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Abstract

Fix a function W : Rd
→ R such that W (x1, . . . , xd ) =

∑d
k=1 Wk(xk), where d ≥ 1, and each function

Wk : R→ R is strictly increasing, right continuous with left limits. We prove the equilibrium fluctuations
for exclusion processes with conductances, induced by W , in random environments, when the system starts
from an equilibrium measure. The asymptotic behavior of the empirical distribution is governed by the
unique solution of a stochastic differential equation taking values in a certain nuclear Fréchet space.
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1. Introduction

In this article we study the equilibrium fluctuations for exclusion processes with conductances
in random environments, which can be viewed as a central limit theorem for the empirical
distribution of particles when the system starts from an equilibrium measure.

Let W : Rd
→ R be a function such that W (x1, . . . , xd) =

∑d
k=1 Wk(xk), where d ≥ 1 and

each function Wk : R → R is strictly increasing, right continuous with left limits (càdlàg), and
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periodic in the sense that Wk(u + 1)− Wk(u) = Wk(1)− Wk(0), for all u ∈ R. The inverses of
the increments of the function W will play the role of conductances in our system.

The random environment that we considered is governed by the coefficients of the discrete
formulation of the model on the lattice. Moreover, we will assume that the underlying random
field is ergodic, stationary and satisfies an ellipticity condition.

Informally, the exclusion process with conductances induced by W in random environments
is an interacting particle system on the d-dimensional discrete torus N−1Td

N in which at most
one particle per site is allowed and only nearest neighbor jumps are permitted. Moreover, the
rate of jumps in the direction e j is proportional to the reciprocal of the increments of W with
respect to the j th coordinate times a term a(ω) coming from an elliptic and ergodic random
field. Such a system can be understood as a model for diffusion in heterogeneous media. For
instance, it may model diffusions of particles in a medium with permeable membranes at the
points of discontinuities of W , that tend to reflect particles, creating space discontinuities in
the density profiles. A formal description of the stochastic evolution of this process is given in
Section 2. Note that these membranes are (d − 1)-dimensional hyperplanes embedded in a d-
dimensional environment. Moreover, if we consider W j having more than one discontinuity point
for more than one j , these membranes will be more sophisticated manifolds, for instance, unions
of (d − 1)-dimensional boxes.

The purpose of this article is to study the density fluctuation field of this system as N →∞,
and also the influence of the randomness in this limit. For any realization of the random
environment, the scaling limit depends on the randomness only through some constants which
depend on the distribution of the random transition rates, but not on the particular realization of
the random environment.

The evolution of one-dimensional exclusion processes with random conductances has
attracted some attention recently [2–5,9], with the hydrodynamic limit proved in [9] being also
obtained in [2], independently. In all of these papers, a hydrodynamic limit was proved. The
hydrodynamic limit may be interpreted as a law of large numbers for the empirical density of
the system. Our goal is to go beyond the hydrodynamic limit and provide a new result for such
processes, which is the equilibrium fluctuations and can be seen as a central limit theorem for
the empirical density of the process.

To prove the equilibrium fluctuations, we would like to call attention to the main tools that
we needed: (i) the theory of nuclear spaces and (ii) homogenization of differential operators.
The first tool followed the classical approach of Kallianpur and Perez-Abreu [10] and Gel’fand
and Vilenkin [6]. Nuclear spaces are very suitable for attaining the existence and uniqueness of
solutions for a general class of stochastic differential equations. Furthermore, tightness of pro-
cesses on such spaces was established by Mitoma [12]. A wide literature on these spaces can be
found cited inside the fourth volume of the amazing collection by Gel’fand [6]. The second tool
is motivated by several applications in mechanics, physics, chemistry and engineering. We will
consider stochastic homogenization. In the stochastic context, several works on homogenization
of operators with random coefficients have been published (see, for instance, [13,14] and refer-
ences therein). In homogenization theory, only the stationarity of such random fields is used. The
notion of a stationary random field is formulated in such a manner that it covers many objects of
a non-probabilistic nature, e.g., operators with periodic or quasi-periodic coefficients. We follow
the approach given in [15], which was introduced by [14].

The focus of our approach is on studying the asymptotic behavior of effective coefficients for
a family of random difference schemes whose coefficients can be obtained by the discretization
of random high-contrast lattice structures. Furthermore, the introduction of a corrected empirical
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measure was needed. The corrected empirical measure was used in the literature, for instance,
by [9,5,7,16,15]. It can be understood as a version of Tartar’s compensated compactness lemma
in the context of particle systems. In this situation, the averaging due to the dynamics and
the inhomogeneities introduced by the random media factorize after introducing the corrected
empirical process, in such a way that we can average them separately. It is noteworthy that we
managed to prove an equivalence between the asymptotic behavior with respect to the corrected
empirical measure and that with respect to the uncorrected one. This equivalence was helpful in
the sense that whenever the calculation with the corrected empirical measure turned cumbersome,
we changed to a calculation with respect to the uncorrected one, and vice versa. This whole
approach made the proof simpler than the usual one with respect solely to the corrected empirical
measure developed in the articles mentioned above.

We now describe the organization of the article. In Section 2 we state the main results of
the article; in Section 3 we define the nuclear space needed in our context; in Section 4 we
recall some results obtained in [15] concerning homogenization, and then we prove the equi-
librium fluctuations by showing that the density fluctuation field converges to a process that
solves the martingale problem. We also show that the solution of the martingale problem cor-
responds to a generalized Ornstein–Uhlenbeck process. In Section 5 we prove tightness of the
density fluctuation field, as well as tightness of other related quantities. In Section 6 we prove
the Boltzmann–Gibbs principle, which is a key result for proving the equilibrium fluctuations.
Finally, the Appendix contains some known results about nuclear spaces and stochastic differen-
tial equations evolving on the topological dual of such spaces.

2. Notation and results

Denote by Td
= (R/Z)d = [0, 1)d the d-dimensional torus, and by Td

N = (Z/NZ)d =
{0, . . . , N − 1}d the d-dimensional discrete torus with N d points.

Fix a function W : Rd
→ R such that

W (x1, . . . , xd) =

d∑
k=1

Wk(xk), (2.1)

where each Wk : R → R is a strictly increasing right continuous function with left limits
(càdlàg), periodic in the sense that for all u ∈ R

Wk(u + 1)−Wk(u) = Wk(1)−Wk(0).

Define the generalized derivative ∂Wk of a function f : Td
→ R by

∂Wk f (x1, . . . , xk, . . . , xd) = lim
ε→0

f (x1, . . . , xk + ε, . . . , xd)− f (x1, . . . , xk, . . . , xd)

Wk(xk + ε)−Wk(xk)
,

(2.2)

when the above limit exists and is finite. If for a function f : Td
→ R the generalized derivatives

∂Wk exist for all k = 1, . . . , d, denote the generalized gradient of f by

∇W f =
(
∂W1 f, . . . , ∂Wd f

)
.

Further details on these generalized derivatives can be found in Section 3.1 and in the article [15].
We now introduce the statistically homogeneous rapidly oscillating coefficients that will be

used to define the random rates of the exclusion process with conductances for which we want
to study the equilibrium fluctuations.
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Let (Ω ,F , µ) be a standard probability space and {Tx : Ω → Ω; x ∈ Zd
} be an ergodic

group of F -measurable transformations which preserve the measure µ:

• Tx : Ω → Ω is F -measurable for all x ∈ Zd ,
• µ(Tx A) = µ(A) for any A ∈ F and x ∈ Zd ,
• T0 = I, Tx ◦ Ty = Tx+y ,
• any f ∈ L1(Ω) such that f (Txω) = f (ω)µ-a.s. for each x ∈ Zd is equal to a constant µ-a.s.

