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Equivariant cohomology distinguishes toric manifolds
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Abstract

The equivariant cohomology of a space with a group action is not only a ring but also an algebra over the
cohomology ring of the classifying space of the acting group. We prove that toric manifolds (i.e. compact
smooth toric varieties) are isomorphic as varieties if and only if their equivariant cohomology algebras
are weakly isomorphic. We also prove that quasitoric manifolds, which can be thought of as a topological
counterpart to toric manifolds, are equivariantly homeomorphic if and only if their equivariant cohomology
algebras are isomorphic.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let T be a C∗-torus of rank n, i.e., T = (C∗)n. A toric variety X of complex dimension n is a
normal complex algebraic variety with an action of T having an open dense orbit. A fundamental
result in the theory of toric varieties says that there is a one-to-one correspondence between toric
varieties and fans, and among toric varieties, compact smooth toric varieties, which we call toric
manifolds, are well studied, see [6,13].

Suppose two toric manifolds X and X′ are isomorphic as varieties. Then they are not nec-
essarily equivariantly isomorphic as varieties, but are rather weakly equivariantly isomorphic as
varieties, i.e. there is a variety isomorphism φ :X → X′ together with an automorphism γ of T

such that φ(tx) = γ (t)φ(x) for any t ∈ T and x ∈ X. This is well known and follows from the
fact that the automorphism group of a toric manifold is a linear algebraic group with the acting
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group T as a maximal algebraic torus [13, Section 3.4]. Therefore, classifying toric manifolds
up to variety isomorphism is equivalent to classifying them up to weakly equivariant variety
isomorphism.

The equivariant cohomology of a toric variety X is by definition

H ∗
T (X) := H ∗(ET ×T X)

where ET is the total space of the universal principal T -bundle and ET ×T X is the orbit space
of ET × X by the diagonal T -action. H ∗

T (X) contains a lot of geometrical information about X,
but H ∗

T (X) as a ring does not provide a sufficient information to distinguish X from other toric
manifolds. In fact, when X is a toric manifold, H ∗

T (X) as a ring is the face ring of the underlying
simplicial complex Σ of the fan of X and determined by Σ . There are toric manifolds which
are not isomorphic as varieties but have the same underlying simplicial complex, so equivariant
cohomology as a ring does not distinguish toric manifolds.

However, H ∗
T (X) is not only a ring but also an algebra over H ∗(BT) through the projection

map from ET ×T X onto ET/T = BT . This algebra structure contains more geometrical informa-
tion about X. If two toric manifolds X and X′ are isomorphic as varieties, then they are weakly
equivariantly isomorphic as varieties as remarked above, so that H ∗

T (X) and H ∗
T (X′) are weakly

isomorphic as algebras over H ∗(BT), i.e., there is a ring isomorphism Φ :H ∗
T (X′) → H ∗

T (X)

together with an automorphism γ of T such that Φ(uω) = γ ∗(u)Φ(ω) for any u ∈ H ∗(BT) and
ω ∈ H ∗

T (X′), where γ ∗ denotes the automorphism of H ∗(BT) induced by γ . Our main result
asserts that the converse holds.

Theorem 1.1. Two toric manifolds are weakly equivariantly isomorphic as varieties if and only
if their equivariant cohomology algebras are weakly isomorphic.

As remarked before, toric manifolds are isomorphic as varieties if and only if they are weakly
equivariantly isomorphic as varieties. Therefore the theorem above can be restated as follows.

Corollary 1.2. Two toric manifolds are isomorphic as varieties if and only if their equivariant
cohomology algebras are weakly isomorphic.

The result above leads us to ask how much information ordinary cohomology contains for
toric manifolds, in particular we may ask whether two toric manifolds are homeomorphic (or
diffeomorphic) if their ordinary cohomology rings are isomorphic. The question is affirmatively
solved in some cases [3,11] and the author does not know any counterexample, see [12] for the
survey.

This paper is organized as follows. In Section 2 we review how the equivariant cohomology
of a toric manifold X is related to the fan of X, and prove Theorem 1.1 in Section 3. In Section 4
we observe that our argument also works with some modification for quasitoric manifolds which
are a topological counterpart to toric manifolds.

2. Equivariant cohomology and fans

Throughout this and the next sections, X will denote a toric manifold of complex dimension
n unless otherwise stated. In this section we shall review how the equivariant cohomology of X
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is related to the fan of X. The reader will find that most of the arguments in this and the next
sections work with a compact torus (S1)n instead of T = (C∗)n.

