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Abstract

In the first part of this article we provide a geometrically oriented approach to the theory of orbispaces or
introduced by G. Schwarz and W. Chen. We explain the notion of a vector orbibundle and characterize t
sections of a reduced vector orbibundle as the smooth stratified sections. In the second part of the a
elaborate on the quantizability of a symplectic orbispace. By adapting Fedosov’s method to the orbispac
we show that every symplectic orbispace has a deformation quantization. As a byproduct we obtain th
symplectic orbifold possesses a star product.
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Introduction

Deformation quantization has been introduced into mathematical physics by Bayen, Flato, Fr
Lichnerowicz and Sternheimer [1] more than 25 years ago. Since then, various existen
classification results for star products on a symplectic or Poisson manifold have appeared [
A common feature of all these approaches is that the space to be quantized is not allowed
singularities. But many symplectic or Poisson spaces with strong relevance for mathematical phy
singular. For instance, the phase spaces appearing in gauge theory or obtained by symplectic r
are in general not smooth and possess singularities. According to the work of Sjamaar and Lerm
such singular symplectically reduced spaces are stratified spaces, where each stratum carries a
symplectic structure. So the natural question arises, whether an arbitrary symplectic or Poisson s
spaces has a deformation quantization as well. In this work we consider a particular class of
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spaces with singularities, namely symplectic orbispaces, and show for this class the existence
product. We achieve this by generalizing Fedosov’s construction to the orbispace setting.

Originally, orbispaces have been introduced by Schwarz [19] in his PhD thesis under the n
“generalized orbit spaces” or “Q-manifolds”. The name orbispaces first appeared in the work o
[5], where an independent and more topologically oriented approach to a theory of generalize
spaces has been set up. By definition, orbispaces are topological spaces which locally look li
spaces of compact Lie group actions. Thus, orbispaces comprise a natural generalization of o
and our results imply in particular that every symplectic orbifold carries a star product.

Our article is set up as follows. In the first section we recall the notion of a stratification
elaborate on the canonical stratification of an orbit space by orbit types. Moreover, we introduce p
dimensional manifolds and differentiable categories with slices. Both concepts will be needed late
definition of a (possibly infinite dimensional) orbispace.

In Section 2 we provide an introduction to orbispaces. Since the applications we have in mind
a differential geometric nature we have adapted the original approaches of Schwarz [19] and C
to our needs. Moreover, the approach presented here allows infinite dimensional orbispaces. Co
the subcategory of orbifolds let us mention that we do not make any restrictions on the codimen
the fixed point sets of the local isotropy groups of the orbifold. This entails in particular that man
with boundary or with corners can be regarded as orbifolds. In the second part of Section 2 we in
the notion of a vector orbibundle and of a reduced respectively good orbibundle. The main re
Theorem 2.13, where we show that a continuous section of a reduced vector orbibundle is a good
in the sense of Ruan [16], if and only if it is a stratified section which extends to a (vertical) deriv
of the algebra of smooth functions on the orbibundle. Theorem 2.13 is essentially a consequenc
smooth isotopy lifting theorem of Schwarz [21].

In the third section we introduce riemannian and symplectic orbispaces. Moreover, we explai
to understand by a metric respectively symplectic connection and show that for every sym
orbispace there exist symplectic connections. The explicit definition what to understand by a defo
quantization respectively a star product on a symplectic orbispace is also contained in Sectio
Section 4 we construct a star-product on a symplectic orbispace by localizing Fedosov’s metho
orbispace charts of an appropriate orbispace atlas. It is a consequence of Theorem 2.13 that
works, indeed. In some more detail, we introduce the formal Weyl algebra bundle over a sym
orbispace and, given a symplectic connection, construct a flat connection for this bundle. The fi
Weyl–Moyal product on its space of flat sections then gives rise to a star product for the sym
orbispace.

1. Preliminaries

1.1. Stratifications

In the presentation of the basics of stratification theory we follow Mather [12] (see also Pflau
Chapter 1] for further details).

By a decompositionof a paracompact second countable topological Hausdorff spaceX one
understands a locally finite partitionZ of X into locally closed subspacesS ⊂ X called piecessuch
that the following conditions are satisfied:
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(DEC1) Every pieceS ∈Z is a smooth manifold in the induced topology.
(DEC2) (condition of frontier) If R ∩ S �= ∅ for a pair of piecesR,S ∈ Z , thenR ⊂ S. In this case one

callsR incidentto S, or aboundary stratumof S.

Obviously, the incidence relation is a partial order on the set of pieces. The set of decompositionX

is partially ordered by the “coarser”-relation. Hereby, a decompositionZ1 of X is calledcoarserthan a
decompositionZ2, if every stratum ofZ2 is contained in a stratum ofZ1.

By a stratification of X one now understands a mappingS which associates to everyx ∈ X the set
germSx of a closed subset ofX such that the following axiom is satisfied:

(STRA) For everyx ∈ X there is a neighborhoodU of x and a decompositionZ of U such that for all
y ∈U the germSy coincides with the set germ of the piece ofZ of which y is an element.

The pair(X,S) then is called astratified space. Obviously, a decompositionZ induces a stratification
of X. The following proposition shows that the converse holds true as well; a proof of this result c
found in [15, Proposition 1.2.7].

1.2. Proposition. Let S be a stratification onX. Then there exists a coarsest decompositionZS of X
inducingS .

We will denote the decompositionZS by S as well. Its pieces will be calledstrata.

1.3. Stratification of orbit spaces

LetG be a Lie group acting properly on a smooth manifoldM . Denote for every compact subgrou
H ⊂G by MH the submanifold of all points ofM having isotropy group equal toH and byM(H) the
submanifold of allx ∈M having isotropy group conjugate toH . If M(H) �= ∅, we say that the conjugac
class(H) is anorbit typeof M . The following propositions hold true.

(1) If M/G is connected, there exists a compact subgroupG◦ ⊂ G such that the subsetsM(G◦) ⊂M
andM(G◦)/G⊂M/G are both open and dense. The setM(G◦)/G is connected. Moreover, for eve
x ∈M the groupG◦ is conjugate to a subgroup of the isotropy groupGx .

(2) The mappingS which associates to everyx the set germ ofM(Gx) is a stratification ofM . Moreover,
the mapping which associates to every orbitGx the set germ ofM(Gx)/G is a stratification of the orbi
spaceM/G. The thus defined stratifications are called the stratification ofM respectivelyM/G by
orbit types. The open stratumM(G◦) is called theprincipal stratumofM and will be denoted byM◦.

(3) If M/G is connected, then the largest normal subgroup ofG contained inG◦ coincides with the
kernel of the canonical homomorphismG→Diff (M).

(4) If G is a finite group andM is connected, thenG◦ is a normal subgroup andG◦ ⊂ Gy for every
y ∈M . Moreover,G acts effectively onM , if and only ifG◦ is trivial.

Proof. Proposition (1) is the well-known principal orbit type theorem due to Montgomery, Samelso
Zippin [14]; see also Bredon [3] or [15, Section 4.3] for details. A proof of (2) can be found in Bier
[2, Chapter 2] or [15, Section 4.3].
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Let us show (3). To this end consider the canonical homomorphismG→ Diff (M) of G in the
diffeomorphism group ofM . LetL be its kernel. By definition ofL one hasL⊂ gG◦g−1 for all g ∈G.
On the other hand, because(G◦)⊂ (Gy) for all y ∈M , the inclusion

⋂
g∈G gG

◦g−1 ⊂ L holds as well,
henceL=⋂

g∈G gG
◦g−1.

Now we come to (4) and assume thatG is finite. We will show that the isotropy groups of allx ∈M◦
coincide. Clearly, this suffices to prove (4). So letM1 be the stratum ofM of codimension 1. Then
M◦ ∪ M1 is a connected open subspace ofM , as the complement can be decomposed in strat
codimension� 2. According to the slice theorem there exists for every pointx ∈M an open connecte
neighborhoodUx which can be mapped by aGx-equivariant diffeomorphism onto aGx-invariant open
ball around the origin of aGx -representation spaceEx . Now, if x ∈M◦, then every pointz ∈ Ux lies in
M◦ again and has isotropy group equal toGx . In casex ∈M1, we will consider the representation spa
Ex to prove that the isotropy groups of all elements ofUx ∩M◦ coincide. By the slice theorem and t
assumptions onM1 the fixed point setEGxx is a linear subspace ofEx and of codimension 1. Choose
Gx -invariant metric〈·, ·〉 onEx and letv be a unit vector in the orthogonal complement ofEGxx . Then we
haveGxv = {v,−v}. LetK ⊂Gx be the kernel of the mapGx � g �→ 〈gv, v〉 andh a group element suc
thathv =−v. Then the isotropy group of an elementλv with λ > 0 is identical toK and the isotropy
group of−λv is given byhKh−1. But hKh−1 is equal toK , asK is normal. Hence the isotropy grou
of all elements ofUx ∩M◦ coincide.

Now, asM◦ ∪M1 is connected, one can connect any two pointsx, x′ ∈M◦ by a finite chain ofUy
with y ∈M◦ ∪M1. In other words this means that there existy0, . . . , yn ∈M◦ ∪M1 such thaty0 = x,
yn = x′ andUyk ∩Uyk+1 �= ∅ for k � n. By the above considerations, the isotropy groups ofx andx′ then
coincide. This proves the claim.✷

The proof of (4) entails also the following technical result, which will be needed later.

(5) LetG be finite,x a point ofM1, the stratum of codimension 1, andU ⊂M a neighborhood which
is Gx -equivariantly diffeomorphic to an open ball around the origin of aGx -representation spac
ThenU ∩M1 is connected andU ∩M◦ has two connected components. Moreover,Gx acts trivially
onU ∩M1, and there exists a homomorphismGx→ Z2 with kernelG◦ such that every element o
Gx \G◦ interchanges the connected components ofU ∩M◦.

1.4. Profinite dimensional manifolds

A second countable topological Hausdorff spaceM is called aprofinite dimensional manifold, if
there exists a projective system(Mi,µij )i�j∈N of smooth finite dimensional manifoldsMi and surjective
submersionsµij :Mj →Mi , i � j , such thatM coincides with the projective limit, that means

M = lim←−
i∈N

Mi.