The last condition implies that the group Tx is ergodic.
Let us now introduce the vector-valued F -measurable functions {a j (ω); j = 1, . . . , d} that

satisfy an ellipticity condition: there exists θ > 0 such that

θ−1
≤ a j (ω) ≤ θ,

for all ω ∈ Ω and j = 1, . . . , d. Then, define the diagonal matrices AN whose elements are
given by

aN
j j (x) := aN

j = a j (TN xω), x ∈ T d
N , j = 1, . . . , d. (2.3)

Fix a typical realization ω ∈ Ω of the random environment. For each x ∈ Td
N and

j = 1, . . . , d, define the symmetric rate ξx,x+e j = ξx+e j ,x by

ξx,x+e j =
aN

j (x)

N [W ((x + e j )/N )−W (x/N )]
=

aN
j (x)

N [W j ((x j + 1)/N )−W j (x j/N )]
, (2.4)

where e1, . . . , ed is the canonical basis of Rd .
Distribute particles on Td

N in such a way that each site of Td
N is occupied by at most one

particle. Denote by η the configurations of the state space {0, 1}T
d
N so that η(x) = 0 if site x is

vacant, and η(x) = 1 if site x is occupied.
The exclusion process with conductances in a random environment is the continuous-time

Markov process {ηt : t ≥ 0} with state space {0, 1}T
d
N = {η : Td

N → {0, 1}}, whose generator

L N acts on functions f : {0, 1}T
d
N → R as

(L N f )(η) =
d∑

j=1

∑
x∈Td

N

ξx,x+e j cx,x+e j (η) { f (σ x,x+e j η)− f (η)}, (2.5)

where σ x,x+e j η is the configuration obtained from η by exchanging the variables η(x) and
η(x + e j ):

(σ x,x+e j η)(y) =

η(x + e j ) if y = x,
η(x) if y = x + e j ,

η(y) otherwise,
(2.6)

and

cx,x+e j (η) = 1+ b{η(x − e j )+ η(x + 2 e j )},

with b > −1/2, and where all sums are modulo N .
We consider the Markov process {ηt : t ≥ 0} on the configurations {0, 1}T

d
N associated with

the generator L N on the diffusive scale, i.e., L N is speeded up by N 2.
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We now describe the stochastic evolution of the process. Let x = (x1, . . . , xd) ∈ Td
N . At rate

ξx,x+e j cx,x+e j (η) the occupation variables η(x), η(x + e j ) are exchanged. Note that the random
field affects the rate by a multiplicative factor. If W is differentiable at x/N ∈ [0, 1)d , the rate at
which particles are exchanged is of order 1 for each direction, but if some W j is discontinuous
at x j/N , it no longer holds. In fact, assume, to fix ideas, that W j is discontinuous at x j/N , and
smooth on the segments (x j/N , x j/N + εe j ) and (x j/N − εe j , x j/N ). Assume, also, that Wk is
differentiable in a neighborhood of xk/N for k 6= j . In this case, the rate at which particles jump
over the bonds {y − e j , y}, with y j = x j , is of order 1/N , whereas in a neighborhood of size N
of these bonds, particles jump at rate 1. Thus, note that a particle at site y − e j jumps to y at rate
1/N and jumps at rate 1 to each one of the 2d−1 other options. Particles, therefore, tend to avoid
the bonds {y−e j , y}. However, since time will be scaled diffusively, and since on a time interval
of length N 2 a particle spends a time of order N at each site y, particles will be able to cross the
slower bond {y− e j , y}. Therefore, the conductances are induced by the function W through the
inverse of the gradient of W , whereas the random environment is given by the diagonal matrix
AN
:= (aN

j j (x))d×d .
The effect of the factor cx,x+e j (η) is the following: if the parameter b is positive, the presence

of particles in the neighboring sites of the bond {x, x+e j } speeds up the exchange rate by a factor
of order 1, and if the parameter b is negative, the presence of particles in the neighboring sites
slows down the exchange rate also by a factor of order 1. More details are given in Remark 2.3.

The dynamics informally presented describes a Markov evolution. A computation shows that
the Bernoulli product measures {νN

ρ : 0 ≤ ρ ≤ 1} are invariant, in fact reversible, for the
dynamics. The measure νN

ρ is obtained by placing a particle at each site, independently from the

other sites, with probability ρ. Thus, νN
ρ is a product measure over {0, 1}T

d
N with marginals given

by

νN
ρ {η : η(x) = 1} = ρ

for x in Td
N .

Consider the random walk {X t }t≥0 of a particle in Td
N induced by the generator LN given as

follows. Let ξx,x+e j given by (2.4). If the particle is on a site x ∈ Td
N , it will jump to x + e j with

rate N 2ξx,x+e j . Furthermore, only nearest neighbor jumps are allowed. The generator LN of the
random walk {X t }t≥0 acts on functions f : N−1T d

N → R as

LN f
( x

N

)
=

d∑
j=1

L j
N f

( x

N

)
,

where

L j
N f
( x

N

)
= N 2

{
ξx,x+e j

[
f
( x + e j

N

)
− f

( x

N

)]
+ ξx−e j ,x

[
f
( x − e j

N

)
− f

( x

N

)]}
.

It is not difficult to see that the following equality holds:

LN f (x/N ) =
d∑

j=1

∂N
x j
(aN

j ∂
N
W j

f )(x) := ∇N AN
∇

N
W f (x), (2.7)

where ∂N
x j

is the standard difference operator:
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∂N
x j

f
( x

N

)
= N

[
f

(
x + e j

N

)
− f

( x

N

)]
,

and ∂N
W j

is the W j -difference operator:

∂N
W j

f
( x

N

)
=

f
(

x+e j
N

)
− f

( x
N

)
W
(

x+e j
N

)
−W

( x
N

) ,
for x ∈ Td

N . Several properties of the above operator have been obtained in [15].
The counting measure m N on N−1Td

N is reversible for this process. This random walk plays
an important role in the proof of the equilibrium fluctuations of the process ηt , as we will see in
Section 4.1.

Now we state a central limit theorem for the empirical measure, starting from an equilibrium
measure νρ . Fix ρ > 0 and denote by SW (Td) the generalized Schwartz space on Td , for which
the definition and some properties are given in Section 3.

Denote by Y N
· the density fluctuation field, which is the bounded linear functional acting on

functions G ∈ SW (Td) as

Y N
t (G) =

1

N d/2

∑
x∈Td

N

G(x)[ηt (x)− ρ]. (2.8)

Let D([0, T ], X) be the path space of càdlàg trajectories with values in a metric space X . In
this way we have defined a process in D([0, T ],S ′W (T

d)), where S ′W (T
d) is the topological dual

of the space SW (Td).

Theorem 2.1. Consider the fluctuation field Y N
· defined above. Then, Y N

· converges weakly to
the unique S ′W (T

d)-solution, Yt ∈ D([0, T ], S′W (T
d)), of the stochastic differential equation

dYt = φ
′(ρ)∇A∇W Yt dt +

√
2χ(ρ)φ′(ρ)AdNt , (2.9)

where χ(ρ) = ρ(1 − ρ), φ(ρ) = ρ + bρ2, and φ′ is the derivative of φ, φ′(ρ) = 1 + 2bρ;
further A is a constant diagonal matrix with j th diagonal element given by a j := E(aN

j ), for

any N ∈ N; and Nt is an S ′W (T
d)-valued mean-zero martingale, with quadratic variation

〈N (G)〉t = t
d∑

j=1

∫
Td

[
∂W j G(x)

]2 d(x j
⊗W j ),

where d(x j
⊗ W j ) is the product measure dx1 ⊗ · · · ⊗ dx j−1 ⊗ dW j ⊗ dx j+1 ⊗ · · · ⊗ dxd .

Furthermore, Nt is a Gaussian process with independent increments. More precisely, for each
G ∈ SW (Td), Nt (G) is a time deformation of a standard Brownian motion.

The proof of this theorem is given in Section 4.

Remark 2.2. The process Yt is known in the literature as the generalized Ornstein–Uhlenbeck
process with characteristics φ′(ρ)∇A∇W and

√
2χ(ρ)φ′(ρ)A∇W .

Remark 2.3. The specific form of the rates cx,x+ei is not important, but two conditions must be
fulfilled. The rates must be strictly positive, and they may not depend on the occupation variables
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η(x), η(x + ei ), but they have to be chosen in such a way that a symmetric simple exclusion
process with this rate is gradient (cf. Chapter 7 in [11] for the definition of gradient processes).

We may define rates cx,x+ei to obtain any polynomial φ of the form φ(α) = α +∑
2≤ j≤m a jα

j , m ≥ 1, with 1+
∑

2≤ j≤m ja j > 0. Let, for instance, m = 3. Then the rates

ĉx,x+ei (η) = cx,x+ei (η)+ c {η(x − 2ei )η(x − ei )+ η(x − ei )η(x + 2ei )

+ η(x + 2ei )η(x + 3ei )} ,

satisfy the above three conditions, where cx,x+ei is the rate defined at the beginning of Section 2
and b, c are such that 1 + 2b + 3c > 0. An elementary computation shows that φ(α) =
1+ bα2

+ cα3.

3. The space SW (Td)

In this section we build the space SW (Td), which is associated with the operator LW = ∇∇W .
This space, as we shall see, is a natural environment in which to attain existence and uniqueness
of solutions of the stochastic differential equation (2.9). Several lemmas are obtained to fulfill
the conditions to ensure existence and uniqueness of such solutions.

3.1. The operator LW

Consider the operator LWk : DWk ⊂ L2(T)→ R given by

LWk f = ∂xk ∂Wk f, (3.1)

whose domain DWk consists of all functions f in L2(T) such that

f (x) = a + bWk(x)+
∫
(0,x]

Wk(dy)
∫ y

0
f(z) dz

for some function f in L2(T) that satisfies∫ 1

0
f(z) dz = 0 and

∫
(0,1]

Wk(dy)

{
b +

∫ y

0
f(z) dz

}
= 0.