There are only finitely many T -invariant divisors in X, which we denote by X1, . . . ,Xm. Each
Xi is a complex codimension-one invariant closed submanifold of X and fixed pointwise by some
C∗-subgroup of T . Since X and Xi are complex manifolds, they have canonical orientations. Let
τi ∈ H 2

T (X) be the Poincaré dual of Xi viewed as an equivariant cycle in X, in other words, τi is
the image of the unit 1 ∈ H 0

T (Xi) by the equivariant Gysin homomorphism :H 0
T (Xi) → H 2

T (X)

induced from the inclusion map :Xi → X. We call τi the Thom class of Xi .
We abbreviate a set {1, . . . ,m} as [m]. The invariant divisors Xi intersect transversally, so a

cup product
∏

i∈I τi for a subset I of [m] is the Poincaré dual of the intersection
⋂

i∈I Xi . In
particular,

∏
i∈I τi = 0 if

⋂
i∈I Xi = ∅. Since H ∗(X) is generated by elements in H 2(X) as a

ring (see [13, Section 3.3]), we see that H ∗
T (X) is generated by τi ’s as a ring and there are no

more relations among τi ’s than those mentioned above, see [10, Proposition 3.4] for example.
Namely we have

Proposition 2.1.

H ∗
T (X) = Z[τ1, . . . , τm]

/(∏
i∈I

τi

∣∣∣ ⋂
i∈I

Xi = ∅
)

as a ring

where I runs all subsets of [m] such that
⋂

i∈I Xi = ∅.

We set

Σ :=
{
I ⊂ [m]

∣∣∣ ⋂
i∈I

Xi �= ∅
}
.

This is an abstract simplicial complex of dimension n − 1 and the proposition above says that
H ∗

T (X) is the face ring (or Stanley–Reisner ring) of the simplicial complex Σ .
Let π : ET ×T X → ET/T = BT be the projection on the first factor. Through π∗ :H ∗(BT) →

H ∗
T (X), one can regard H ∗

T (X) as an algebra over H ∗(BT). Since T is a torus of rank n, H ∗(BT)

is a polynomial ring in n variables of degree two, in particular, it is generated by elements of
degree two as a ring. Therefore, one can find the algebra structure of H ∗

T (X) over H ∗(BT) if one
knows how elements in H 2(BT) map to H 2

T (X) by π∗.

Proposition 2.2. To each i ∈ [m], there is a unique element vi ∈ H2(BT) such that

π∗(u) =
m∑

i=1

〈u,vi〉τi for any u ∈ H 2(BT) (2.1)

where 〈,〉 is the natural pairing between cohomology and homology.

Remark. The identity (2.1) corresponds to the identity in [6, Lemma, p. 61] in algebraic geom-
etry, which describes a principal divisor as a linear combination of the T -invariant divisors Xi .
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Proof. The proposition is proved in [7, Lemma 9.3] and [10, Lemma 1.5]. But for the reader’s
convenience we shall reproduce the proof given in [7, Lemma 9.3]. By Proposition 2.1 H 2

T (X) is
freely generated by τ1, . . . , τm over Z. Therefore, for each u ∈ H 2(BT), one can uniquely express
π∗(u) ∈ H 2

T (X) as

π∗(u) =
m∑

i=1

vi(u)τi

with integers vi(u) depending on u. We view vi(u) as a function of u. Since π∗ is a homomor-
phism, the function vi(u) is linear; so there is a unique vi ∈ H2(BT) such that vi(u) = 〈u,vi〉. �

The vectors vi have a nice geometrical meaning, which we shall explain. The group
Hom(C∗, T ) of homomorphisms from C∗ to T can be identified with H2(BT) as follows. An
element ρ of Hom(C∗, T ) induces a continuous map ρ̄ :BC∗ → BT between classifying spaces
and H2(BC∗) is isomorphic to Z; so once we choose and fix a generator, say α, of H2(BC∗),
we get an element ρ̄∗(α) ∈ H2(BT). A correspondence :ρ → ρ̄∗(α) gives an isomorphism from
Hom(C∗, T ) to H2(BT) and we denote by λv the element of Hom(C∗, T ) corresponding to
v ∈ H2(BT). It turns out that λvi

(C∗) is the C∗-subgroup of T fixing Xi pointwise, see [10,
Lemma 1.10] for example.