If M is a profinite dimensional manifold, there exists a unique family of continuous surjectionsµi :M→
Mi such thatµi = µij ◦µj for all i � j and such thatM carries the initial topology with respect to theµi .

By aprofinite dimensional vector spacewe understand the projective limit

V = lim←− Vi

i∈N
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of a projective system(Vi, ϕij )i�j∈N of finite dimensional (real) vector spacesVi and surjective linea
mapsϕij :Vj → Vi , i � j . Clearly, every profinite dimensional vector space is a profinite dimens
manifold. Examples of profinite dimensional vector spaces are the projective limit

R∞ = lim←−
n∈N

Rn

and the completed symmetric tensor algebra

Ŝym
•
(W) := lim←−

n∈N

Sym•(W)/mn

of a finite dimensional real vector spaceW . Hereby, Sym•(W) denotes the (complexified) symmetr
tensor algebra ofW andm the kernel of the canonical homomorphism Sym•(W)→C. Note thatRn can
be naturally embedded as a subspace ofR∞, since for alln�N , Rn is canonically embedded inRN via
the firstn coordinates.

Thesheaf of smooth functionson a profinite dimensional manifold

M = lim←−
i∈N

Mi

is defined as the sheafC∞M with sectional spaces

C∞M (U)=
{
g ∈ C(U) | ∃ i ∈N & gi ∈ C∞

(
µi(U)

)
s.t.gi ◦ πi |U = g

}
,

whereU runs through the open subsets ofM . Given a second profinite dimensional manifold

N = lim←−
i∈N

Ni,

a continuous mapf :M → N is calledsmooth, if f∗C∞M ⊂ C∞N . Using Whitney’s embedding theore
it is straightforward to check that for every smooth mapf :N → M there exists, possibly only afte
passing to projective subsystems of(Mi,µij ) and(Ni, νij ), a family of smooth mapsfi :Ni→Mi such
fi ◦ νi = µi ◦ f for all i. In case thefi can be chosen to be immersions (respectively submers
embeddings or diffeomorphisms), one says thatf is an immersion (respectively submersion, embedd
or diffeomorphism). Using Whitney’s embedding theorem again one proves that every pr
dimensionalM can be embedded inR∞.

Obviously, the profinite dimensional manifolds and the smooth maps between them form a ca
which we will denote byManpf. Similarly, the profinite dimensional vector spaces with smooth lin
maps as morphisms form a category.

If a compact Lie groupG acts on a profinite dimensional manifold

M = lim←−
i∈N

Mi,

one can construct aG-invariant riemannian metric onM . Given a pointx ∈M , such a riemannian metr
gives rise to aG-invariant tubular neighborhood of the orbit throughx. From this one concludes b
a standard argument that the slice theorem holds as well for compact Lie group actions on p
dimensional manifolds.
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1.5. Differentiable categories with slices

Consider a subcategory of the category of profinite dimensional manifolds and smooth maps
article we will denote such a subcategory byT and always assume that it satisfies the following axio

(DCAT1) For every morphismf :N → M in T which is a smooth open embedding of profin
dimensional manifolds, the imagef (N) is an open subobject ofM . U ⊂M being an open
subobject hereby means thatU is open and that the canonical injectionU ↪→M is a morphism
in T.

(DCAT2) For every objectM the set of open subobjects is a topology onM .

The categoryTsym of T-objects with(compact) symmetriesconsists of the following object an
morphism classes. Objects are given by pairs(M,G), whereM ∈ Obj(T) andG is a compact Lie
group which acts smoothly onM by elements of the automorphism group AutT(M). Morphisms are
given by equivariant maps(ϕ, ι) : (N,H)→ (M,G). This means thatι :H →G is a continuous group
homomorphism andϕ :M→N a morphism ofT such thatϕ(hy)= ι(h)ϕ(y) for all y ∈N andh ∈H .
Two equivariant maps(ϕ, ι), (ϕ′, ι′) : (N,H)→ (M,G) are said to beequivalent, if there exists an
elementg ∈G such that(ϕ′, ι′)= (g,Adg)(ϕ, ι).

With a view towards symmetries we assume additionally that the categoryT satisfies the axiom (SLC
below; a category for which (DCAT1), (DCAT2) and (SLC) are true will be called adifferentiable
category with slices.

(SLC) Let (M,G) be an object ofTsym and x ∈ M a point. Then there exists aT-slice forM at x
that means an embedding(ξ, λ) : (S,K)→ (M,G) with λ injective and a points ∈ S such
that ξ(s) = x and such that(ξ, λ) is universal in the following sense. Assume to be given
embedding(ϕ, ι) : (N,H)→ (M,G) and a pointy ∈ N where ι is injective andx = ϕ(y).
Then there exists, after passing to appropriate open subobjects, an equivariant autom
(Φ, id) : (M,G)→ (M,G) with Φ = idM/G and an embedding(ψ, κ) : (S,K)→ (N,H) such
thatψ(s)= y and such that the following diagram commutes:

(1.1)(S,K)
(ξ,λ)

(ψ,κ)

(M,G)

(Φ,id)

(N,H)
(ϕ,ι)

(M,G).

As typical examples for a differentiable category with slices we have the following in mind; usin
slice theorem the reader will easily check that these categories satisfies the above axioms and in p
(SLC):

(1) the categoryMan of finite dimensional smooth manifolds and smooth maps,
(2) the categoryManpf of profinite dimensional manifolds and smooth maps,
(3) the categoryVBdl of smooth vector bundles over finite dimensional manifolds; hereby the

vector space is allowed to be a profinite dimensional vector space and the morphisms are g
smooth vector bundle maps over smooth maps between the bases.
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Given a differentiable category with slicesT, the following properties of a morphism(ϕ, ι) : (N,H)→
(M,G) in Tsym are easy to prove:

(SYM0) ϕ induces a continuous mapϕ :N/H →M/G between orbit spaces.
(SYM1) If ϕ is surjective andG acts effectively onM , thenι is uniquely determined byϕ.
(SYM2) If ϕ is injective andH acts effectively onN , thenι is a monomorphism.

Let us introduce some useful notation. An object(M,G) of T is calledreduced, if G acts effectively
onM . Note that for arbitrary(M,G) there exists a natural equivariant morphism from(M,G) onto the
reduced object(M,GM,eff), whereGM,eff is the quotient group ofG by the kernel of the homomorphis
G→AutT(M).

A morphism (ϕ, ι) : (N,H)→ (M,G) between objects ofTsym is called anembedding, if ϕ is a
smooth embedding andϕ a homeomorphism onto an open subset of the orbit spaceM/G. If additionally
ϕ is an open map, we say that(ϕ, ι) is anopen embedding. Note that for(ϕ, ι) an embedding,ι need
not be a monomorphism. Moreover, (SLC) implies that for every object(M,G) of Tsym and every point
x ∈M there exists an embedding(ϕ, idH ) : (S,H)→ (M,G).

The following further properties hold for finite symmetries in a differentiable slice categoryT.

(SYM3) Assume thatN is connected and thatG,H are finite. Let(ϕ, ι) and (ϕ′, ι′) be two open
embeddings from(N,H) to (M,G) with the actions ofG andH effective. Then(ϕ, ι) and
(ϕ′, ι′) are equivalent, if and only ifϕ = ϕ′.

(SYM4) Assume thatN is connected and thatG,H are finite. Let(ϕ, ι) : (N,H)→ (M,G) be an open
embedding and assume thatG acts effectively onM . Then, ifgϕ(N) ∩ ϕ(N) �= ∅ for g ∈G,
the relationgϕ(N)= ϕ(N) holds true andg lies in the image ofι.

1.6. Remark. (SYM3) and (SYM4) correspond to Lemma 1 and Lemma 2 in [18], but note that in [18
additional assumption has been made that(M,G) and(N,H) do not contain strata of codimension
In the following we repeat Satake’s short proof of (SYM4), which also works in the general ca
strata of arbitrary codimension, and provide a new argument showing that (SYM3) is true witho
assumptions on the codimension of the strata.

Proof. Let us first prove the claim for the case whereT is the category of (finite dimensional) smoo
manifolds and smooth maps. Denote byM◦ the open stratum of aG-manifoldM and byM1 the stratum
of codimension 1 with respect to the stratification by orbit types. Likewise defineN◦ andN1 for an
H -manifoldN . Now, we will show first property (SYM4) and afterwards (SYM3).

So assume thatN is connected,(ϕ, ι) is an open embedding and thatgϕ(N)∩ ϕ(N) �= ∅. Then there
exist y, y′ ∈ N◦ such thatϕ(y) ∈M◦ andϕ(y′) = gϕ(y). As ϕ is injective,y andy′ have to lie in the
sameH -orbit, hencey′ = hy for someh ∈H . We then haveϕ(hz)= g′ϕ(z) for all z ∈N andg′ = ι(h).
As ϕ(y) ∈M◦ andG acts effectively, we haveg = g′ = ι(h) and consequentlygϕ(N)= ϕ(hN)= ϕ(N).
This shows (SYM4).