In [5] the authors prove that these operators have a countable complete orthonormal system of
eigenvectors, which we denote by AWk . Then, following [16], we define

AW =

{
f : Td

→ R : f (x1, . . . , xd) =

d∏
k=1

fk(xk), fk ∈ AWk

}
,

where W is given by (2.1).
We may now build an operator analogous to LWk , acting on functions on Td . Let DW be the

linear space generated by AW , and define the operator LW : DW → L2(Td) as follows: for
f =

∏d
k=1 fk ∈ AW ,

LW ( f )(x1, . . . , xd) =

d∑
k=1

d∏
j=1, j 6=k

f j (x j )LWk fk(xk), (3.2)

and extend to DW by linearity. It is easy to see that if f ∈ DW ,
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LW f =
d∑

k=1

LWk f, (3.3)

where the application of LWk to a function f : Td
→ R is the natural one, i.e., it considers f

only as a function of the kth coordinate, and keeps all the remaining coordinates fixed.
Let, for each k = 1, . . . , d , fk ∈ AWk be an eigenvector of LWk associated with the eigenvalue

λk . Then f =
∏d

k=1 fk belongs to DW and is an eigenvector of LW with eigenvalue
∑d

k=1 λk .
Moreover, in [16] the following result was proved:

Lemma 3.1. The following statements hold:

(a) The set DW is dense in L2(Td).
(b) The operator LW : DW → L2(Td) is symmetric and non-positive:

〈−LW f, f 〉 ≥ 0,

where 〈·, ·〉 is the standard inner product in L2(Td).

Also, the set AW forms a complete, orthonormal, countable system of eigenvectors for the
operator LW . Let AW = {ϕ j } j≥1, {α j } j≥1 be the corresponding eigenvalues of −LW , and
consider DW = {v =

∑
∞

j=1 v jϕ j ∈ L2(Td);
∑
∞

j=1 v
2
jα

2
j < +∞}. We define the operator

LW : DW → L2(Td) by

− LW v =

+∞∑
j=1

α jv jϕ j . (3.4)

The operator LW is clearly an extension of the operator LW , and we present some properties
of this operator in Proposition 3.2, whose proof can be found in [16].

Proposition 3.2. The operator LW : DW → L2(Td) enjoys the following properties:

(a) The domain DW is dense in L2(Td). In particular, the set of eigenvectors AW = {ϕ j } j≥1
forms a complete orthonormal system.

(b) The eigenvalues of the operator −LW form a countable set {α j } j≥1. All eigenvalues have
finite multiplicity, and it is possible to obtain a re-enumeration {α j } j≥1 such that

0 = α1 ≤ α2 ≤ · · · and lim
n→∞

αn = ∞.

(c) The operator I− LW : DW → L2(Td) is bijective.
(d) LW : DW → L2(Td) is self-adjoint and non-positive:

〈−LW f, f 〉 ≥ 0.

(e) LW is dissipative.

3.2. The nuclear space SW (Td)

Our goal is to build a countably Hilbert nuclear space associated with the self-adjoint operator
LW . The reader is referred to Appendix.

Let {ϕ j } j≥1 be the complete orthonormal set of the eigenvectors of the operator L = I−LW ,
and {λ j } j≥1 the associated eigenvalues. Note that λ j = 1+ α j .
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Consider the following increasing sequence ‖ · ‖n , n ∈ N, of Hilbertian norms:

〈 f, g〉n =
∞∑

k=1

〈Pk f,Pk g〉λ2n
k k2n,

where we denote by Pk the orthogonal projection on the linear space generated by the eigenvector
ϕk .

So,

‖ f ‖2n =
∞∑

k=1

‖Pk f ‖2λ2n
k k2n,

where ‖ · ‖ is the L2(Td) norm.
Consider the Hilbert spaces Sn which are obtained by completing the space DW with respect

to the inner product 〈·, ·〉n .
The set

SW (Td) =

∞⋂
n=0

Sn

endowed with the metric (A.2) is our countably Hilbert space, and furthermore, it is a countably
Hilbert nuclear space; see the Appendix for further details. In fact, for fixed n ∈ N and
m > n + 1/2, we have that { 1

( jλ j )
m ϕ j } j≥1 is a complete orthonormal set in Sm . Therefore,

∞∑
j=1

∥∥∥∥ 1
( jλ j )m

ϕ j

∥∥∥∥2

n
≤

∞∑
j=1

1

j2(m−n)
<∞,

where the above formula corresponds to formula (A.3) in the Appendix.

Lemma 3.3. Let LW : DW → L2(Td) be the operator obtained in Proposition 3.2. We have

(a) LW is the generator of a strongly continuous contraction semigroup {Pt : L2(Td) →

L2(Td)}t≥0;
(b) LW is a closed operator;
(c) for each f ∈ L2(Td), t 7→ Pt f is a continuous function from [0,∞) to L2(Td);
(d) LW Pt f = Pt LW f for each f ∈ DW and t ≥ 0;
(e) (I− LW )

n Pt f = Pt (I− LW )
n f for each f ∈ DW , t ≥ 0 and n ∈ N.

Proof. Item (a) follows from Proposition 3.2 and the Hille–Yosida theorem. Items (b), (c) and
(d) follow from item (a); see, for instance, [1, chapter 1]. Item (e) follows from item (d) and from
the fact that LW f = LW f if f ∈ DW . �

The next lemma permits us to conclude that the semigroup {Pt : t ≥ 0} acting on the domain
SW (Td) is a C0,1-semigroup, whose definition is recalled in Appendix A.2.

Lemma 3.4. Let {Pt : t ≥ 0} be the semigroup whose infinitesimal generator is LW . Then for
each q ∈ N we have

‖Pt f ‖q ≤ ‖ f ‖q ,

for all f ∈ SW (Td). In particular, {Pt : t ≥ 0} is a C0,1-semigroup.
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Proof. Let f ∈ DW ; then

f =
k∑

j=1

β jϕ j ,

for some k ∈ N, and some constants β1, . . . , βk . A simple calculation shows that

Pt f =
k∑

j=1

β j et (1−λ j )ϕ j .

Therefore, for f ∈ DW ,

‖Pt f ‖2n = ‖
k∑

j=1

β j et (1−λ j )ϕ j‖n

=

k∑
j=1

‖β j et (1−λ j )ϕ j‖
2λ2n

j j2n

≤

k∑
j=1

‖β jϕ j‖
2λ2n

j j2n
= ‖ f ‖2n .

Since DW is dense in SW (Td), we conclude the proof of the lemma. �

Lemma 3.5. The operator LW belongs to L(SW (Td),SW (Td)), the space of linear continuous
operators from SW (Td) into SW (Td).

Proof. Let f ∈ SW (Td), and {ϕ j } j≥1 be the complete orthonormal set of eigenvectors of LW ,
with {(1− λ j )} j≥1 being their respective eigenvalues. We have that

f =
∞∑
j=1

β jϕ j , with
∞∑
j=1

β2
j <∞.

We also have that

LW f =
∞∑
j=1

(1− λ j )β jϕ j .

For every n ∈ N,

‖LW f ‖2n =
∞∑

k=1

‖Pk(LW f )‖2λ2n
k k2n

=

∞∑
k=1

‖βk(1− λk)ϕk‖
2λ2n

k k2n

=

∞∑
k=1

‖βkϕk‖
2(1− λk)

2λ2n
k k2n

≤ 2
∞∑

k=1

‖Pk f ‖2λ2n
k k2n

+ 2
∞∑

k=1

‖Pk f ‖2λ2(n+1)
k k2(n+1)

= 2(‖ f ‖n + ‖ f ‖n+1).

Therefore, by the definition of SW (Td), LW f belongs to SW (Td). Furthermore, LW is
continuous from SW (Td) to SW (Td). �
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4. Equilibrium fluctuations

We begin by stating some results on the homogenization of differential operators obtained
in [15], which will be very useful throughout this section.

Let L2
x i⊗Wi

(Td) be the space of square integrable functions with respect to the product

measure d(x i
⊗Wi ) = dx1⊗· · ·⊗dxi−1⊗dWi⊗dxi+1⊗· · ·⊗dxd , and H1,W (Td) be the Sobolev

space of functions with W -generalized derivatives. More precisely, H1,W (Td) is the space of
functions g ∈ L2(Td) such that for each i = 1, . . . , d there exist functions Gi ∈ L2

x i⊗Wi ,0
(Td)

satisfying the following integration by parts identity.∫
Td

(
∂xi ∂Wi f

)
gdx = −

∫
Td
(∂Wi f )Gi d(x

i
⊗Wi ), (4.1)

for every function f ∈ SW (Td), where L2
x j⊗W j ,0

(Td) is the closed subspace of L2
x j⊗W j

(Td)

consisting of the functions that have zero mean with respect to the measure d(x j
⊗W j ):∫

Td
f d(x j

⊗W j ) = 0.