We have obtained two data from X, one is the abstract simplicial complex Σ and the other
is the set of vectors v1, . . . , vm in H2(BT). To each I ∈ Σ we form a cone in H2(BT) ⊗ R =
H2(BT;R) spanned by vi ’s (i ∈ I ). Then the collection of these cones is the fan of X. Precisely
speaking, we need to add the 0-dimensional cone consisting of the origin to this collection to
satisfy the conditions required in the definition of fan, see [6] or [13]. The 0-dimensional cone
corresponds to the empty subset of [m]. Although we formed cones using the data Σ and {vi} to
define the fan of X, we may think of a pair (Σ, {vi}) as the fan of X.

As is well known, X can be recovered from the fan of X. There are at least three ways (gluing
affine spaces, taking quotient by a C∗-torus or symplectic reduction) to recover X from the fan
of X. We shall recall the quotient construction. For x = (x1, . . . , xm) ∈ Cm we define I (x) =
{i | xi = 0}. We note that (C∗)m acts on Cm via coordinatewise scalar multiplication.

Proposition 2.3. (See [4].) Let X be a toric manifold and (Σ, {vi}) be the fan of X. We consider

Y := {
x ∈ Cm

∣∣ I (x) ∈ Σ ∪ {∅}}

and a homomorphism

V : (C∗)m → (C∗)n = T

defined by

V(g1, . . . , gm) =
m∏

i=1

λvi
(gi).

Then Y is invariant under the (C∗)m-action, the kernel kerV of V acts on Y freely and the
quotient Y/kerV with the induced T -action is a toric manifold equivariantly isomorphic to X.
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3. Poof of Theorem 1.1

We continue to use the notation in Section 2. Let XT denote the set of T -fixed points in X.
As is well known, it consists of finitely many points. For ξ ∈ H 2

T (X), we denote its restriction to
p ∈ XT by ξ |p and define

Z(ξ) := {
p ∈ XT

∣∣ ξ |p = 0
}
.

Lemma 3.1. Express ξ = ∑m
i=1 aiτi with integers ai . If ai �= 0 for some i, then Z(ξ) ⊂ Z(τi).

Moreover, if ai �= 0 and aj �= 0 for some different i and j , then Z(ξ) � Z(τi).

Proof. Let p ∈ XT . Since τi is the Poincaré dual of Xi viewed as an equivariant cycle in X,
τi |p = 0 if p /∈ Xi . Moreover, if p ∈ Xi , then τi |p ∈ H 2

T (p) = H 2(BT) is the equivariant Euler
class of the complex one-dimensional normal T -representation at p to Xi . This implies that

τi |p = 0 if and only if p /∈ Xi (3.1)

and that there are exactly n number of Xi ’s containing p and {τi |p | p ∈ Xi} forms a basis of
H 2(BT).

Suppose p ∈ Z(ξ). Then 0 = ξ |p = ∑m
i=1 aiτi |p and it follows from the observation above

that τi |p = 0 if ai �= 0. This proves the former statement in the lemma.
If both ai and aj are non-zero, then Z(ξ) ⊂ Z(τi) ∩ Z(τj ) by the former statement in the

lemma. Therefore, it suffices to prove that Z(τi) ∩ Z(τj ) is properly contained in Z(τi). Sup-
pose that Z(τi) ∩ Z(τj ) = Z(τi). Then Z(τj ) ⊃ Z(τi), so XT

j ⊂ XT
i by (3.1). This implies that

Xj = Xi , a contradiction. �
Let S = H ∗(BT)\{0} and let S−1H ∗

T (X) denote the localized ring of H ∗
T (X) by S. Since

H odd(X) = 0, H ∗
T (X) is free as a module over H ∗(BT). Hence the natural map

H ∗
T (X) → S−1H ∗

T (X) ∼= S−1H ∗
T

(
XT

) =
⊕

p∈XT

S−1H ∗
T (p)

is injective, where the isomorphism above is induced from the inclusion map from XT to X

and is a consequence of the Localization Theorem in equivariant cohomology [8, p. 40]. The
annihilator

Ann(ξ) := {
η ∈ S−1H ∗

T (X)
∣∣ ηξ = 0

}

of ξ in S−1H ∗
T (X) is nothing but the sum of S−1H ∗

T (p) over p with ξ |p = 0. Therefore it is a
free S−1H ∗(BT) module of rank |Z(ξ)|. Since Ann(ξ) is defined using the algebra structure of
H ∗

T (X), |Z(ξ)| is an invariant of ξ depending only on the algebra structure of H ∗
T (X). We note

that |Z(ξ)| is invariant under an algebra isomorphism. We call |Z(ξ)| the zero-length of ξ .