Next we consider (SYM3). Assume thatϕ′(y◦) = ϕ(y◦) for somey◦ ∈ N◦. We will then show tha
ϕ′ = ϕ and ι′ = ι. Clearly, this will prove (SYM3). Using (SYM4) it is straightforward to check th
ϕ(N◦)⊂M◦ andϕ′(N◦)⊂M◦. Let us prove thatϕ(N1)⊂M1. To this end choose for every pointy ∈ Y
anHy-invariant neighborhoodVy such thathVy ∩Vy = ∅ for h ∈H \Hy and such thatVy is equivariantly
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diffeomorphic to anHy-invariant open ball around the origin in a linearHy-representation space. In ca
y ∈ N1, we know by 1.3 (5) thatVy ∩ N1 is connected, thatVy ∩ N◦ has two connected componen
and thatHy ∼= Z2. Hence, by (SYM2)Z2

∼= ι(Hy) ⊂ Gϕ(y). The subgroupι(Hy) acts trivially on the
manifoldU1

ϕ(y) := ϕ(Vy ∩N1), and the non-neutral element interchanges the connected compone
ϕ(Vy ∩ N◦). As a consequence of 1.3 (4),Gϕ(y) acts effectively on a neighborhood ofϕ(y) contained
in Uϕ(y) := ϕ(Vy). So, if ι(Hy) �= Gϕ(y), one can find by (SYM4) an elementk ∈ Gϕ(y) \ ι(Hy) and a
point x ∈ Uϕ(y) with kx ∈ Uϕ(y) andkx /∈ ι(Hy)x. But this contradicts the fact thatϕ is injective. Hence
Gϕ(y) ∼= Z2 and consequentlyϕ(N1)⊂M1. The same argument also provesψ(N1)⊂M1. We continue
with the proof of the equalityϕ′ = ϕ. LetA be the set{y ∈N | ϕ′(y)= ϕ(y)}. Obviously,A is closed in
N and nonempty, sincey◦ ∈A. Let us show thatA ∩N◦ is also open. Lety ∈ A ∩N◦ and assume tha
there exists a sequence(yn) ⊂ N◦ \ A converging toy. After transition to an appropriate subsequen
there existsg′ �= e such thatϕ′(yn) = g′ϕ(yn) for all n. By continuity ϕ′(y) = g′ϕ(y) follows, hence
ϕ(y) = g′ϕ(y). But this contradictsGϕ(y) = {e}, soA ∩N◦ must be open indeed. Now lety ∈ N1 and
assume thatA∩ Vy ∩N◦ �= ∅. 1.3 (5) entails thatVy can be decomposed in three connected subsetsV N

y ,
V S
y andV 1

y , where the first two are the connected components ofVy ∩N◦ andV 1
y is equal toVy ∩N1. By

assumption ony there existsz0 ∈ Vy ∩N◦, let us sayz0 ∈ V N
y , such thatϕ′(z0)= ϕ(z0). By the results

proven so far we know thatϕ′(z) = ϕ(z) for all z ∈ V N
y ∪ V 1

y . We now want to show that this hold
for z ∈ V S

y as well. As it has been shown above, bothHy andGϕ(y) are isomorphic toZ2. Let h be the
non-neutral element ofHy . Then bothι(h) andι′(h) coincide with the non-neutral element ofGϕ(y); this
implies in particular thatι′(h)= ι(h). Ashz ∈ V N

y for z ∈ V S
y , we obtain

ϕ′(z)= ι′(h)ϕ′(h−1z
)= ι(h)ϕ(

h−1z
)= ϕ(z),

henceϕ′(z)= ϕ(z) for all z ∈ Vy . Since every element ofN◦ ∪N1 can be connected withy◦ by a finite
chain ofVy with eithery ∈N◦ or y ∈N1, this shows thatN◦ ∪N1 is contained inA. AsA is closed and
N◦ is dense inN , we thus obtainA=N . This proves the relationϕ′ = ϕ under the assumption of finit
G andH . To show thatι′ = ι consider the open setV =H Vy◦ ⊂N◦ and the imageU = ϕ′(V )= ϕ(V ).
Obviously, imι′ ⊂ GU := {g̃ ∈ G | g̃U ⊂ U }. Sinceϕ′(hy) = ϕ(hy) = ι(h)ϕ′(y) for y ∈ V and asGU
acts effectively onU , the relationι′ = ι follows. This finishes the proof of axiom (SYM3).

For the case of profinite dimensional manifolds with finite symmetries(
M = lim←−

i∈N

Mi,G
)

and
(
N = lim←−

i∈N

Ni,H
)

one concludes the claim from the fact that axioms (SYM3) and (SYM4) hold true for the compo
(Mi,G) and(Ni,H). The details of the corresponding straightforward argument are left to the re
Finally, an arbitrary differentiable slice categoryT satisfies (SYM3) and (SYM4) since these axio
hold true forManpf. ✷

2. Orbispaces

2.1. Orbispace charts

LetX be a topological Hausdorff space andT a differentiable category. By aT-orbispace chartfor X
we understand a triple(Ũ,G,.) such that(Ũ,G) is an object ofTsym and. : Ũ→U ⊂X a continuous
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G-invariant map inducing a homeomorphism. : Ũ/G→U onto an open subset ofX. The setU will be
called theimageof the orbispace chart,̃U its domain. In case the symmetry groupG is finite,(Ũ,G,.) is
called aT-orbifold chart for X. A morphismbetween twoT-orbispace charts(Ṽ ,H,υ) and(Ũ,G,.) is
a morphism(ϕ, ι) : (Ṽ ,H)→ (Ũ,G) in Tsym such that. ◦ ϕ = υ. Note that for everyT-orbispace char
(Ũ ,G,.) the triple (Ũ,GŨ,eff, .) is a T-orbispace chart as well. If(Ũ ,G,.)= (Ũ,GŨ,eff, .), we say
that(Ũ,G,.) is areducedorbispace chart. The category of allT-orbispace charts forX will be denoted
by T

sym
X .

Two T-orbispace charts(Ũ1,G1, .1) and (Ũ2,G2, .2) are calledgerm equivalentat a pointx ∈
U1 ∩ U2, if there exist two embeddings(ϕi, ιi) : (Ṽ ,H,υ)→ (Ũi,Gi, .i), i = 1,2, and a distinguishe
point x̃ ∈ Ṽ such thatϕi(Ṽ ) is a subobject of̃Ui and such thatυ(x̃)= x. In other words, germ equivalenc
of orbispace charts means essentially that the slices ofŨ1 at some point̃x1 ∈ .−1

1 (x) and ofŨ2 at some
point x̃2 ∈ .−1

2 (x) coincide (up to isomorphy). Using axiom (SLC) it is straightforward to check
the germ equivalence of orbispace charts at a pointx ∈ X is an equivalence relation indeed. By
T-orbispace atlasfor X we now understand a covering ofX by T-orbispace charts such that any tw
of the orbispace charts are germ equivalent at every point of the intersection of their images. I
element of an orbispace atlas is aT-orbifold chart, we call the atlas aT-orbifold atlas. Obviously, the se
of T-orbifold atlases forX is partially ordered by inclusion, and for everyT-orbifold atlasA there exists
a unique maximalT-orbifold atlasAmax containingA. Clearly, the same holds for orbispace atlases.
arrive at the definition of aT-orbifold; this is just a second countable paracompact topological Haus
spaceX together with a maximalT-orbifold atlas, usually denoted byAX. If T is the category of finite
dimensional manifolds (respectively profinite dimensional manifolds), aT-orbifold is briefly called an
orbifold (respectively profinite dimensional orbifold).

Particularly convenient for the study of orbifolds are the so-calledlinear orbifold charts. These
are orbifold charts(W̃ ,G,.), whereW̃ is an open convex neighborhood of the origin of some fi
dimensionalG-representation space. In this situation we sometimes say thatx = .(0) ∈W is thecenter
of (W̃ ,G,.) or that(W̃ ,G,.) is centralizedatx. By the slice theorem it is clear that every orbifold ge
at x can be represented by a linear orbifold chart centralized at this point.

2.2. Orbispace functors

LetU be an open covering ofX andU the category whose objects are given by connected compo
of finite intersectionsU1∩ · · · ∩Uk of elementsU1, . . . ,Uk ∈ U and whose morphisms are the canoni
inclusions. By aT-orbispace functorwe understand a functorX defined onU and with values in the
category of orbispace charts ofX such that the following conditions hold true:

(OSF1) For every objectU of U the orbispace chartX(U) has imageU .
(OSF2) The domaiñU of every orbispace chartX(U), U ∈ U is connected.
(OSF3) For all objectsU,V of U with V ⊂U the morphismXVU := X(V →U) is an open embedding

A T-orbispacenow is a second countable and locally connected paracompact topological Hau
spaceX together with aT-orbispace functorX :U → T

sym
X . Clearly, this functor uniquely determines

maximal atlasAX of orbispace charts such thatX has image inAX. From now on only the elements
AX will be called orbispace charts for theT-orbispaceX.
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If T is the category of finite dimensional manifolds (respectively profinite dimensional manif
we use the same language like for orbifolds and briefly say orbispace (respectively profinite dime
orbispace) instead ofT-orbispace.

Using the paracompactness of an orbifoldX, the following result can be easily derived from (SYM
and (SYM4). We leave the details to the reader.

2.3. Proposition. For everyT-orbifold X there exists aT-orbispace functorX :U→AX ⊂ T
sym
X .

2.4. Stratification of orbispaces

Every orbispaceX has a canonical stratification. To construct this consider a pointx and choose an
orbispace chart(Ũ,G,.) aroundx. Denote bySx the set germ atx of the stratification ofU ∼= Ũ/G
by orbit types (recall Example 1.3). As a consequence of the slice theorem,Sx does not depend on th
particular choice of(Ũ ,G,.). Since the set germSx is locally induced by a decomposition, we th
obtain a stratificationS , called thecanonical stratificationof the orbispace. Proposition 1.2 guarant
the existence of a canonical decomposition ofX into smooth manifolds, called thestrataof the orbispace
Moreover, ifX is connected, there exists an open and dense stratum which coincides with the regu
of X and which will be denoted byX◦. Thedimensionof X is defined as the dimension ofX◦.

2.5. Example. Every manifold with boundaryM carries in a natural way the structure of a fin
dimensional orbifold. To see this choose a smooth collarc : ∂M × [0,1)→M , denote bỹU◦ the interior
M \ ∂M and put Ũ1 = ∂M × (−1,1). Then Z2 acts onŨ1 by (p, t,±1) �→ (p,±t), and the map
.1 : Ũ1 → im c, (p, t) �→ c(p, t2) induces a homeomorphism̃U1/Z2 → im c. It is now immediate to
check that(Ũ◦, {e}, id) and(Ũ1,Z2, .1) comprise an orbifold atlas forM . Similarly, though technically
somewhat more involving, one proves that every manifold with corners is naturally a finite dimen
orbifold.

Note that in the approach to orbifolds going back to Satake [17], manifolds with boundary or c
are not regarded as orbifolds (or better V-manifolds in the language of [17]), since every orbifold
around a boundary point possesses a stratum of codimension 1.

2.6. Given an open coveringU of some locally connected topological spaceY , any faithful functor
Y : U → Tsym which satisfies axioms (OSF2) and (OSF3) above will be called aT-orbispace functor,
too. Hereby, faithful means that the imageYvu(Y(v)) is properly contained inY(u) for all v,u ∈ U with
v � u. The following proposition shows that this new notation is justified indeed.

