, then

We(az 0 by) = We(az) o We(by) forallay, by e WVandy e V. (4.9)

Hence, Eq. (4.7) defines a sectionb € I'g; o (G X). From the corresponding properties of the product on
r>=(W0) one now concludes thatis aC[A]-bilinear associative product. The same argument proves
thato is a product o’ % (A*WX). The remaining part of the claim is obvioust

4.7. Let us now choose a symplectic connectiovyy) on X and extend it in a natural way to a
connection o* WX by putting

2n
(Vhg=>_ > > Vot (00 sagys ) 45 A AT Ao AR (4.10)

j=1 kol 1<1<<ji<2n

By construction,(Vb)g is a G-equivariant section ot*WU, and @*(Vb)y = (Vb)y holds for every
morphism(e,): (V, H,v) - (U, G, Q) Hence, the family((Vb)y) gives rise to a section of*WX,
and the connectiol : I’ (A*WX) — I'*®*(A*WX) is well-defined. Ovel/, the components &¥b are

str str
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given by
i
(Vb)g =dby + I, by, (4.11)

wherel; = 1 5 2 i ik L 0.ikdiy; dik is a local one-form and they ;;, are the Christoffel symbols 67,
ie.,Vy ‘—W =2 i lToijkonsz dx Moreover, the familyR = (Ry) with Ry =d I+ 5 [FU, I'y] defines

a smooth section afi2WX. From [9, Lemma 5.1.3] one concludes that

V2b = %[R, bl forallbe I (A"WX). (4.12)

str

Hence,R can be interpreted as tloairvature formof V. R
We will now employ Fedosov’s idea and construct a flat connediian A*WX of the form

Db = Vb +5b + i[r, bl forallb e (A WX), (4.13)

str

wherer e I'°(AYWX) ands: I} I'y (A WX) — IS *(A*WX) is a graded derivation which locally is

str

defined by

dbg i I
(Bb)y = dek A5 = 7 2 lew Sedd byl (4.14)
k.l

Note that Eq. (4.14) gives rise to an operator on the space of smooth stratified sectiong Xfindeed,
since the(sb) ;7 areG-equivariant and transform naturally under morphisms of orbispace charts. Similarly
one concludes that the operator. g ©(A*WX) - I - *(A*WX) is well-defined by putting locally

0
8*b ~ — o . b~ . 415
(6"b)y Ek Vi (_B)Ek L U) ( )
Finally, 6* gives rise to a third operatér : 'y (A WX) — I - *(A*WX) by the local definition

1
by = E —— 8" (b 41) (4.16)
+1
q+1>0

where
o . <o = _
b g = Z Z bij kajy.jy Y dXjy A - N dX A
kylel=q 1< ji<<ji<2n

The following propositions can now be easily deduced from the corresponding ones in the smooth case.

4.8. Proposition. For everyb € I'°(A*WX) one has the so-called Hodge—de Rham decomposition

str
b=85"b+88b+a(b), (4.17)
whereo : I (A*WX) — C=(X)[A], (bg) + (by o0) is the symbol map.

str

Proof. This follows immediately from [9, Lemma 5.1.2].0



366 M.J. Pflaum / Differential Geometry and its Applications 19 (2003) 343-368

4.9. Proposition. Givenr € I'*(ATWX) let 22 be the two-form-w + R — 8r + Vr + Lr2 with R the

str

curvature form ofV. Thens2 is the curvature form of the connectidh=V + b + ;—'[r, -] that means2
satisfies

[2,b] forall be IC(AWX). (4.18)

str

ptp="
A

Proof. By [9, Lemma 5.1.5], the equality)[%bg = +[£27, b] holds true for allby € reAWO),

hence the claim follows. O

L
A

4.10. Proposition. Givenrg € I'2°(AYWX) with deg-(ro) > 2 there exists a unique € I°(AWX)
with deg-(r) > deg:(ro) such that

r=ro+6 (w + ’sz). (4.19)
Proof. Consider the operator

str

KT (AYW,X) — I(AYWX), s> ro+ 5—(vs + %s?-’).

It is immediate to check that has image irf“s‘f;’(Alsz) and thatX is contractible with respect to the
Fedosov filtration in the sense that

deg:(K (s) — K(s")) > dege(s —s") foralls,s’ € I (AYW,X).

str

Hence, sincd™°(AYW,X) is complete with respect to the topology given by the Fedosov filtration, one

str

concludes by a Banach fixed point type argument that there exists a unggtiefying the claim. O

4.11. Corollary. Let R be the curvature form of a symplectic connectioon X andro =35~ R. Then, if
r is the solution 0f(4.19) the curvatures2 of D =V + b + +[r, -] is a central element with respect to
o and satisfies2 = —w. In particular, D then is a flat connection.

Proof. We follow the argument of [9, Theorem 5.2.2]. First, note th#t)? = 0, so one has by the
Hodge—de Rham decomposition and Eq. (4.19)

S (R +w) = 3—<R —8r+Vr+ %;»2) =r—388r=8(08")?R=0.
Using again the Hodge—de Rham decompoaosition, the Bianchi idebtizy= 0 and the equalityDw =
dw = 0 entall that

R+w=8(D+8) (2 +w).

Now the operatoé— (D +8) =38 (V + i [r, -]) raises the Fedosov degree by 1, hence one concludes that
2 + o = 0. But this implies also tha® is central, so the claim follows. O

For the flat connectio® constructed in the corollary |85, X be the space of all flat sections, that
means the space of all elementg 'y’ (WX) satisfying Da = 0. ThenW,, X forms a subalgebra of
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ryy (WX ), sinceD is a graded derivation with respectdoUsing the above results one now proves the
following result literally like Theorem 5.2.4 of [9].

4.12. Theorem. Let X be a symplectic orbispacéy a symplectic connection oX and D _the flat
connection ot*W X defined above. Then the symbol map induces a linear isomorphidif, X —
C®(X)[A]-

Proof. Choosef € C*°(X)[x] and consider the equation

s=f+8(D+8)s, selX(WX). (4.20)

str

Since the operatos — f + 67 (D + §)s is_contractible in the above stated sense, this equation has
a unique solutiors. Let us show thak € WX ando (s) = f. First check by the Hodge—de Rham
decomposition that

8 Ds=s— f—68s=686"s=0.

Using the Hodge—de Rham decomposition again, one @éts= f. Applying the Hodge—-de Rham
decomposition a third time, but now to the argum@at one concludes bp? = 0 ands~ Ds that

Ds =8 (D +8)Ds.

But this equation has a unique solution, nambly = 0, since the operatat™ (D + §) is contractible.
Hences €e Wp X ando (s) = f. Conversely, every e Wp X with o (s) = f satisfies (Eq. (4.20)) by the
Hodge—de Rham decomposition. Thus, the theorem follows.

Denote byQ :C>*(X)[r] — WDX the inverse of the symbol map or in other words the quantization
map. The theorem now entails our main result.

4.13. Coroallary. Letx:C*(X)[A] x C®(X)[A] — C*(X)[2] be the uniquely determine&dx]-bilinear
map such that

frxg=0(0(f)oQ(g) forall f,geC™(X).

Thenx is a star product forX.

4.14. Corollary. Every symplectic orbifold possesses a star product.
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