We write simply Gi for ∂Wi g. See [15] for further details and properties of this space.
Let λ > 0, f be a functional on H1,W (Td), uN be the unique weak solution of

λuN −∇
N AN
∇

N
W uN = f,

and u0 be the unique weak solution of

λu0 −∇A∇W u0 = f. (4.2)

For more details on existence and uniqueness of such solutions see [15].
In this context, we say that the diagonal matrix A = {a j j } = {a j } is a homogenization of the

sequence of random matrices AN , denoted by AN H
−→ A, if the following conditions hold:

• uN converges weakly in H1,W (Td) to u0, when N →∞;
• aN

i ∂
N
Wi

uN
→ ai∂Wi u weakly in L2

x i⊗Wi
(Td) when N →∞.

Theorem 4.1. Let AN be a sequence of ergodic random matrices, such as the one that defines
our random environment. Then, almost surely, AN (ω) admits a homogenization where the
homogenized matrix A does not depend on the realization ω.

The following proposition concerns the convergence of energies:

Proposition 4.2. Let AN H
−→ A as N →∞, with uN being the solution of

λuN −∇
N AN
∇

N
W uN = f,

where f is a fixed functional on H1,W (Td). Then, the following limit relations hold true:

1
N d

∑
x∈Td

N

u2
N (x)→

∫
Td

u2
0(x)dx,

and
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1

N d−1

d∑
j=1

∑
x∈Td

N

aN
j j (x)(∂

N
W j

uN (x))
2 [W j ((xi + 1)/N )−W j (xi/N )

]

→

d∑
j=1

∫
Td

a j j (x)(∂W j u0(x))
2d(x j

⊗W j ),

as N →∞.

The proofs of Theorem 4.1 and Proposition 4.2 can be found in [15].

4.1. The martingale problem

We say that Yt ∈ S ′W (T
d) solves the martingale problem with initial condition Y0 if for any

G ∈ SW (Td)

Mt (G) = Yt (G)− Y0(G)− φ
′(ρ)

∫ t

0
Ys(∇A∇W G)ds (4.3)

is a martingale with quadratic variation

〈Mt (G)〉 = 2tχ(ρ)φ′(ρ)
d∑

j=1

∫
Td

a j j
(
∂W j G

)2 d(x j
⊗W j ). (4.4)

Observe that if Yt is the generalized Ornstein–Uhlenbeck process with characteristics
φ′(ρ)∇A∇W and

√
2χ(ρ)φ′(ρ)A∇W , then Yt solves the martingale problem above.

Recall the definition of the density fluctuation field Y N
· given in (2.8), and denote by QN

the distribution in D([0, T ],SW (Td)) induced by Y N
· , with initial distribution νρ . Our goal is to

show that any limit point of Y N
· solves the martingale problem. To this end, let us introduce the

corrected density fluctuation field:

Y N ,λ
t (G) =

1

N d/2

∑
x∈Td

Gλ
N (x)

[
ηt (x)− ρ

]
,

where Gλ
N is the weak solution of the equation

λGλ
N − L N Gλ

N = λG −∇A∇W G, (4.5)

that, via homogenization, converges to G which is the trivial solution of the problem

λG −∇A∇W G = λG −∇A∇W G.

The processes Y N
· and Y N ,λ

· have the same asymptotic behavior, as we will see. But some
calculations are simpler with one of them than with the other. In this way, we have defined two
processes in D([0, T ],S ′W (T

d)).
Given a process Y· in D([0, T ],S ′W (T

d)), and for t ≥ 0, let Ft be the σ -algebra generated by

Ys(H) for s ≤ t and H ∈ SW (Td). Furthermore, set F∞ = σ
(⋃

t≥0 Ft

)
. Denote by Qλ

N the

distribution on D([0, T ],S ′W (T
d)) induced by the corrected density fluctuation field Y N ,λ

· and
initial distribution νρ .

Theorem 2.1 is a consequence of the following result concerning the corrected fluctuation
field.
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Theorem 4.3. Let Q be the probability measure on D([0, T ],S ′W (T
d)) corresponding to the

generalized Ornstein–Uhlenbeck process of mean zero and characteristics φ′(ρ)∇ · A∇W
and
√

2χ(ρ)φ′(ρ)A∇W . Then the sequence {Qλ
N }N≥1 converges weakly to the probability

measure Q.

Note also that the above theorem implies that any limit point of Y N
· solves the martingale

problem (4.3)–(4.4).
Before proving Theorem 4.3, we will state and prove a lemma. This lemma shows that tight-

ness of Y N ,λ
t follows from tightness of Y N

t , and furthermore, that they have the same limit points.
So we can derive our main theorem from Theorem 4.3.

Lemma 4.4. For all t ∈ [0, T ] and G ∈ SW (Td), limN→∞ Eνρ
[
Y N

t (G)− Y N ,λ
t (G)

]2
= 0.

Proof. By the convergence of energies, we have that limN→∞ Gλ
N = G in L2

N (T
d), i.e.

‖Gλ
N − G‖2N :=

1
N d

∑
x∈Td

N

[Gλ
N (x/N )− G(x/N )]2 → 0, as N →∞. (4.6)

Since νρ is a product measure we obtain

Eνρ
[
Y N

t (G)− Y N ,λ
t (G)

]2
= Eνρ

 1
N d

∑
x,y∈Td

N

[Gλ
N (x/N )− G(x/N )][Gλ

N (y/N )

−G(y/N )](ηt (x)− ρ)(ηt (y)− ρ)


= Eνρ

 1
N d

∑
x∈Td

N

[Gλ
N (x/N )− G(x/N )]2(ηt (x)− ρ)

2


≤

C(ρ)

N d

∑
x∈Td

N

[Gλ
N (x/N )− G(x/N )]2,

where C(ρ) is a constant that depends on ρ. By (4.6) the last expression vanishes as N
→∞. �

Proof of Theorem 4.3
Consider the martingale

M N
t (G) = Y N

t (G)− Y N
0 (G)−

∫ t

0
N 2L N Y N

s (G)ds (4.7)

associated with the original process and the martingale

M N ,λ
t (G) = Y N ,λ

t (G)− Y N ,λ
0 (G)−

∫ t

0
N 2L N Y N ,λ

s (G)ds (4.8)

associated with the corrected process.
A long, albeit simple, computation shows that the quadratic variation of the martingale

M N ,λ
t (G), 〈M N ,λ(G)〉t , is given by
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1

N d−1

d∑
j=1

∑
x∈Td

aN
j j [∂

N
W j

Gλ
N (x/N )]2[W ((x + e j )/N )−W (x/N )]

×

∫ t

0
cx,x+e j (ηs) [ηs(x + e j )− ηs(x)]

2 ds. (4.9)

Is not difficult see that the quadratic variation of the martingale M N
t (G), 〈M

N (G)〉t , has the
expression (4.9) with G replacing Gλ

N . Further,

Eνρ
[
cx,x+e j (η) [ηs(x + e j )− ηs(x)]

2]
= Eνρ [1+ b(η(x − e j )+ η(x))]

× Eνρ [(η(x + e j )− η(x))
2
]

= 2(1+ 2bρ)ρ(1− ρ)

= 2φ′(ρ)χ(ρ).

Lemma 4.5. Fix G ∈ SW (Td) and t > 0, and let 〈M N ,λ(G)〉t and 〈M N (G)〉t be the quadratic
variations of the martingales M N ,λ

t (G) and M N
t (G), respectively. Then,

lim
N→∞

Eνρ
[
〈M N ,λ(G)〉t − 〈M

N (G)〉t
]2
= 0. (4.10)

Proof. Fix G ∈ SW (Td) and t > 0. A straightforward calculation shows that

Eνρ
[
〈M N ,λ(G)〉t − 〈M

N (G)〉t
]2
≤

[
k2t2 1

N d−1

d∑
j=1

∑
x∈Td

aN
j j

[(
∂N

W j
Gλ

N (x/N )
)2

−
(
∂N

W j
G(x/N )

)2]
[W ((x + e j )/N )−W (x/N )]

]2
,

where the constant k comes from the integral term. By the convergence of energies (Proposi-
tion 4.2), the last term vanishes as N →∞. �

Lemma 4.6. Let G ∈ SW (Td) and d ≥ 1. Then

lim
N→∞

Eνρ

[
1

N d−1

∫ t

0
ds

d∑
j=1

∑
x∈Td

aN
j j

(
∂N

W j
G(x/N )

)2
[W ((x + e j )/N )−W (x/N )]

×
[
cx,x+e j (ηs) [ηs(x + e j )− ηs(x)]

2
− 2χ(ρ)φ′(ρ)

]]2

= 0.