2.7. Proposition. Let Y : U → Tsym be a faithful functor satisfying axioms(OSF2)and (OSF3). Then
there exists aT-orbispaceX, an order preserving injective mapU from U to the topology ofX and a
T-orbispace functorX : U(U )→ T

sym
X , u �→ (Ũu,Gu,.u) such thatY= F ◦X ◦U, whereF :Tsym

X → Tsym

is the forgetful functor(Ũ ,G,.) �→ (Ũ,G). Moreover, these objects are unique up to isomorphy in
sense that ifX′, U′ and X′ also have this property, then there exists a homeomorphismf :X→X′ such
that U′ = f ◦U and.′u = f ◦ .u for all u ∈ U .
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Proof. To constructX, X and U let us first denote every objectY(u), u ∈ U by (Ũu,Gu) and every
morhismYvu for v ⊂ u by (ϕvu, ιuv). Then put

X :=
⊔
u∈U

Ũu/Gu

/
∼,

where two pointsx ∈ Ũu/Gu and x′ ∈ Ũu′/Gu′ are in relation∼, if there existsv ∈ U and a point
y ∈ Ũv/Gv such thatx = ϕvu(y) andx′ = ϕvu(y). The setX carries a natural topology given by th
quotient topology from the (disjoint) topological sum of the orbit spacesŨu/Gu. Now let .u be the
natural map from̃Uu to X, denote byUu the image of.u, and letX be the functoru �→ (Ũu,Gu,.u),
(v→ u) �→ (ϕvu, ιuv). Finally defineU by U(u)= Uu. Then the objectsX, X andU satisfy the claim of
the proposition. The proof of uniqueness up to isomorphy is given by standard arguments, so
leave it to the reader. ✷

In the situation of the proposition we say that theT-orbispaceX is inducedby Y. For convenience w
will also notationally identify the functorsY andX.

2.8. Smooth functions on orbispaces

Let U ⊂ X be an open subset of theT-orbispaceX. A continuous functiong :U → R is called
smooth, if for every orbispace chart(Ṽ ,H,υ) the compositionυ∗(g) := g ◦ υ|υ−1(U) is smooth. The
algebra of smooth functionsg :U → R will be denoted byC∞(U). The spacesC∞(U) then form the
sectional spaces of a sheaf of algebras onX. We denote this sheaf byC∞X or briefly C∞ and call it the
sheaf of smooth functionsonX. By a smooth mapbetween profinite dimensional orbispacesX andY
we understand a continuous mapf :X→ Y such thatf ∗C∞Y ⊂ C∞X . It is immediate to check that th
T-orbispaces together with the smooth maps between them form a category. Moreover, it follow
standard argument that the sheaf of smooth functions on aT-orbispace is fine.

Note that our definition of smooth maps is in correspondence with the smooth maps betwee
spaces in [2,15,22], but that it is weaker than the notion of smooth maps as defined in [6,16,17]
case of orbifolds.

A particularly useful characterization of the smooth functions on a finite dimensional orbispace
given as follows. Let(Ũ =G×H W̃,G,.) be a twisted-linear orbispace chart forX that meansH ⊂G is
a closed subgroup and̃W an open and convex neighborhood of the origin of someH -representation spac
W. Clearly, by the slice theorem there exists an atlas forX consisting of twisted-linear charts. Choos
homogeneous Hilbert basisp = (p1, . . . , pk) of the algebraP(W)H of H -invariant polynomials onW.
Since the Hilbert basisp consists ofH -invariant functions, the map

pU :U→Rk, x �→ p(v) with v ∈ W̃ such that.([e, v])= x
is well-defined and continuous. Moreover,pU has the following properties:

(1) pU is a homeomorphism onto its image,
(2) on every stratum ofU , pU restricts to a diffeomorphism onto a smooth submanifold ofRk ,
(3) the sheafC∞U coincides with the pullback sheafp∗UC∞Rk ; this is a consequence of the theorem

Schwarz [20].
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In other words these properties mean thatpU is a smooth chart for the stratified spaceX in the sense o
[15, Section 1.3]. From that one can derive the following result.

2.9. Proposition. A continuous mapf :X→ X′ between orbispaces is smooth, if and only if for
twisted linear charts(Ũ =G×H W̃ ,G,.) ofX and(Ũ ′ =G′ ×H ′ W̃ ′,G′, .′) ofX′ such thatf (U)⊂U ′
there exists a smooth map̂fUU ′ :O→Rk

′
defined on an open neighborhoodO ⊂Rk of pU(U) such that

f̂UU ′ ◦ pU = p′U ′ ◦ f|U .

2.10. Vector orbibundles

By a vector orbibundlewe understand an orbispaceE which is induced by anorbibundle functor
that means by an orbispace functorE having values in the category of vector bundles. We denot
orbibundle functor as follows:

E :U→VBdl
sym,

{
u �→ (Ẽu,Gu),

(v→ u) �→ (ψvu, ιvu) : (Ẽv,Gv)→ (Ẽu,Gu).

A VBdl-orbispace chart forE will be called anorbibundle chart. Similarly to the manifold case,
vector orbibundle gives rise to a base orbispace and a canonical projection. Let us show this
detail. Denote for everyu ∈ U by Ũu the base of the vector bundlẽEu and byπu : Ẽu→ Ũu the canonica
projection. Moreover, letϕvu : Ũv→ Ũu be the embedding on the level of base manifolds induced b
morphismψvu. Then

X : U→Man
sym,

{
u �→ (Ũu,Gu),

(v→ u) �→ (ϕvu, ιvu) : (Ũv,Gv)→ (Ũu,Gu)

is an orbispace functor. The resulting orbispaceX is the base orbispaceof the vector orbibundleE.
Clearly, every orbibundle chart(E,G,η) of E now induces an orbispace chart(X,G,.) onX by the
same procedure. Note that even if(E,G,η) is a reduced orbibundle chart,(X,G,.) need not be reduced
in general. Following Chen and Ruan [6] we say thatE is a goodor reduced vector orbibundle, if for
every reduced orbibundle chart(E,G,η) of E the induced chart(X,G,.) on the base is reduced as we

Next consider the canonical projectionsπu : Ẽu → Ũu, u ∈ U . Obviously, theπu induce a unique
smooth mapπ :E→X calledprojectionsuch that

(2.1)π ◦ ηu = .u ◦ πu for all u ∈ U .

Analogously like for vector bundles one defines asectionof E as a continuous maps :X→ E such
that π ◦ s = idX. We denote the space of continuous (respectively smooth) sections ofE by Γ (E)
(respectivelyΓ∞(E)). But unlike in the case of vector bundles, an orbibundleE→X is in general not
locally trivial over the base, which implies in particular that the space of continuous respectively s
sections need not be linear. In the following, we will construct for every vector orbibundle a sub
Γ∞str (E)⊂ Γ∞(E) which is aC∞(X)-module in a natural way. The elements ofΓ∞str (E) will be called
smooth stratified sectionsofE. To defineΓ∞str (E) let (Ẽ,G,η) be an orbibundle chart forE and(Ũ ,G,.)
the induced orbispace chart for the base. For every pointx̃ ∈ Ũ let ẼGx̃

x̃
be the (linear) subspace ofGx̃ -
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invariant elements of the fiber̃Ex̃ . Then for every closed subgroupH ⊂G
Ẽ(H) :=

⋃
x̃∈Ũ

(Gx̃)=(H)

Ẽ
Gx̃
x̃

is a smooth vector bundle over the stratum̃U(H) and Ẽ(H)/G a smooth vector bundle over̃U(H)/G.
Moreover, one concludes easily by the slice theorem thatẼ(H) can be identified with the pullback bund
of Ẽ(H)/G→ Ũ(H)/G by the canonical projectioñU(H)→ Ũ(H)/G. Now, the union

Estr
u :=

⋃
(H)⊂G

Ẽ(H)/G

is a (in general not closed) subspace ofẼ/G which carries a canonical stratification given by the
germs of the vector bundles̃E(H)/G. The only nontrivial part in the proof of this is to show that loca
the condition of frontier (DEC2) is satisfied. To this end it suffices to prove that for all orbit t

(K) � (H) and every pointx̃ ∈ Ũ(H) ∩ Ũ(K) the fiber ẼGx̃
x̃

is contained in the closure of̃E(K). Let
us show this. By the slice theorem we can assume after possibly passing to conjugate subgro
Gx̃ = H , K ⊂ H and that there exists a sequence of pointsx̃n ∈ ŨK converging tox̃. By passing to an
appropriate subsequence of(x̃n) we can achieve that the sequence of fibersẼK

x̃n
converges in the bundl

of Grassmannians. ByK ⊂H one concludes that

ẼHx̃ ⊂ lim
n→∞ Ẽ

K
x̃n
,

whence the condition of frontier holds true.
Next, consider an open embedding(ψvu, ιvu) : (Ẽv,Gv, ηv)→ (Ẽu,Gu, ηu) between orbibundle char

of E. Then, the induced map between the orbit spaces restricts to a strata preserving open embe

ψ̄ str
vu : Ẽstr

v → Ẽstr
u .

Restricted to a stratum,̄ψ str
vu is a smooth vector bundle isomorphism onto an open subbundle of the

stratum. Hence, the union

Estr =
⋃
u∈U

ηu(E
str
u )⊂E

carries a uniquely defined structure of a stratified space such that every one of the topological emb
ηu : Ẽu/G→E is an isomorphism of stratified spaces fromEstr

u onto an open subset ofEstr. We will say
thatEstr is thestratified vector bundle associatedto the vector orbibundleE. A smooth sections :X→E

with image inEstr now will be called asmooth stratified section, if it satisfies the following smooth
vertical extension property:

(SVX) For sufficiently smallε > 0 the map

(2.2)Estr × (−ε, ε)→E, (v, t) �→ v + ts(π(v))
can be extended to a smooth mapVs :E × (−ε, ε)→ E, which we call asmooth vertical
extension.
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By construction ofEstr, the map in (2.2) is well-defined and continuous. Clearly, whether it ca
extended to a smoothVs , depends only on the (maximal) orbibundle atlas ofE and not on the particula
defining orbibundle functorE. The space of smooth stratified sections will be denoted byΓ∞str (E) or
Γ∞(Estr). The following proposition entails that for a reduced vector orbibundle the vertical exte
associated to a smooth stratified section is uniquely defined.