Lemma 3.2. Let X′ be another toric manifold (X′ might be same as X). If f :H ∗
T (X) → H ∗

T (X′)
is an algebra isomorphism, then f maps the Thom classes in H 2

T (X) to the Thom classes in
H 2(X′) bijectively up to sign.
T



2010 M. Masuda / Advances in Mathematics 218 (2008) 2005–2012
Proof. We classify the Thom classes according to their zero-length. Let T1 be the set of Thom
classes in H 2

T (X) with largest zero-length, and let T2 be the set of Thom classes in H 2
T (X) with

second largest zero-length, and so on. Similarly we define T ′
1 ,T ′

2 and so on for the Thom classes
in H 2

T (X′).
Let mk (respectively m′

k) be the zero-length of elements in Tk (respectively T ′
k ). Since both f

and f −1 preserve zero-length and are isomorphisms, m1 = m′
1 and f maps T1 to T ′

1 bijectively
up to sign by Lemma 3.1. Take an element τi from T2. Since T1 and T ′

1 are preserved under f

and f −1, f (τi) is not a linear combination of elements in T ′
1 . This together with Lemma 3.1

means that m2 � m′
2. The same argument for f −1 instead of f shows that m′

2 � m2, so that
m2 = m′

2. Again, this together with Lemma 3.1 implies that f maps T2 to T ′
2 bijectively up to

sign. The lemma follows by repeating this argument. �
Now we shall complete the proof of Theorem 1.1. Let X and X′ be two toric manifolds whose

equivariant cohomology algebras over H ∗(BT) are weakly isomorphic. We note that changing
the action of T on X through an automorphism of T , we may assume that H ∗

T (X) and H ∗
T (X′)

are isomorphic as algebras over H ∗(BT).
We put a prime for notation for X′ corresponding to the Thom classes τi , the abstract sim-

plicial complex Σ and the vectors vi , etc., for X. Let f :H ∗
T (X) → H ∗

T (X′) be an isomorphism
of algebras over H ∗(BT). By Lemma 3.2, the number of the Thom classes in H 2

T (X) is same as
that in H 2

T (X′) and there is a permutation f̄ on [m] such that

f (τi) = εiτ
′
f̄ (i)

with εi = ±1. (3.2)

If I ⊂ [m] is an element of Σ , then
∏

i∈I τi is non-zero by Proposition 2.1 and hence so is
f (

∏
i∈I τi) = ∏

i∈I εiτ
′̄
f (i)

. Therefore a subset {f̄ (i) | i ∈ I } of [m] is a simplex in Σ ′ whenever

I is a simplex in Σ , which means that f̄ induces a simplicial map from Σ to Σ ′. Applying the
same argument to the inverse of f , we see that the induced simplicial map has an inverse, so that
it is an isomorphism.

Since f is an algebra map over H ∗(BT), π ′∗ = f ◦ π∗. Therefore, sending the identity (2.1)
by f and using (3.2), we have

π ′ ∗(u) = f
(
π∗(u)

) =
m∑

i=1

〈u,vi〉f (τi) =
m∑

i=1

〈u,vi〉εiτ
′
f̄ (i)

.

Comparing this with the identity (2.1) for X′ and noting that f̄ is a permutation on [m], we
conclude that

εivi = v′
f̄ (i)

for each i. (3.3)

We identify Σ with Σ ′ through the isomorphism induced by f̄ , so that we may think of f̄ as
the identity map and then the identity (3.3) turns into

εivi = v′ .
i
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By Proposition 2.3 we may assume X = Y/kerV and X′ = Y ′/kerV ′. Since Σ ′ is identified
with Σ , we have Y = Y ′. Therefore it suffices to check that kerV = kerV ′. Since λ−v(g) =
λv(g)−1 = λv(g

−1) for v ∈ H2(BT) and g ∈ C∗, an automorphism ρ of (C∗)m defined by

ρ(g1, . . . , gm) = (
g

ε1
1 , . . . , gεm

m

)

satisfies V ◦ ρ = V ′. This implies kerV = kerV ′ and completes the proof of Theorem 1.1.