Proof. Fix G ∈ SW (Td) and d > 1. The term in the previous expression is less than or equal to

t2θ4C(ρ)

N d−1 ‖∇
N
W G‖4W,N ,4, (4.11)

where

‖∇
N
W G‖4W,N ,4 :=

1

N d−1

d∑
j=1

∑
x∈Td

(
∂N

W j
G(x/N )

)4
[W ((x + e j )/N )−W (x/N )].
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Thus, since for G ∈ SW (Td), ‖∇N
W G‖4W,N ,4 is bounded, the term in (4.11) converges to zero as

N →∞.
The case d = 1 follows from calculations similar to the ones found in Lemma 12 of [8]. �

So, by Lemmas 4.5 and 4.6, 〈M N ,λ(G)〉t is given by

2tχ(ρ)φ′(ρ)

N d−1

d∑
j=1

∑
x∈Td

aN
j j

(
∂N

W j
Gλ

N (x/N )
)2
[W ((x + e j )/N )−W (x/N )]

plus a term that vanishes in L2
νρ
(Td) as N →∞. By the convergence of energies, Proposition 4.2,

it converges, as N →∞, to

2tχ(ρ)φ′(ρ)
d∑

j=1

∫
Td

aN
j j

(
∂W j G(x)

)2dx j
⊗W j .

Our goal now consists in showing that it is possible to write the integral part of the martingale
as the integral of a function of the density fluctuation field plus a term that goes to zero in
L2
νρ
(Td). After some simple computations, we obtain that

N 2L N Y N ,λ
s (G) =

d∑
j=1

 1

N d/2

∑
x∈T d

N

L j
N Gλ

N (x/N ) ηs(x)

+
b

N d/2

∑
x∈T d

N

[
L j

N Gλ
N ((x + e j )/N )+ L j

N Gλ
N (x/N )

]
(τx h1, j )(ηs)

−
b

N d/2

∑
x∈T d

N

L j
N Gλ

N (x/N )(τx h2, j )(ηs)

 ,
where {τx : x ∈ Zd

} is the group of translations such that (τxη)(y) = η(x + y) for x , y in Zd ,
and the sum is understood modulo N . Also, h1, j , h2, j are the cylinder functions

h1, j (η) = η(0)η(e j ), h2, j (η) = η(−e j )η(e j ).

Note that inside the expression N 2L N Y N ,λ
s we may replace L j

N Gλ
N by a j∂x j ∂W j G. Indeed,

the expression

Eν(ρ)

{∫ t

0

d∑
j=1

1

N d/2

∑
x∈Td

N

[
L j

N Gλ
N (x/N )− a j∂x j ∂W j G(x/N )

] (
ηs(x)− ρ

)
+

b

N d/2

∑
x∈Td

N

[
L j

N Gλ
N ((x + e j )/N )− a j∂x j ∂W j G((x + e j )/N )

+L j
N Gλ

N (x/N )− a j∂x j ∂W j G(x/N )
](
(τx h1, j )(ηs)− ρ

2)
−

b

N d/2

∑
x∈Td

N

[
L j

N Gλ
N (x/N )− a j∂x j ∂W j G(x/N )

](
(τx h2, j )(ηs)− ρ

2)}2
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is less than or equal to

C(ρ, b)
∫ t

0

1
N d

∑
x∈Td

[
L N Gλ

N (x/N )−∇A∇W G(x/N )
]2
.

Now, recall that Gλ
N is a solution of Eq. (4.5), and therefore, the previous expression is less than

or equal to

tC(ρ, b)

λ2 ‖Gλ
N − G‖2N ,

and thus, by homogenization and energy estimates in Theorem 4.1 and Proposition 4.2, respec-
tively, the last expression converges to zero as N →∞.

By the Boltzmann Gibbs principle, Theorem 6.1 below, we can replace (τx hi, j )(ηs) − ρ
2 by

2ρ[ηs(x)− ρ] for i = 1, 2. Doing this, the martingale (4.8) can be written as

M N ,λ
t (G) = Y N ,λ

t (G)− Y N ,λ
0 (G)−

∫ t

0

1

N d/2

∑
x∈Td

∇A∇W G(x/N )φ′(ρ)
(
ηs − ρ

)
ds,

(4.12)

plus a term that vanishes in L2
νρ
(Td) as N →∞.

Notice that, by (2.8), the integrand in the previous expression is a function of the density
fluctuation field Y N

t . By Lemma 4.4, we can replace the term inside the integral of the above
expression by a term which is a function of the corrected density fluctuation field Y N ,λ

t .
From the results of Section 5, the sequence {Qλ

N }N≥1 is tight and we let Qλ be a limit point
of it. Let Yt be the process in D([0, T ],S ′W (T

d)) induced by the canonical projections under Qλ.
Taking the limit as N →∞, under an appropriate subsequence, in expression (4.12), we obtain
that

Mλ
t (G) = Yt (G)− Y0(G)−

∫ t

0
Ys(φ

′(ρ)∇ · A∇W G)ds, (4.13)

where Mλ
t is some S ′W (T

d)-valued process, in fact, a martingale. To see this, note that for a

measurable set U with respect to the canonical σ -algebra Ft , EQλ
N
[M N ,λ

t (G)1U ] converges to

EQλ [Mλ
t (G)1U ]. Since M N ,λ

· (G) is a martingale, EQλ
N
[M N ,λ

T (G)1U ] = EQλ
N
[M N ,λ

t (G)1U ].

Taking a further subsequence if necessary, this last term converges to EQλ [Mλ
t (G)1U ], which

proves that Mλ
· (G) is a martingale for any G ∈ SW (Td). Since all the projections of Mλ

t are
martingales, we conclude that Mλ

t is an S ′W (T
d)-valued martingale.

Now, we need to obtain the quadratic variation 〈Mλ(G)〉t of the martingale Mλ
t (G). A simple

application of Tchebyshev’s inequality shows that 〈M N ,λ(G)〉t converges in probability to

2tχ(ρ)φ′(ρ)
d∑

j=1

∫
Td

a j

[
∂W j G

]2
d(x j
⊗W j ),

where χ(ρ) stands for the static compressibility given by χ(ρ) = ρ(1−ρ). By the Doob–Meyer
decomposition theorem, we need to prove that

Nλ
t (G) := Mλ

t (G)
2
− 2tχ(ρ)φ′(ρ)

d∑
j=1

∫
Td

a j

[
∂W j G

]2
d(x j
⊗W j )
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is a martingale. The same argument as we used above applies now if we can show that supN

EQλ
N
[M N ,λ

T (G)4] <∞ and supN EQλ
N
[〈M N ,λ(G)〉2T ] <∞. Both bounds follow easily from the

explicit form of 〈M N ,λ(G)〉t and (4.12).
On the other hand, by a standard central limit theorem, Y0 is a Gaussian field with covariance

E
[
Y0(G)Y0(H)

]
= χ(ρ)

∫
Td

G(x)H(x)dx .

Therefore, by Theorem 4.7, Qλ is equal to the probability distribution Q of a generalized
Ornstein–Uhlenbeck process in D([0, T ],S ′W (T

d)) (and it does not depend on λ). By existence
and uniqueness of the generalized Ornstein–Uhlenbeck processes (also due to Theorem 4.7), the
sequence {Qλ

N }N≥1 has at most one limit point, and from tightness, it does have a unique limit
point. This concludes the proof of Theorem 4.3.

4.2. Generalized Ornstein–Uhlenbeck processes

In this subsection we show that the generalized Ornstein–Uhlenbeck process obtained as the
solution to the martingale problem in which we are interested is also an S ′W (T

d)-solution of a
stochastic differential equation, and then we apply the theory in the Appendix to conclude that
there is at most one solution of the martingale problem. Moreover, we also conclude that this
process is a Gaussian process.

Theorem 4.7. Let Y0 be a Gaussian field on S ′W (T
d). Then the unique S ′W (T

d)-solution, Yt , of
the stochastic differential equation

dYt = φ
′(ρ)∇A∇W Yt dt +

√
2χ(ρ)φ′(ρ)AdNt , (4.14)

solves the martingale problem (4.3)–(4.4) with initial condition Y0, where Nt is a mean-zero
S ′W (T

d)-valued martingale with quadratic variation given by

〈N (G)〉t = t
d∑

j=1

∫
Td

[
∂W j G

]2 d(x j
⊗W j ).

Moreover, Yt is a Gaussian process.

Proof. In view of the definition of solutions of stochastic differential equations (see Appendix),
Yt is an S ′W (T

d)-solution of (4.14). In fact, by hypothesis, Yt satisfies the integral identity (4.3),
and is also an additive functional of a Markov process.

We now check the conditions in Proposition A.1 to ensure the uniqueness of S ′W (T
d)-solutions

of (4.14). Since by hypothesis Y0 is a Gaussian field, condition 1 is satisfied, and since the
martingale Mt has quadratic variation given by (4.4), we use Remark A.2 to conclude that
condition 2 holds. Condition 3 follows from Lemmas 3.4 and 3.5. Therefore Yt is unique.