2.11. Proposition. LetE→X be a vector orbibundle. Then the following relations are equivalent:

(1) E is a reduced vector orbibundle.
(2) Estr is dense inE.
(3) The projectionE◦|X◦ :=E◦ ∩ π−1(X◦)→X◦ is a smooth vector bundle.

Proof. Let us first show that (1) implies (3). LetE→ X be reduced andx ∈ X◦ be a point. Choose
a slice orbibundle chart(Ẽ→ Ũ ,G,η) around 0x ∈ E, and x̃ ∈ Ũ with .(x̃) = x. By restriction to an
appropriate open subbundle of̃E, we can achieve that̃U/G lies in the regular part ofX. Moreover,
after passing to the reduced orbibundle chart, we can assume thatG acts effectively oñE. Hence, by
assumption,G acts effectively oñU . Since(Ẽ,G,η) is a slice for the orbibundle germ at 0x̃ ∈ Ẽ, the
orbichart (Ũ ,G,.) is a slice for the orbispace germ atx̃. ThusGỹ = G for all ỹ ∈ Ũ . But G acts
effectively onŨ , soG = {e}. From this one concludes thatE|U := π−1(U)= Ẽ, henceE|U ⊂ E◦. By
definition ofE◦|X◦ , (3) follows.

Clearly,E◦|X◦ → X◦ is a vector bundle, if and only ifEstr ∩ π−1(X◦) = E◦|X◦ . Hence (2) and (3) ar
equivalent.

For the proof of the implication (3)⇒ (1) let (Ẽ,G,.) be reduced andv ∈ E◦|X◦ ∩ η(Ẽ). Then
Gπ(v) = Gv by definition ofEstr. Hence

⋂
g∈GGπ(v) =

⋂
g∈GGv = {e}, so 1.3 (3) entails thatG acts

effectively onŨ . ✷
2.12. Example. Let X be an orbispace. Then thetangent orbibundle functorT X :U → VBdl

sym is
defined to be the functor which associates to every orbispace chart(Ũ,G,.) of X the object(T Ũ ,G) and
to every morphism(ϕ, ι)= XVU : (Ṽ ,H,υ)→ (Ũ ,G,.) the morphism(T ϕ, ι) : (T Ṽ ,H)→ (T Ũ ,G).
The (finite dimensional) orbibundle defined byT X will be called thetangent orbibundleof X and will
be denoted byTX. Similarly, one defines thecotangent orbibundleT ∗X. Note that both the tangent an
cotangent orbibundles are good orbibundles.

More generally, ifF is a functor on the category of (finite dimensional) real or complex vector sp
and E :U → VBdl

sym an orbibundle functor, then the fiberwise application ofF to every one of the
objectsE(u) leads to a new vector orbibundle functor denoted byFE. Generalizing this even furthe
to covariant and contravariant functors in multiple arguments it is then clear what to understand
direct sum, the tensor product and so on of vector orbibundles over a common base orbispaceX. In the
remainder of this work we will use such constructions of vector orbibundles without further explan

2.13. Theorem. LetE be a reduced orbibundle over an orbispaceX. Then the spaceΓ∞str (E) of smooth
stratified sections carries a natural structure of aC∞(X)-module. Moreover, ifU is an open covering o
X andE :U→VBdl

sym an orbibundle functor ofE inducing the orbispace functorX on the base, the
a continuous sections :X→E is a smooth stratified section, if and only if it is a good section.s being a
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good section hereby means that there exists a family(sŨ )U∈U of smooth sectionssŨ : Ũ→ ẼU such that
the following conditions hold true:

(GSEC1) For every orbispace chart(Ũ ,G,.) of X the sectionsŨ isG-equivariant.
(GSEC2) If (ϕVU , ιVU ) = XVU : (Ṽ ,H,υ)→ (Ũ,G,.) is a morphism and(ψVU , ιVU ) = EVU the

corresponding morphism between the vector bundles(ẼV ,H) and(ẼU ,G), then

(2.3)sŨ ◦ ϕVU =ψVU ◦ sṼ .
(GSEC3) For every(Ũ,G,.) the following relation holds true:

(2.4)ηU ◦ sŨ = s ◦ ..

If s is a smooth stratified section, then the family(sŨ ) satisfying (GSEC1)to (GSEC3) is uniquely
determined.

2.14. Remark. The notion ofgood mapsbetween orbifolds has been introduced by Chen and Rua
in their work on orbifold Gromov–Witten theory. The essential feature hereby is that the pull-ba
a vector orbibundle by a good map is a well-defined concept, whereas the pull-back orbibundl
arbitrary smooth map does in general not exist. Moreover, good maps between orbifolds corres
the morphisms of orbifolds as defined in the groupoid approach to orbifolds. See Moerdijk [13] fo
on this.

Proof. Clearly, the second claim implies the first, so we only show thats is a smooth stratified sectio
if and only if it is a good section. The existence of a family(sŨ ) satisfying (GSEC1) to (GSEC3)
obviously sufficient fors to be a smooth stratified map. Hence it remains to prove that the existen
such a family(sŨ ) is also necessary. For simplicity we assume thatU consists only of one connecte
open setU or, in other words, thatE is the orbit space of the orbibundle chart(Ẽ,G,η) = E(U). The
general case can easily be deduced from this particular situation. Under the assumption madE,
let s be a smooth stratified sections : Ũ/G→ Ẽ/G. Now, givenf ∈ C∞(Ẽ/G) we define a function
δsf ∈ C∞(Ẽ/G) as follows:

(2.5)δsf (v)= d

dt
f

(
Vs(v, t)

)∣∣
t=0 for all v ∈ Ẽ/G,

where Vs is the uniquely defined smooth vertical extension associated tos. By construction,δs
is a derivation onC∞(Ẽ/G). Hence, according to the Smooth Lifting Theorem of Schwarz
Theorem 0.2], there exists aG-invariant smooth vector fieldξ : Ẽ→ T Ẽ such that

ξ(f ◦ η)= δsf for all f ∈ C∞(Ẽ/G).
Obviously, ξ is a vertical vector field, since the restriction ofδs to E◦|X◦ is vertical. One conclude
s ◦ . = η ◦ ξ|Ũ , whereŨ has been identified with the zero section ofẼ. Let us putsŨ := ξ|Ũ . Then,
sŨ is a smoothG-invariant section of̃E and satisfies

(2.6)η ◦ sŨ = s ◦ ..
Thus (GSEC1) and (GSEC3) hold true.
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Next let us show that theG-invariance and Eq. (2.6) uniquely determinesŨ . To this end check firs
thatsŨ (x̃) ∈ ẼGx̃x̃ for all x̃ ∈ Ũ . Second recall that for everyx ∈U the fiberEstr

x coincides naturally with

Ẽ
Gx̃
x̃

, wherex̃ ∈ .−1(x). By Eq. (2.6) this entails thatsŨ is uniquely determined.
Finally, if U is an arbitrary open covering ofX, axiom (GSEC2) follows immediately from th

uniqueness of the sectionssŨ , since forV,U ∈ U with V ⊂ U the compositionψ−1
VU ◦ sŨ ◦ ϕVU is

also aG-equivariant section over̃V satisfying (GSEC3), hence it must coincide withsṼ . This proves the
claim. ✷
2.15. Remark. According to the theorem one can identify a smooth stratified section of a reduced
orbibundle with a family(sŨ )Ũ∈U having properties (GSEC1) to (GSEC3), and every family(sŨ )Ũ∈U
which fulfills (GSEC1) and (GSEC2) gives rise to a unique smooth stratified section such tha
(GSEC3) holds true. In the rest of this work we will very often make use of these canonical identific
For example we denote vector fieldsξ :X→ TX briefly by (ξŨ ) and assume from now on that the ind
Ũ runs through the domains of the orbispace charts of the defining orbifold functorX. Likewise, we
denote differential forms onX, tensor fields and so on.

3. Symplectic orbispaces

3.1. Let X be an orbispace, andU ,X like before. By ariemannian metric(respectivelysymplectic
form) on X we understand a family ofG-invariant riemannian metricsgŨ (respectively symplectic
forms ωŨ ) on Ũ , where (Ũ ,G,.) runs through the charts ofX, such that for every morphism
(ϕ, ι) := XVU : (Ṽ ,H,υ)→ (Ũ ,G,.) between two orbispace charts the relation

(3.1)ϕ∗gŨ = gṼ respectively

(3.2)ϕ∗ωŨ = ωṼ
is satisfied. We will denote such a riemannian metric (respectively symplectic form) by(gŨ )

(respectively(ωŨ)). An orbispace with a riemannian metric(gŨ ) (respectively symplectic form(ωŨ))
will be called ariemannian(respectivelysymplectic) orbispace; likewise one definesriemannianand
symplectic orbifolds. Note that by Theorem 2.13,(gŨ ) (respectively(ωŨ)) corresponds to a smoo
stratified sectiong ∈ Γ∞str (T

∗X⊗ T ∗X) (respectivelyω ∈ Γ∞str (T
∗X⊗ T ∗X)).

Since for every orbispace chart(Ũ ,G,.) there exists aG-invariant riemannian metric oñU and
because the sheafC∞X is fine, it is easy to construct a riemannian metric forX.

Like in the manifold case, natural examples of symplectic orbispaces are given by cot
bundles. To see this, letT ∗X be the cotangent orbibundle of(X,X) and consider the orbispace ch
(T ∗Ũ ,G,T ∗.) induced by(Ũ ,G,.). ThenT ∗Ũ carries a canonical symplectic formωT ∗Ũ and this
symplectic form is invariant with respect to the liftedG-action. Moreover, if(ϕ, ι) : (Ṽ ,H,υ) →
(Ũ ,G,.) is a morphism and(T ∗ϕ, ι) = (ϕ−1∗, ι) : (T ∗Ṽ ,H,T ∗υ) → (T ∗Ũ ,G,T ∗.) the induced
morphism of orbispace charts ofT ∗X, then(T ∗ϕ)∗ωT ∗Ũ = ωT ∗Ṽ , hence theωT ∗Ũ define a symplectic
form onT ∗X.