4. Quasitoric manifolds

Davis and Januszkiewicz [5] introduced the notion of what is now called a quasitoric man-
ifold, see [1]. A quasitoric manifold is a closed smooth manifold of even dimension, say 2n,
with a smooth action of a compact torus group (S1)n of dimension n such that the action is lo-
cally isomorphic to a faithful (S1)n-representation of real dimension 2n and that the orbit space
is combinatorially a simple convex polytope. A toric manifold with the action restricted to the
maximal compact toral subgroup of T often provides an example of a quasitoric manifold, e.g.
this is the case when X is projective. However, there are many quasitoric manifolds which do
not arise from a toric manifold. For instance, CP 2 # CP 2 with an appropriate action of (S1)2

is a quasitoric manifold but does not arise from a toric manifold because CP 2 # CP 2 does not
allow a complex (even almost complex) structure. We note that the equivariant cohomology of a
quasitoric manifold of dimension 2n is an algebra over H ∗(B(S1)n) similarly to the toric case.
The purpose of this section is to prove the following.

Theorem 4.1. Two quasitoric manifolds are equivariantly homeomorphic if their equivariant
cohomology algebras are isomorphic.

Proof. When X is a quasitoric manifold, we take Xi to be a connected real codimension-two
closed submanifold of X fixed pointwise by some circle subgroup of (S1)n. Then the proof for
Theorem 1.1 almost works if we replace C∗ by S1 (and hence T = (C∗)n by (S1)n). The only
problem is that we do not have Proposition 2.3 for quasitoric manifolds, so that the last paragraph
in the previous section needs to be modified. In the sequel, it suffices to prove that the existence
of an isomorphism f̄ :Σ → Σ ′ satisfying (3.3) implies that the two quasitoric manifolds X and
X′ are equivariantly homeomorphic.

Let P be the orbit space of X by the action of (S1)n and let q :X → P be the quotient
map. The orbit space P is a simple convex polytope by the definition of quasitoric manifold.
Then Pi := q(Xi) is a facet (i.e., a codimension-one face) of P . The dual polytope P ∗ of P is
a simplicial polytope and its boundary complex agrees with Σ . The vertices of Σ bijectively
correspond to the facets of P so that vi is assigned to Pi . The vectors vi form a characteristic
function on P introduced in [5]. Any (proper) face of P is obtained as an intersection PI :=⋂

i∈I Pi for some I ∈ Σ . We define P∅ to be P itself. For I ∈ Σ we denote by SI a subgroup
of (S1)n generated by circle subgroups λvi

(S1) for i ∈ I . We define S∅ to be the unit group.
Associated with a pair (P, {vi}) we form a quotient space

X
(
P, {vi}

) := P × (
S1)n

/ ∼ .

Here (p1, g1) ∼ (p2, g2) if and only if p1 = p2 and g−1
1 g2 ∈ SI where I ∈ Σ ∪{∅} is determined

by the condition that p1 = p2 is contained in the interior of PI . The natural action of (S1)n on the
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product P × (S1)n descends to an action on X(P, {vi}) and X is equivariantly homeomorphic
to X(P, {vi}) (see [5, Proposition 1.8]). As before, we put a prime to denote elements for X′
corresponding to P,vi and Σ . The isomorphism f̄ :Σ → Σ ′ induces an isomorphism from
P ∗ to P ′∗ and then a face-preserving homeomorphism from P to P ′ which we denote by ϕ.
A map ϕ × id :P × (S1)n → P ′ × (S1)n descends to a map from X(P, {vi}) to X(P ′, {v′

i}) by
virtue of (3.3) and the resulting map is an equivariant homeomorphism, so X is equivariantly
homeomorphic to X′. �

Similarly to the toric case, it would be interesting to ask whether two quasitoric manifolds are
homeomorphic (or diffeomorphic) if their ordinary cohomology rings are isomorphic, see [2,11]
and [3] for some partial affirmative solutions.

Remark. Davis and Januszkiewicz [5] also introduced the notion of a real version of quasitoric
manifold, which they call a small cover. A small cover is a closed smooth manifold of dimen-
sion, say n, with a smooth action of a rank n mod two torus group (Z2)

n such that the action is
locally isomorphic to a faithful (Z2)

n-representation of real dimension n and that the orbit space
is combinatorially a simple convex polytope. Our argument also works for small covers with Z2
coefficients, so that small covers are equivariantly homeomorphic if their equivariant cohomol-
ogy algebras with Z2 coefficients are isomorphic. One can also ask whether two small covers are
homeomorphic (or diffeomorphic) if their ordinary cohomology rings with Z2 coefficients are
isomorphic, see [9] for a partial affirmative solution.
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