Finally, by Blumenthal’s 0–1 law for Markov processes, Mt and Y0 are independent, since for
measurable sets A and B,

P(Y0 ∈ A,Mt ∈ B) = E(1Y0∈A1Mt∈B) = E[E(1Y0∈A1Mt∈B |F0+)]

= E[1Y0∈A E(1Mt∈B |F0+)]

= E[1Y0∈A P(Mt ∈ B)] = P(Y0 ∈ A)P(Mt ∈ B).
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Applying Lévy’s martingale characterization of Brownian motions, the quadratic variation of
Mt , given by (4.4), yields that Mt is a time deformation of a Brownian motion. Therefore,
Mt is a Gaussian process with independent increments. Since Y0 is a Gaussian field, we apply
Proposition A.3 to conclude that Yt is a Gaussian process in D([0, T ], S′W (T

d)). �

5. Tightness

In this section we prove tightness of the density fluctuation field {Y N
· }N introduced in

Section 2. We begin by stating Mitoma’s criterion [12]:

Proposition 5.1. Let Φ∞ be a nuclear Fréchet space and Φ′∞ its topological dual. Let {QN
}N

be a sequence of distributions in D([0, T ],Φ′∞), and for a given function G ∈ Φ∞, let
QN ,G be the distribution in D([0, T ],R) defined by QN ,G [y ∈ D([0, T ],R); y(·) ∈ A] =
QN

[
Y ∈ D([0, T ],Φ′∞); Y (·)(G) ∈ A

]
. Therefore, the sequence {QN

}N is tight if and only if
{QN ,G

}N is tight for any G ∈ Φ∞.

From Mitoma’s criterion, {Y N
· }N is tight if and only if {Y N

· (G)}N is tight for any G ∈
SW (Td), since SW (Td) is a nuclear Fréchet space. By Dynkin’s formula and after some
manipulations, we see that

Y N
t (G) = Y N

0 (G)
∫ t

0

d∑
j=1

 1

N d/2

∑
x∈Td

N

L j
N G N (x/N ) ηs(x)

+
b

N d/2

∑
x∈Td

N

[
L j

N G N ((x + e j )/N )+ L j
N G N (x/N )

]
(τx h1, j )(ηs)

−
b

N d/2

∑
x∈Td

N

L j
N G N (x/N )(τx h2, j )(ηs)

 ds + M N
t (G), (5.1)

where M N
t (G) is a martingale of quadratic variation:

〈M N (G)〉t =
1

N d−1

d∑
j=1

∑
x∈Td

aN
j j [∂

N
W j

G N (x/N )]2[W ((x + e j )/N )−W (x/N )]

×

∫ t

0
cx,x+e j (ηs) [ηs(x + e j )− ηs(x)]

2 ds.

In order to prove tightness for the sequence {Y N
· (G)}N , it is enough to prove tightness for

{Y N
0 (G)}N , {M N

· (G)}N and the integral term in (5.1). The easiest one is the initial condition:
from the usual central limit theorem, Y N

0 (G) converges to a normal random variable of mean
zero and variance χ(ρ)

∫
G(x)2dx , where χ(ρ) = ρ(1 − ρ). For the other two terms, we use

Aldous’s criterion:

Proposition 5.2 (Aldous’s Criterion). A sequence of distributions {P N
} in the path space

D([0, T ],R) is tight if:

(i) For any t ∈ [0, T ] the sequence {P N
t } of distributions in R defined by P N

t (A) =
P N [y ∈ D([0, T ],R) : y(t) ∈ A] is tight.
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(ii) For any ε > 0,

lim
δ>0

lim sup
n→∞

sup
τ∈ΥT
θ≤δ

P N [y ∈ D([0, T ],R) : |y(τ + θ)− y(τ )| > ε
]
= 0,

where ΥT is the set of stopping times bounded by T and y(τ + θ) = y(T ) if τ + θ > T .

Now we prove tightness of the martingale term. By the optional sampling theorem, we have

QN

[∣∣∣M N
τ+θ (G)− M N

τ (G)
∣∣∣ > ε

]
≤

1

ε2 EQN

[〈
M N
τ+θ (G)

〉
−

〈
M N
τ (G)

〉]
=

1

ε2

[〈
M N
τ+θ (G)

〉
−

〈
M N
τ (G)

〉]
=

1

ε2 N d−1

d∑
j=1

∑
x∈Td

N

a j j (x)[∂
N
W j

G(x/N )]2[W ((x + e j )/N )−W (x)]

×

∫ t+δ

t
cx,x+e j (ηs)[ηs(x + e j )− ηs(x)]

2ds

≤
δ

ε2 (1+ 2|b|)θ
1

N d−1

d∑
j=1

∑
x∈Td

N

[∂N
W j

G(x/N )]2[W ((x + e j )/N )−W (x)]

≤
δ

ε2 (1+ 2|b|)θ(‖∇W G‖2W + δ), (5.2)

for N sufficiently large, since the rightmost term on (5.2) converges to ‖∇W G‖2W , as N →∞,
where

‖∇W G‖2W =
d∑

i=1

∫
Td

(
∂Wi f

)2
d(x i
⊗Wi ).

Therefore, the martingale M N
t (G) satisfies the conditions of Aldous’s criterion. The integral

term can be handled in a similar way:

EQN

[(∫ τ+δ

τ

1

N d/2

d∑
j=1

∑
x

L j
N G(x/N )(ηt − ρ)+ b[L j

N G((x + e j )/N )

+L j
N G(x/N )](τx h1 − ρ

2)− bL j
N G(x/N )(τx h2 − ρ

2)
)2

dt
]

≤ δC(b)
1

N d

d∑
j=1

∑
x∈Td

N

(
L j

N G(x/N )
)2

≤ δC(G, b),

where C(b) is a constant that depends on b, and C(G, b) is a constant that depends on C(b) and
on the function G ∈ SW (Td). Therefore, we conclude, by Mitoma’s criterion, that the sequence
{Y N
· }N is tight. Thus, the sequence of S ′W (T

d)-valued martingales {M N
· }N is also tight.

6. The Boltzmann–Gibbs principle

We show in this section that the martingales M N
t (G) introduced in Section 4 can be expressed

in terms of the fluctuation field Y N
t . This replacement of the cylinder function (τx hi, j )(ηs)− ρ

2
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by 2ρ[ηs(x) − ρ] for i = 1, 2 constitutes one of the main steps toward the proof of equilibrium
fluctuations.

Recall that (Ω ,F , µ) is a standard probability space where we consider the vector-valued
F -measurable functions {a j (ω); j = · · · , d} that form our random environment (see Sections 2
and 4 for more details).

Take a function f : Ω × {0, 1}T
d
N → R. Fix a realization ω ∈ Ω , let x ∈ Td

N , and define

f (x, η) = f (x, η, ω) =: f (TN xω, τxη),

where τxη is the shift of η to x : τxη(y) = η(x + y).
We say that f is local if there exists R > 0 such that f (ω, η) depends only on the values of

η(y) for |y| ≤ R. For this case, we can consider f as defined in all of the space Ω ×{0, 1}T
d
N for

N ≥ R.
We say that f is Lipschitz if there exists c = c(ω) > 0 such that for all x , | f (ω, η) −

f (ω, η′)| ≤ c|η(x) − η′(x)| for any η, η′ ∈ {0, 1}T
d
N such that η(y) = η′(y) for any y 6= x . If

the constant c can be chosen independently of ω, we say that f is uniformly Lipschitz.

Theorem 6.1 (Boltzmann–Gibbs Principle). For every G ∈ SW (Td), every t > 0 and every
local, uniformly Lipschitz function f : Ω × {0, 1}T

d
N → R, it holds that

lim
N→∞

Eνρ

∫ t

0

1

N d/2

∑
x∈Td

N

G(x)V f (x, ηs)ds

2

= 0, (6.1)

where

V f (x, η) = f (x, η)− Eνρ
[

f (x, η)
]
− ∂ρE

[∫
f (x, η)dνρ(η)

] (
η(x)− ρ

)
.

Here, E denotes the expectation with respect to µ, the random environment.

Let f : Ω × {0, 1}T
d
N → R be a local, uniformly Lipschitz function and take f (x, η) =

f (θN xω, τxη). Fix a function G ∈ SW (Td) and an integer K that will increase to ∞ after N .
For each N , we subdivide Td

N into non-overlapping boxes of linear size K . Denote them by
{Bi , 1 ≤ i ≤ Md

}, where M = [ NK ]. More precisely,

Bi = yi + {1, . . . , K }d ,

where yi ∈ Td
N , and Bi ∩ Br = ∅ if i 6= r . We assume that the points yi have the same relative

position on the boxes.
Let B0 be the set of points that are not included in any Bi ; then |B0| ≤ d K N d−1. If we restrict

the sum in the expression that appears inside the integral in (6.1) to the set B0, then its L2
νρ
(Td)-

norm clearly vanishes as N →+∞, since f is local, νρ is an invariant product measure, and V f
has mean zero with respect to νρ .

Let Λs f be the smallest cube centered at the origin that contains the support of f and define
s f as the radius of Λs f . Denote by B0

i the interior of the box Bi , namely the sites x in Bi that are
at a distance at least s f + 2 from the boundary:

B0
i = {x ∈ Bi , d(x,Td

N \ Bi ) > s f + 2}.
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Denote also by Bc the set of points that are not included in any B0
i . By construction, it is easy

to see that |Bc
| ≤ d N d(

c( f )
K +

K
N ), where c( f ) is a constant that depends on f .