3.2. Example. As a specific example of a symplectic orbifold consider the cotangent orbibundle
real half lineY = [0,∞). A global orbifold chart forY is given byR with the Z2-action such that the
nonzero element acts by inversion. Therefore,T ∗Y is the quotientR2/Z2, where the nonzero eleme
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of Z2 acts again by inversion. A Hilbert basis of theZ2-invariant polynomials onR2 is given by the
polynomialsp2+ q2, p2− q2 and 2pq, where(p, q) are the coordinates of an element ofR2. Now,(

p2+ q2)2= (
p2− q2)2+ (2pq)2,

hence the orbifoldR2/Z2 is diffeomorphic to the standard cone{(x1, x2, x3) ∈ R3 | x2
1 + x2

2 = x2
3}.

Moreover, the symplectic orbifoldR2/Z2 has a natural stratification by two symplectic strata, wh
the top stratum is given bẏR2/Z2 with Ṙ2= R2 \ {0} and the second stratum is given by{0} or in other
words by the cusp of the cone.

3.3. Proposition. Let X be a symplectic orbispace. Then every stratum of the orbispace stratific
carries in a canonical way the structure of a Poisson manifold. Moreover, ifX is an orbifold, the strata
are symplectic.

Proof. We show the claim for the case, where the orbispace is given by the orbit space of a sym
G-action on a symplectic manifoldM . Clearly, this suffices to prove the proposition, since the claim
property ofX is essentially a local statement. So let us assume thatX = M/G. Then it is well-
known that for every orbit type(H) the manifoldMH of points ofM with isotropy group equal to
H inherits fromM a symplectic structure [10, Proposition 27.5]. Moreover, the canonical proje
πH :MH →M(H)/G onto the stratumM(H)/G is a principal fiber bundle with typical fiberNG(H)/H ,
whereNG(H) is the normalizer ofH in G. Now, given two functionsf,g ∈ C∞(M(H)/G) the Poisson
bracket{f ◦ πH,g ◦ πH } with respect to the canonical symplectic structure onMH is NG(H)-invariant,
hence there exists a unique{f,g}H ∈ C∞(M(H)/G) such that

{f,g}H ◦ πH = {f ◦ πH,g ◦ πH }.
Clearly, {·, ·}H is antisymmetric and satisfies the Jacobi identity, hence is a Poisson brack
C∞(M(H)/G). Thus,M(H)/G carries the structure of a Poisson manifold and this Poisson struct
natural in the sense that it is invariant under equivariant symplectic diffeomorphisms ofM .

Under the assumption that the symmetry groupG is finite the zero mapM → {0} provides a
momentum map for the symplecticG-action, so by Sjamaar and Lerman [22, Theorem 2.1] the s
M(H)/G are symplectic in this case. This proves the proposition.✷

3.4. A family (∇Ũ ) of G-invariant (affine) connections∇Ũ defined onΓ∞(T Ũ) is called a
connectiononX, if for every vector field(ξŨ ) onX and every morphism(ϕ, ι) : (Ṽ ,H,υ)→ (Ũ ,G,.)

between charts ofU the compatibility relation

(3.3)ϕ∗(∇Ũ ξŨ )=∇Ṽ ξṼ
holds true. Note that every connection(∇Ũ ) onX gives rise to acovariant derivative, i.e., a linear map
∇ :Γ∞str (T X)→ Γ∞str (T

∗X⊗ TX) such that

(3.4)∇(f ξ)= df ⊗ ξ + f∇ξ for all f ∈ C∞(X) andξ ∈ Γ∞str (T X).

If (gŨ ) is a riemannian metric onX, then the family(∇LC
Ũ
), which associates to everỹU the Levi-

Civita connection with respect togŨ , provides a torsionfree connection onX. Obviously,(∇LC
Ũ
) leaves

the riemannian metric(gŨ ) invariant and will be called theLevi-Civita connectionof (gŨ ). In case(ωŨ)
is a symplectic form onX, a connection(∇Ũ ) is calledsymplectic, if ∇ŨωŨ = 0 holds for allŨ .
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More generally, let us assume now thatE→ X is a reduced vector orbibundle, where the typi
fiber V is a profinite dimensional vector space. By aconnectiononE we then understand a linear m
D :Γ∞str (Λ

•X⊗E)→ Γ∞str (Λ
•X⊗E) of antisymmetric degree 1 such that

(3.5)D(α ∧ s)= dα ∧ s + (−1)k α ∧Ds for all α ∈ Γ∞(
ΛkX

)
ands ∈ Γ∞str (E).

Given a Satake atlasU for X and a bundle atlas((EŨ ,G,ηŨ ))Ũ∈U overU , Theorem 2.13 entails that
connection can be regarded as a family(DŨ) of connectionsDŨ :Γ∞(Λ•Ũ ⊗EŨ)→ Γ∞(Λ•Ũ ⊗EŨ)
such that for every smooth sections = (sŨ ) one has

(3.6)(Ds)Ũ =DŨsŨ for all Ũ ∈ U .

Thecurvatureof a connectionD is the two-formR ∈ Γ∞str (Λ
2X⊗End(E)) with

(3.7)R(ξ, ζ )s = [Dξ,Dζ ]s −D[ξ,ζ ]s for all ξ, ζ ∈ Γ∞str (T X) ands ∈ Γ∞str (E).

Obviously,R = (RŨ ), whereRŨ is the curvature ofDŨ .

3.5. Proposition. For every symplectic orbispace there exists a torsionfree symplectic connection.

Proof. First fix a riemannian metric(gŨ ) onX and use the corresponding Levi-Civita connection(∇LC
Ũ
)

to define a contravariant 3-tensor field(∆′
Ũ
) onT X:

(3.8)∆′̃
U
(ξ1, ξ2, ξ3) := 1

3

(∇LC
Ũ
ωŨ (ξ3, ξ1, ξ2)+∇LC

Ũ
ωŨ (ξ2, ξ1, ξ3)

)
, ξ1, ξ2, ξ3 ∈ Tx̃Ũ , x̃ ∈ Ũ .

Note that(∆′̃
U
) is symmetric in the last two variables. Next lift the first variable of(∆′̃

U
) with the help of

(ωŨ ) and denote the resulting tensor field by(∆Ũ ), that means the equalityωŨ( · ,∆Ũ )=∆′̃U is satisfied

over each̃U . Then by construction, the connection(∇Ũ ) defined by

(3.9)∇Ũ =∇LC
Ũ
+∆Ũ

consists ofG-invariant and torsionfree local connections. Moreover, it is also clear by constructio
these connections satisfy the compatibility conditionϕ∗∇Ũ =∇Ṽ for every morphism(ϕ, ι) like above.
Finally, (∇Ũ ) is symplectic by the following computation:

∇ŨωŨ (ξ1, ξ2, ξ3)=∇LC
Ũ
ωŨ (ξ1, ξ2, ξ3)−ωŨ

(∇LC
Ũ
(ξ1, ξ2), ξ3

)− ωŨ(
ξ2,∇LC

Ũ
(ξ1, ξ3)

)
=∇LC

Ũ
ωŨ (ξ1, ξ2, ξ3)−

(
∆′̃
U
(ξ2, ξ1, ξ3)−∆′̃U(ξ3, ξ1, ξ2)

)
=∇LC

Ũ
ωŨ (ξ1, ξ2, ξ3)− 1

3

(∇LC
Ũ
ωŨ (ξ3, ξ2, ξ1)+∇LC

Ũ
ωŨ (ξ1, ξ2, ξ3)

−∇LC
Ũ
ωŨ (ξ2, ξ3, ξ1)−∇LC

Ũ
ωŨ (ξ1, ξ3, ξ2)

)
= 1

3

(∇LC
Ũ
ωŨ (ξ1, ξ2, ξ3)+∇LC

Ũ
ωŨ (ξ2, ξ3, ξ1)+∇LC

Ũ
ωŨ (ξ3, ξ1, ξ2)

)
(3.10)= dωŨ (ξ1, ξ3, ξ2)= 0. ✷
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3.6. Given a symplectic form(ωŨ ) on X one can define a natural Poisson bracket on the alg
C∞(X) as follows. For every pointx ∈ X choose an orbispace chart(Ũ ,G,.) aroundx, let x̃ ∈ Ũ be a
point with.(x̃)= x and denote by{·, ·}Ũ the Poisson bracket onC∞(Ũ). Then define

(3.11){f,g}(x) := {f ◦ .,g ◦ .}Ũ (x̃) for f,g ∈ C∞(X).

By the compatibility relation (3.2), the value{f,g}(x) is independent of the special choice of the ch
(Ũ ,G,.), so{f,g} ∈ C∞(X) is well-defined. Using the corresponding properties of the Poisson bra
{·, ·}Ũ one now checks immediately that{·, ·} is antisymmetric in its arguments and satisfies the Ja
identity, hence{·, ·} is a Poisson bracket onC∞(X). Note that the symplectic form(ωŨ ) also gives rise to
thePoisson bivector fieldΠ = (ΠŨ) onX, whereΠŨ is the Poisson bivector field oñU corresponding
to ωŨ .

The well-known definition of a formal deformation quantization of a symplectic manifold by Ba
Flato, Lichnerowicz and Sternheimer [1] can be easily extended to the orbispace arena. Let us
the details. Consider the spaceC∞(X)❏λ❑ of formal power series in the variableλ and with coefficients
in C∞(X). A C❏λ❑-bilinear associative product

D :C∞(X)❏λ❑× C∞(X)❏λ❑→ C∞(X)❏λ❑

is called aformal deformation quantizationof C∞(X) or a star product, if for all f,g ∈ C∞(X) the
following holds:

(DQ1) f D g = ∑
k∈N
µk(f, g)λ

k, where theµk :C∞(X) × C∞(X)→ C∞(X) are bilinear maps an
µ0= µ is the pointwise product onC∞(X),

(DQ2) [f,g]D− iλ{f,g} ∈ λ2C∞(X)❏λ❑, where[f,g]D is the commutatorf D g − g D f ,
(DQ3) f D 1= 1D f = f .

The deformation quantization is calledlocal, if for all k ∈ N

(3.12)suppµk(f, g)⊂ suppf ∩ suppg,

and differential, if all the µk are bidifferential operators onX. By a bidifferential operatoron X we
hereby understand an operatorC∞(X)⊗ C∞(X)→ C∞(X) which in every orbispace chart(Ũ,G,.) is
induced by aG-invariant bidifferential oñU .

3.7. Example. Consider the symplectic coneC = R2/Z2 of Example 3.2. LetD be the Moyal–Weyl
product onR2 that means

(3.13)f D g =
∑
k∈N

(−iλ
2

)k
µ

(
Π̂(f ⊗ g)) for all f,g ∈ C∞(R2),

whereΠ̂(f ⊗ g)= ∂
∂q
f ⊗ ∂

∂p
g− ∂

∂p
f ⊗ ∂

∂q
g andµ(f ⊗ g)= f g. Since the operator̂Π is Z2-invariant,

D can be restricted to an associative product on the spaceC∞(R2)Z2❏λ❑, whereC∞(R2)Z2 denotes the
algebra ofZ2-invariant smooth functions onR2. But C∞(R2)Z2 is canonically isomorphic toC∞(C),
hence we obtain a star product forC.
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4. Fedosov’s quantization for orbispaces

4.1. In this section we will show how Fedosov’s method for the construction of a (differenti
star-product can be transferred to the arena of orbispaces. The essential point hereby is to chec
of Fedosov’s constructions can be performed in a manner which is natural with respect to mor
of orbispace charts and invariant with respect to the involved symmetries. We proceed analogo
Fedosov [9, Chapter 5] (cf. also [4, Section 21]). In particular, we will define the Weyl algebra b
WX of a symplectic orbispaceX and then construct a flat connectionD on the Weyl algebra bundle suc
that the space of formal power series inC∞(X) can be (linearly) identified with the subalgebra of fl
sections ofWX. Via this identification,C∞(X) then inherits a star-product fromWX.

4.2. Let V be a finite dimensional Poisson vector space andΠ its Poisson bivector. One can th
associate toV the formal Weyl algebraWV and thecompleted formal Weyl algebrâWV as follows.
As a (complex) vector spaceWV coincides with Sym•(V ∗)❏λ❑, the space of formal power series inλ
with coefficients in the algebra of complex valued polynomial functions onV . The completed forma
Weyl algebraŴV hasŜym

•
(V ∗)❏λ❑ as underlying linear space. Note that Sym•(V ∗)=⊕

s∈N
Syms(V ∗)

is a graded algebra, where the product is given byµ, the pointwise product of functions, and t
homogeneous component Syms(V ∗) consists ofs-homogeneous polynomials. The profinite dimensio
vector spacêSym

•
(V ∗) coincides with

∏
s∈N

Syms(V ∗) and carries a natural descending filtration giv
by the powerŝmn, wherem̂ is the kernel of the canonical morphism̂Sym

•
(V ∗)→ C ∼= Sym0(V ∗).

Moreover,Ŝym
•
(V ∗) is complete with respect to the topology defined by this filtration.

By construction,WV is a subspace of̂WV . Every elementa ∈ ŴV now has a unique representati
of the form

(4.1)a =
∑

k∈N, s∈N

askλ
k,

whereask ∈ Syms(V ∗) and where only finitely manyask do not vanish for fixedk, if a ∈WV . Next recall
that the Poisson bivectorΠ can be written as a finite sumΠ =∑

i Π1i⊗Π2i withΠ1i ,Π2i ∈ V and that
the elements ofV act by derivations on Sym•(V ∗). Therefore, the operator

Π̂ : Sym•(V ∗)⊗C Sym•(V ∗)→ Sym•(V ∗)⊗C Sym•(V ∗),

f ⊗ g �→
∑
i

Π1if ⊗Π2ig

is well-defined and continuous with respect to the Krull topology defined bym. Hence,Π̂ can be
extended byC❏λ❑-linearity and continuity to an operator on̂WV ⊗C ŴV . The Moyal–Weylproduct
on ŴV then is given as follows:

(4.2)a ◦ b := µ(
exp(−iλΠ̂)(a⊗ b)) :=∑

k∈N

(−iλ)k
k! µ

(
Π̂k(a⊗ b)) for a, b ∈ ŴV.

Thus (ŴV,◦) becomes an associative algebra, andWV a subalgebra. The (completed) formal We
algebra carries a (descending) filtration(ŴnV )n∈N defined by theFedosov-degree

(4.3)degF(a)=min{s + 2k | ask �= 0}, a ∈WV.

This means that̂WnV is the subalgebra{a ∈ ŴV | degF(a)� n}.
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Additionally toŴV we consider the algebraΛ•ŴV :=Λ•V ⊗R ŴV of alternating forms with value
in ŴV . The product◦ onŴV and the exterior product onΛ•V induce a product onΛ•ŴV , denoted by
◦ as well. Moreover, the filtration of̂WV induces a filtration ofΛ•ŴV .

The following result is crucial for all our further considerations. As the proof is obvious, we lea
to the reader.

4.3. Proposition. Associate to every finite dimensional Poisson vector spaceV the completed forma
Weyl algebraŴV and to every linear Poisson mapf :W → V the linear map

(4.4)Ŵf :ŴV → ŴW, a =
∑

k∈N, s∈N

askλ
k �→

∑
k∈N, s∈N

f ∗(ask)λk.

Then,Ŵ is a contravariant functor with values in the category of profinite dimensional vector sp
Likewise,Λ•Ŵ can be regarded as a functor defined on the category of finite dimensional Poisson
spaces with values in the category of profinite dimensional vector spaces.

4.4. Next let us consider a symplectic orbispace(X, (ωŨ)). Without loss of generality we can assum
that everyŨ appearing as an index of(ωŨ ) is an orbispace chart of some orbispace functorX such that
(ωŨ ) is an openG-invariant subset ofR2n, such thatG acts by linear symplectic maps onR2n and finally
such that the symplectic formωŨ is given by

∑n
j=1 dx̃j ∧ dx̃n+j , where(x̃1, . . . , x̃2n) are the natura

coordinate functions over̃U ⊂ R2n. Given an element(Ũ,G,.) ∈ U , every fiber ofT Ũ is a Poisson
vector space, so we can applŷW fiberwise and thus obtain the Weyl algebra bundleŴŨ . Likewise, the
bundle of forms of the Weyl algebraΛ•ŴŨ is constructed. Following Fedosov [9, Chapter 5] we w
now introduce a convenient representation of the sections of these bundles. Let(dx̃1, . . . , dx̃2n) be the
local frame ofT ∗Ũ corresponding to the coordinates(x̃1, . . . , x̃2n) and denote bỹyj for j = 1, . . . ,2n the
canonical image ofdx̃j in the sectional spaceΓ∞(Sym•(T ∗Ũ )). Hereby, Sym• is regarded as a fiberwis
acting functor on the category of finite dimensional vector bundles. As a (topological)C∞(Ũ )-module,
Γ∞(Sym•(T ∗Ũ )) is generated by the sectionsỹα = ỹα1

1 · · · ỹαnn , whereα ∈ Nn. With these notationa
agreements, a sectionaŨ ∈ Γ∞(Λ•ŴŨ) respectively an elementax̃ ∈ Γ∞(ŴŨ) (with x̃ denoting the
footpoint) can be represented in the form

(4.5)a✸ =
∑

k∈N, α∈N2n, l∈N

∑
1�j1<···<jl�2n

a✸,kαj1···jl ỹα dx̃j1 ∧ · · · ∧ dx̃jl λk

where✸ is one of the symbols̃U or x̃, and the elementsaŨ,kαj1···jl ∈ C∞(Ũ ) respectivelyax̃,kαj1···jl ∈ C

are uniquely defined. To simplify notation we writeax̃ not only for an element of̂WŨ with footpoint x̃
but also for the evaluation of a sectionaŨ ∈ Γ∞(Λ•ŴŨ ) at x̃.

4.5. In the following step we will lift theG-action toŴŨ . Denote bylg the action of some grou
elementg on Ũ . Then the derivativeTx̃lg is a linear Poisson map, so by Proposition 4.3

G× ŴŨ→ ŴŨ , (g, ax̃) �→ Ŵ(Tgx̃lg−1)(ax̃)

is a G-action onŴŨ . Given a second element(Ṽ ,H,υ) ∈ U and a morphism of orbispace cha
(ϕ, ι) : (Ṽ ,H,υ)→ (Ũ ,G,.) the pair

(Ŵϕ, ι) : (ŴṼ ,H)→ (ŴŨ ,G), (aỹ, h) �→
(
Ŵ(Tỹϕ)

−1(aỹ), ι
)
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Proposition 4.3

Ŵϕ(haỹ)= Ŵ(Thỹϕ)
−1(haỹ)= Ŵ

(
Thỹ lh−1 ◦ (Thỹϕ)−1

)
(aỹ)

= Ŵ
(
Tỹ(ϕ ◦ lh)

)−1
(aỹ)= Ŵ

(
Tỹ(lι(h) ◦ ϕ)

)−1
(aỹ)

(4.6)= Ŵ(Tι(h)ϕ(ỹ)lι(h)−1)Ŵϕ(aỹ)= ι(h)Ŵϕ(aỹ).
Thus we obtain an orbibundle functor̂WX which associates to everỹU the pair (ŴŨ ,G) and to
every morphism(ϕ, ι) between elements ofU the morphism(Ŵϕ, ι). The functorŴX induces a vecto
orbibundleŴX→X, called theWeyl algebra orbibundleof X, and an orbibundle atlas(ŴŨ ,G,Ŵ.).
Likewise, one constructs the vector orbibundleΛ•ŴX→ X of so-calledforms of the Weyl algebr
orbibundle. By construction, the orbibundleŝWX andΛ•ŴX are reduced, hence Remark 2.15 app
to sections of̂WX andΛ•ŴX.

4.6. Proposition. The sectional spacesΓ∞str (ŴX) and Γ∞str (Λ
•ŴX) carry in a natural way aC❏λ❑-

bilinear associative product◦ such that

(4.7)(a ◦ b)Ũ = aŨ ◦ bŨ for all a, b ∈ Γ∞str (ŴX) (respectivelya, b ∈Λ•Γ∞str (ŴX)).