We have that for continuous H : Td
→ R,

1

N d/2

∑
x∈Td

N

H(x)V f (x, ηt ) =
1

N d/2

∑
x∈Bc

H(x)V f (x, ηt )

+
1

N d/2

Md∑
i=1

∑
x∈B0

i

[
H(x)− H(yi )

]
V f (x, ηt )+

1

N d/2

Md∑
i=1

H(yi )
∑
x∈B0

i

V f (x, ηt ).

Note that we may take H continuous, since the continuous functions are dense in L2(Td). The
first step is to prove that

lim
K→∞

lim
N→∞

Eνρ
[∫ t

o

1

N d/2

∑
x∈Bc

H(x)V f (x, ηt )ds
]2
= 0.

As νρ is an invariant product measure and V f has mean zero with respect to the measure νρ ,
the last expectation is bounded above by

t2

N d

∑
x,y∈Bc
|x−y|≤2s f

H(x)H(y)Eνρ
[
V f (x, η)V f (y, η)

]
.

Since V f belongs to L2
νρ
(Td) and |Bc

| ≤ d N d(
c( f )

K +
K
N ), the last expression vanishes by

taking first N →+∞ and then K →+∞.
From the continuity of H , and applying similar arguments, one may show that

lim
N→∞

Eνρ
[∫ t

0

1

N d/2

Md∑
i=1

∑
x∈B0

i

[
H(x)− H(yi )

]
V f (x, ηt )ds

]2
= 0.

In order to conclude the proof it remains to be shown that

lim
K→∞

lim
N→∞

Eνρ
[∫ t

0

1

N d/2

Md∑
i=1

H(yi )
∑
x∈B0

i

V f (x, ηt )ds
]2
= 0. (6.2)

To this end, recall proposition A 1.6.1 of [11]:

Eνρ

[∫ t

0
V (ηs)ds

]
≤ 20θ t‖V ‖2

−1, (6.3)

where ‖ · ‖−1 is given by

‖V ‖2
−1 = sup

F∈L2(νρ )

{
2
∫

V (η)F(η)dνρ − 〈F, L N F〉ρ

}
,

and 〈·, ·〉ρ denotes the inner product in L2(νρ).
Let L̃ N be the generator of the exclusion process without the random environment, and

without the conductances (that is, taking a(ω) ≡ 1, and W j (x j ) = x j , for j = 1, . . . , d , in
(2.5)), and also without the diffusive scaling N 2:
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L̃ N g(η) =
d∑

j=1

∑
x∈Td

N

cx,x+e j (η)
[
g(ηx,x+e j )− g(η)

]
,

for cylindrical functions g on the configuration space {0, 1}T
d
N .

For each i = 1, . . . ,Md denote by ζi the configuration {η(x), x ∈ Bi } and by L̃ Bi the
restriction of the generator L̃ N to the box Bi , namely,

L̃ Bi h(η) =
∑

x,y∈Bi
|x−y|=1/N

cx,y(η)
[
h(ηx,y)− h(η)

]
.

We would like to emphasize that we introduced the generator L̃ N because it is translation
invariant.

Now we introduce some notation. Let L2(P ⊗ νρ) be the set of measurable functions g such

that E[
∫

g(ω, η)2dνρ] < ∞. Fix a local function h : Ω × {0, 1}T
d
N → R in L2(P ⊗ νρ),

measurable with respect to σ(η(x), x ∈ B1), and let hi be the translation of h by yi − y1:
hi (x, η) = h(θ(yi−y1)Nω, τyi−y1η). Consider

V N
H,h(η) =

1

N d/2

Md∑
i=1

H(yi )L̃ Bi hi (ζi ).

The strategy of the proof (6.2) is the following: we show that V N
H,h vanishes in some sense

as N →∞, and then, that the difference between V f and V N
H,h also vanishes, as N →∞. The

result follows a simple triangle inequality. The first part is done by obtaining estimates on boxes,
whereas the second part mainly considers the projections of V f on some appropriate Hilbert
spaces, plus ergodicity of the environment.

Let

LW,Bi h(η) =
d∑

j=1

∑
x∈Bi

cx,x+e j (η)
Na j (x)

W (x + e j )−W (x)
[h(ηx,x+e j )− h(η)].

Note that the following estimate holds:

Md∑
i=1

〈h,−LW,Bi h〉ρ ≤ 〈h,−L N h〉ρ .

Furthermore,

〈 f,−L̃ Bi h〉 ≤ max
1≤k≤d

{Wk(1)−Wk(0)}
N

θ〈h,−LW,Bi h〉ρ .

Using the Cauchy–Schwartz inequality, we have, for each i ,

〈L̃ Bi hi , F〉ρ ≤
1

2γi
〈−L̃ Bi hi , hi 〉ρ +

γi

2
〈F,−L̃ Bi F〉ρ,

where γi is a positive constant.
Therefore,

2
∫

V N
H,h(η)F(η)dνρ ≤

2

N d/2

Md∑
i=1

H(yi )

[
1

2γi
〈−L̃ Bi hi , hi 〉ρ +

γi

2
〈F,−L̃ Bi F〉ρ

]
. (6.4)
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Choose

γi =
N 1+d/2

θ max
1≤k≤d

{Wk(1)−Wk(0)}|H(yi )|
,

and observe that the generator L N is already speeded up by the factor N 2. We, thus, obtain

2

N d/2

Md∑
i=1

H(yi )
γi

2
〈F,−L̃ Bi F〉ρ ≤ 〈F,−L̃ N F〉ρ .

The above bound and (6.4) allow us to use inequality (6.2) on V N
H,h , with the generator LW,Bi .

Therefore, we have that the expectation in (6.3) with V N
H,h is bounded above by

20θ t

N d/2

Md∑
i=1

|H(yi )|

γi
〈−L̃ Bi hi , hi 〉ρ,

which in turn is less than or equal to

20t‖H‖∞Mdθ2

N d+1 max
1≤k≤d

{Wk(1)−Wk(0)}

Md∑
i=1

1
Md 〈−L̃ Bi hi , hi 〉ρ .

By Birkhoff’s ergodic theorem, the sum in the previous expression converges to a finite value as
N →∞. Therefore, this whole expression vanishes as N →∞. This concludes the first part of
the strategy of the proof.

To conclude the proof of the theorem it is enough to show that

lim
K→∞

inf
h∈L2(νρ⊗P)

lim
N→∞

Eνρ

[∫ t

0

1

N d/2

Md∑
i=1

H(yi )
{∑

x∈B0
i

V f (x, ηs)− L̃ Bi hi (ζi (s))
}]2

= 0.

To this end, observe that the expectation in the previous expression is bounded by

t2

N d

Md∑
i=1

‖H‖2∞Eνρ
(∑

x∈B0
i

V f (x, η)− L̃ Bi hi (ζi )
)2
,

because the measure νρ is invariant under the dynamics and the supports of V f (x, η)− L̃ Bi hi (ζi )

and V f (y, η)− L̃ Br hr (ζr ) are disjoint for x ∈ B0
i and y ∈ B0

r , with i 6= r .
By the ergodic theorem, as N →∞, this expression converges to

t2

K d ‖H‖
2
∞E

[∫ (∑
x∈B0

1

V f (x, η)− L̃ B1 h(ω, η)
)2

dνρ

]
. (6.5)

So, it remains to be shown that

lim
K→∞

t2

K d ‖H‖
2
∞ inf

h∈L2(νρ⊗P)
E
[∫ (∑

x∈B0
1

V f (x, η)− L̃ B1 h(ω, η)
)2

dνρ
]
= 0.
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Denote by R(L̃ B1) the range of the generator L̃ B1 in L2(νρ ⊗ P) and by R(L̃ B1)
⊥ the space

orthogonal to R(L̃ B1). The infimum of (6.5) over all h ∈ L2(νρ ⊗ P) is equal to the projection
of
∑

x∈B0
1

V f (x, η) into R(L̃ B1)
⊥.

The set R(L̃ B1)
⊥ is the space of functions that depend on η only through the total number of

particles on the box B1. So, the previous expression is equal to

lim
K→∞

t2
‖H‖2∞
K d E

[∫ (
Eνρ

[∑
x∈B0

1

V f (x, η)|η
B1
])2

dνρ

]
, (6.6)

where ηB1 = K−d ∑
x∈B1

η(x).
Let us call this last expression I0. Define ψ(x, ρ) = Eνρ [ f (θxω)]. Notice that V f (x, η) =

f (x, η) − ψ(x, ρ) − E[∂ρψ(x, ρ)]
(
η(x) − ρ

)
, since in the last term the partial derivative with

respect to ρ commutes with the expectation with respect to the random environment. In order to
estimate the expression (6.6), we use the elementary inequality (x+ y)2 ≤ 2x2

+2y2. Therefore,
we obtain I0 ≤ 4(I1 + I2 + I3), where

I1 =
1

K d E

[∫ (∑
x∈B0

1

Eνρ
[

f (x, η)|ηB1
]
− ψ(x, ηB1)

)2
dνρ

]
,

I2 =
1

K d E

[∫ (∑
x∈B0

1

ψ(x, ηB1)− ψ(x, ρ)− ∂ρψ(x, ρ)[η
B1 − ρ]

)2
dνρ

]
,

and

I3 =
1

K d E
[

Eνρ
[(∑

x∈B0
1

(
∂ρψ(x, ρ)− E[∂ρψ(x, ρ)]

)[
ηB1 − ρ

])2]]
.