Moreover, the spaceΓ∞str (Λ
•ŴX) thus becomes a graded and filtered algebra, where the gradu

degree is given by the form degree and the filtration degree by the Fedosov degree. The topology
by the Fedosov filtration providesΓ∞str (Λ

•ŴX) with the structure of a complete topological vector spa

The graded commutator onΓ∞str (Λ
•ŴX) with respect to the product◦ will be denoted by[·, ·].

Proof. Using theG-invariance of the symplectic formωŨ it is straightforward to check that

(4.8)gaŨ ◦ gbŨ = g(aŨ ◦ bŨ ) for all aŨ , bŨ ∈ Γ∞(ŴŨ).
Moreover, if(ϕ, ι) is a morphism like above, then

(4.9)Ŵϕ(aỹ ◦ bỹ)= Ŵϕ(aỹ) ◦ Ŵϕ(bỹ) for all aỹ, bỹ ∈ ŴṼ andỹ ∈ Ṽ .
Hence, Eq. (4.7) defines a sectiona ◦b ∈ Γ∞str (ŴX). From the corresponding properties of the produc
Γ∞(ŴŨ) one now concludes that◦ is aC❏λ❑-bilinear associative product. The same argument pro
that◦ is a product onΓ∞str (Λ

•ŴX). The remaining part of the claim is obvious.✷
4.7. Let us now choose a symplectic connection(∇Ũ ) on X and extend it in a natural way to

connection onΛ•ŴX by putting

(4.10)(∇b)Ũ =
2n∑
j=1

∑
k,α,l

∑
1�j1<···<jl�2n

∇Ũ, ∂
∂x̃j

(
bŨ,kαj1···jl ỹ

α
)
dx̃j ∧ dx̃j1 ∧ · · · ∧ dx̃jl λk.

By construction,(∇b)Ũ is aG-equivariant section ofΛ•ŴŨ , andϕ∗(∇b)Ũ = (∇b)Ṽ holds for every
morphism(ϕ, ι) : (Ṽ ,H,υ)→ (Ũ,G,.). Hence, the family((∇b)Ũ ) gives rise to a section ofΛ•ŴX,
and the connection∇ :Γ∞str (Λ

•ŴX)→ Γ∞str (Λ
•ŴX) is well-defined. Over̃U , the components of∇b are
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(4.11)(∇b)Ũ = dbŨ +
i

λ
[ΓŨ , bŨ ],

whereΓŨ = 1
2

∑
i,j,k ΓŨ,ijk ỹi ỹj dx̃k is a local one-form and theΓŨ,ijk are the Christoffel symbols of∇,

i.e.,∇Ũ, ∂
∂x̃i

∂
∂x̃j
=∑

k,l ΓŨ,ijkωkl
∂
∂x̃l

. Moreover, the familyR = (RŨ ) with RŨ = dΓŨ + 1
2[ΓŨ ,ΓŨ ] defines

a smooth section ofΛ2ŴX. From [9, Lemma 5.1.3] one concludes that

(4.12)∇2b = i

λ
[R,b] for all b ∈ Γ∞str (Λ

•ŴX).

Hence,R can be interpreted as thecurvature formof ∇.
We will now employ Fedosov’s idea and construct a flat connectionD onΛ•ŴX of the form

(4.13)Db=∇b+ δb+ i

λ
[r, b] for all b ∈ Γ∞str (Λ

•ŴX),

where r ∈ Γ∞str (Λ
1ŴX) and δ :Γ∞str (Λ

•ŴX)→ Γ∞str (Λ
•ŴX) is a graded derivation which locally

defined by

(4.14)(δb)Ũ =
∑
k

dx̃k ∧ ∂bŨ
∂ỹk

=− i
λ

∑
k,l

[ωkl ỹk dx̃l , bŨ ].

Note that Eq. (4.14) gives rise to an operator on the space of smooth stratified sections ofΛ•ŴX indeed,
since the(δb)Ũ areG-equivariant and transform naturally under morphisms of orbispace charts. Sim
one concludes that the operatorδ∗ :Γ∞str (Λ

•ŴX)→ Γ∞str (Λ
•ŴX) is well-defined by putting locally

(4.15)(δ∗b)Ũ =
∑
k

ỹk ·
(
∂

∂x̃k
�bŨ

)
.

Finally, δ∗ gives rise to a third operatorδ− :Γ∞str (Λ
•ŴX)→ Γ∞str (Λ

•ŴX) by the local definition

(4.16)(δ−b)Ũ =
∑
q+l>0

1

q + l δ
∗(bŨ,ql),

where

bŨ,ql =
∑
k, |α|=q

∑
1�j1<···<jl�2n

bŨ,kαj1···jl ỹ
α dx̃j1 ∧ · · · ∧ dx̃jl λk.

The following propositions can now be easily deduced from the corresponding ones in the smoot

4.8. Proposition. For everyb ∈ Γ∞str (Λ
•ŴX) one has the so-called Hodge–de Rham decomposition

(4.17)b= δδ−b+ δ−δb+ σ (b),
whereσ :Γ∞str (Λ

•ŴX)→ C∞(X)❏λ❑, (bŨ ) �→ (bŨ,00) is the symbol map.

Proof. This follows immediately from [9, Lemma 5.1.2].✷
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4.9. Proposition. Givenr ∈ Γ∞str (Λ
1ŴX) let Ω be the two-form−ω + R − δr +∇r + i

λ
r2 with R the

curvature form of∇. ThenΩ is the curvature form of the connectionD =∇ + δb+ i
λ
[r, ·] that meansΩ

satisfies

(4.18)D2b= i

λ
[Ω,b] for all b ∈ Γ∞str (Λ

•ŴX).

Proof. By [9, Lemma 5.1.5], the equalityD2
Ũ
bŨ = i

λ
[ΩŨ, bŨ ] holds true for allbŨ ∈ Γ∞(Λ•ŴŨ ),

hence the claim follows. ✷
4.10. Proposition. Given r0 ∈ Γ∞str (Λ

1ŴX) with degF(r0) � 2 there exists a uniquer ∈ Γ∞str (Λ
1ŴX)

with degF(r)� degF(r0) such that

(4.19)r = r0+ δ−
(
∇r + i

λ
r2

)
.

Proof. Consider the operator

K :Γ∞str (Λ
1Ŵ2X)→ Γ∞str (Λ

1ŴX), s �→ r0+ δ−
(
∇s + i

λ
s2

)
.

It is immediate to check thatK has image inΓ∞str (Λ
1Ŵ2X) and thatK is contractible with respect to th

Fedosov filtration in the sense that

degF

(
K(s)−K(s′))> degF(s − s′) for all s, s′ ∈ Γ∞str (Λ

1Ŵ2X).

Hence, sinceΓ∞str (Λ
1Ŵ2X) is complete with respect to the topology given by the Fedosov filtration,

concludes by a Banach fixed point type argument that there exists a uniquer satisfying the claim. ✷
4.11. Corollary. LetR be the curvature form of a symplectic connection∇ onX andr0= δ−R. Then, if
r is the solution of(4.19), the curvatureΩ ofD =∇ + δb+ i

λ
[r, ·] is a central element with respect

◦ and satisfiesΩ =−ω. In particular,D then is a flat connection.

Proof. We follow the argument of [9, Theorem 5.2.2]. First, note that(δ−)2 = 0, so one has by th
Hodge–de Rham decomposition and Eq. (4.19)

δ−(Ω +ω)= δ−
(
R− δr +∇r + i

λ
r2

)
= r − δ−δr = δ(δ−)2R = 0.

Using again the Hodge–de Rham decomposition, the Bianchi identityDΩ = 0 and the equalityDω =
dω = 0 entail that

Ω +ω = δ−(D+ δ)(Ω +ω).
Now the operatorδ−(D+ δ)= δ−(∇ + i

λ
[r, ·]) raises the Fedosov degree by 1, hence one conclude

Ω +ω= 0. But this implies also thatΩ is central, so the claim follows.✷
For the flat connectionD constructed in the corollary let̂WDX be the space of all flat sections, th

means the space of all elementsa ∈ Γ∞str (ŴX) satisfyingDa = 0. ThenŴDX forms a subalgebra o
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Γ∞str (ŴX), sinceD is a graded derivation with respect to◦. Using the above results one now proves
following result literally like Theorem 5.2.4 of [9].

4.12. Theorem. Let X be a symplectic orbispace,∇ a symplectic connection onX and D the flat
connection onΛ•ŴX defined above. Then the symbol map induces a linear isomorphismσ :ŴDX→
C∞(X)❏λ❑.

Proof. Choosef ∈ C∞(X)❏λ❑ and consider the equation

(4.20)s = f + δ−(D+ δ)s, s ∈ Γ∞str (ŴX).

Since the operators �→ f + δ−(D + δ)s is contractible in the above stated sense, this equation
a unique solutions. Let us show thats ∈ ŴDX and σ (s) = f . First check by the Hodge–de Rha
decomposition that

δ−Ds = s − f − δ−δs = δδ−s = 0.

Using the Hodge–de Rham decomposition again, one getsσ (s) = f . Applying the Hodge–de Rham
decomposition a third time, but now to the argumentDs, one concludes byD2= 0 andδ−Ds that

Ds = δ−(D + δ)Ds.
But this equation has a unique solution, namelyDs = 0, since the operatorδ−(D + δ) is contractible.
Hences ∈ ŴDX andσ (s)= f . Conversely, everys ∈ ŴDX with σ (s)= f satisfies (Eq. (4.20)) by th
Hodge–de Rham decomposition. Thus, the theorem follows.✷

Denote byQ :C∞(X)❏λ❑→ ŴDX the inverse of the symbol map or in other words the quantiza
map. The theorem now entails our main result.

4.13. Corollary. LetD :C∞(X)❏λ❑× C∞(X)❏λ❑→ C∞(X)❏λ❑ be the uniquely determinedC❏λ❑-bilinear
map such that

f D g = σ (
Q(f ) ◦Q(g)) for all f,g ∈ C∞(X).

ThenD is a star product forX.

4.14. Corollary. Every symplectic orbifold possesses a star product.
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