Recall the equivalence of ensembles (see Lemma A.2.2.2 in [11]):

Lemma 6.2. Let h : {0, 1}T
d
N → R be a local uniformly Lipschitz function and S ∈ {1, . . . , N }.

Then, there exists a constant C that depends on h only through its support and its Lipschitz
constant, such that∣∣∣Eνρ [h(η)|ηS

] − Eν
ηS [h(η)]

∣∣∣ ≤ C

Sd ,

and

ηS(x) =
1
Sd

∑
y∈ΛS

η(y),

with ΛS = {0, . . . , S − 1}d .

Applying Lemma 6.2, we get

1
K d E

[∫ (∑
x∈B0

1

Eνρ
[

f (x, η)|ηB1
]
− ψ(x, ηB1)

)2
dνρ

]
≤

C

K d ,

which vanishes as K →∞.
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Using a Taylor expansion for ψ(x, ρ), we obtain that

1
K d E

[∫ (∑
x∈B0

1

ψ(x, ηB1)− ψ(x, ρ)− ∂ρψ(x, ρ)[η
B1 − ρ]

)2
dνρ

]
≤

C

K d ,

and also goes to 0 as K →∞.
Finally, we see that

I3 = Eνρ
[
(η(0)− ρ)2

]
· E
[( 1

K d

∑
x∈B0

1

(∂ρψ(x, ρ))− E[∂ρψ(x, ρ)]
)2]

,

and it goes to 0 as K →∞ by the L2-ergodic theorem. This concludes the proof of Theorem 6.1.
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Appendix. Stochastic differential equations on nuclear spaces

A.1. Countably Hilbert nuclear spaces

In this subsection we introduce countably Hilbert nuclear spaces which will be the natural
environment for the study of the stochastic evolution equations obtained from the martingale
problem. We will begin by recalling some basic definitions on these spaces. To this end, we
follow the ideas of Kallianpur and Perez-Abreu [10] and Gel’fand and Vilenkin [6].

Let Φ be a (real) linear space, and let ‖ · ‖r , r ∈ N be an increasing sequence of Hilbertian
norms. Define Φr as the completion of Φ with respect to ‖ · ‖r . Since for n ≤ m

‖ f ‖n ≤ ‖ f ‖m, for all f ∈ Φ, (A.1)

we have

Φm ⊂ Φn, for all m ≥ n.

Let

Φ∞ =
∞⋂

r=1

Φr .

Then Φ∞ is a Fréchet space with respect to the metric

ρ( f, g) =
∞∑

r=1

2−r ‖ f − g‖r
1+ ‖ f − g‖r

, (A.2)

and (Φ∞, ρ) is called a countably Hilbert space.
A countably Hilbert space Φ∞ is called nuclear if for each n ≥ 0, there exists m > n such

that the canonical injection πm,n : Φm → Φn is Hilbert–Schmidt, i.e., if { f j } j≥1 is a complete



1560 J. Farfan et al. / Stochastic Processes and their Applications 120 (2010) 1535–1562

orthonormal system in Φm , we have

∞∑
j=1

‖ f j‖
2
n <∞. (A.3)

We now characterize the topological dual Φ′∞ of the countably Hilbert nuclear space Φ∞ in
terms of the topological dual of the auxiliary spaces Φn .

Let Φ′n be the dual (Hilbert) space of Φn , and for φ ∈ Φ′n let

‖φ‖−n = sup
‖ f ‖n≤1

|φ[ f ]|,

where φ[ f ] means the value of φ at f . Equation (A.1) implies that

Φ′n ⊂ Φ′m for all m ≥ n.

Let Φ′∞ be the topological dual of Φ∞ with respect to the strong topology, which is given by
the complete system of neighborhoods of zero given by sets of the form {φ ∈ Φ′∞ : ‖φ‖B < ε},
where ‖φ‖B = sup{|φ[ f ]| : f ∈ B} and B is a bounded set in Φ∞. So,

Φ′∞ =
∞⋃

r=1

Φ′r .

A.2. Stochastic differential equations

The aim of this subsection is to recall some results about existence and uniqueness of
stochastic evolution equations in nuclear spaces.

We denote by L(Φ∞,Φ∞) (resp. L(Φ′∞,Φ′∞)) the class of continuous linear operators from
Φ∞ to Φ∞ (resp. Φ′∞ to Φ′∞).

A family {S(t) : t ≥ 0} of the linear operators on Φ∞ is said to be a C0,1-semigroup if the
following three conditions are satisfied:

• S(t1)S(t2) = S(t1 + t2) for all t1, t2 ≥ 0, S(0) = I ;
• the map t → S(t) f is Φ∞-continuous for each f ∈ Φ∞;
• for each q ≥ 0 there exist numbers Mq > 0, σq > 0 and p ≥ q such that

‖S(t) f ‖q ≤ Mqeσq t
‖ f ‖p for all f ∈ Φ∞, t > 0.

Let A in L(Φ∞,Φ∞) be infinitesimal generator of the semigroup {S(t) : t ≥ 0} in L(Φ∞,
Φ∞). The relations

φ[S(t) f ] := (S′(t)φ)[ f ] for all t ≥ 0, f ∈ Φ∞ and φ ∈ Φ′∞;
φ[A f ] := (A′φ)[ f ] for all f ∈ Φ∞ and φ ∈ Φ′∞;

define the infinitesimal generator A′ in L(Φ′∞,Φ′∞) of the semigroup {S′(t) : t ≥ 0} in
L(Φ′∞,Φ′∞).

Let (Σ ,U , P) be a complete probability space with a right continuous filtration (Ut )t≥0, U0
containing all the P-null sets of U , and M = (Mt )t≥0 be a Φ′∞-valued martingale with respect
to Ut , i.e., for each f ∈ Φ∞, Mt [ f ] is a real-valued martingale with respect to Ut , t ≥ 0. We are
interested in results of existence and uniqueness of the following Φ′∞-valued stochastic evolution
equation:
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dξt = A′ξt dt + dMt , t > 0,
ξ0 = γ,

(A.4)

where γ is a Φ′∞-valued random variable, and A is the infinitesimal generator of a C0,1-
semigroup on Φ∞.

We say that ξ = (ξt )t≥0 is a Φ′∞-solution of the stochastic evolution equation (A.4) if the
following conditions are satisfied:

• ξt is Φ′∞-valued, progressively measurable, and Ut -adapted;
• the following integral identity holds:

ξt [ f ] = γ [ f ] +
∫ t

0
ξs[A f ]ds + Mt [ f ],

for all f ∈ Φ∞, t ≥ 0 a.s.

In [10, Corollary 2.2] the following result on existence and uniqueness of solutions of the
stochastic differential equation (A.4) is proved:

Proposition A.1. Assume the conditions below:

(1) γ is a Φ′∞-valued U0-measurable random element such that, for some r0 > 0, E |γ |2−r0
<∞;

(2) M = (Mt )t≥0 is a Φ′∞-valued martingale such that M0 = 0 and, for each t ≥ 0 and
f ∈ Φ, E(Mt [ f ])2 <∞;

(3) A is a continuous linear operator on Φ∞, and is the infinitesimal generator of a C0,1-
semigroup {S(t) : t ≥ 0} on Φ∞.

Then, the Φ′∞-valued homogeneous stochastic evolution equation (A.4) has a unique solution
ξ = (ξt )t≥0 given explicitly by the “evolution solution”:

ξt = S′(t)γ +
∫ t

0
S′(t − s)dMs .

Remark A.2. The statement E(Mt [ f ])2 < ∞ in condition 2 of Proposition A.1 is satisfied if
E(Mt [ f ])2 = t Q( f, f ), where f ∈ Φ∞, and Q(·, ·) is a positive definite continuous bilinear
form on Φ∞ × Φ∞.

We now state a proposition, whose proof can be found in Corollary 2.1 of [10], that gives a
sufficient condition for the solution ξt of Eq. (A.4) to be a Gaussian process.

Proposition A.3. Assume γ is a Φ′∞-valued Gaussian element independent of the Φ′∞-valued
Gaussian martingale with independent increments Mt . Then, the solution ξ = (ξt ) of (A.4) is a
Φ′∞-valued Gaussian process.
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