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Keywords:
Objectives: The presence of intracranial lesions or epilepsymay lead to functional reorganization andhemispheric
lateralization. We applied a clinical magnetoencephalography (MEG) protocol for the localization of the contra-
lateral and ipsilateral S1 andM1 of the foot and hand in patients with non-lesional epilepsy, stroke, developmen-
tal brain injury, traumatic brain injury and brain tumors. We investigated whether differences in activation
patterns could be related to underlying pathology.
Methods: Using dipole fitting, we localized the sources underlying sensory and motor evoked magnetic fields
(SEFs andMEFs) of both hands and feet following unilateral stimulation of themedian nerve (MN) and posterior
tibial nerve (PTN) in 325 consecutive patients. The primary motor cortex was localized using beamforming fol-
lowing a self-paced repetitive motor task for each hand and foot.
Results: The success rate formotor and sensory localization for the feetwas significantly lower than for the hands
(motor_hand 94.6% versusmotor_feet 81.8%, p b 0.001; sensory_hand 95.3% versus sensory_feet 76.0%, p b 0.001).
MN and PTN stimulation activated 86.6% in the contralateral S1, with ipsilateral activation b 0.5%. Motor cortex
activation localized contralaterally in 76.1% (5.2% ipsilateral, 7.6% bilateral and 11.1% failures) of all motor MEG
recordings. The ipsilateral motor responses were found in 43 (14%) out of 308 patients with motor recordings
(range: 8.3–50%, depending on the underlying pathology), and had a higher occurrence in the foot than in
the hand (motor_foot 44.8% versus motor_hand 29.6%, p = 0.031). Ipsilateral motor responses tended to be
more frequent in patients with a history of stroke, traumatic brain injury (TBI) or developmental brain lesions
(p = 0.063).
Conclusions:MEG localization of sensorimotor cortex activation was more successful for the hand compared to
the foot. In patients with neural lesions, there were signs of brain reorganization as measured by more frequent
ipsilateralmotor cortical activation of the foot in addition to the traditional sensory andmotor activation patterns
in the contralateral hemisphere. The presence of ipsilateral neural reorganization, especially around the foot
motor area, suggests that careful mapping of the hand and foot in both contralateral and ipsilateral hemispheres
prior to surgery might minimize postoperative deficits.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Magnetoencephalography (MEG) in combination with magnetic
resonance imaging (MRI) has developed from a research tool into a use-
ful and accepted clinical modality in the management of patients with
epilepsy and brain tumors (Anderson et al., 2014; Castillo et al., 2004;
Ganslandt et al., 1999; Knowlton, 2008). Using information obtained
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. This is an open access article under
from MEG in the pre-surgical evaluation of epilepsy increases the suc-
cess rate of epilepsy surgery (Knowlton, 2008), and MEG identification
of the sensorimotor cortex has been validated by several groups using
intraoperative measurements as a support to neurosurgical planning
and intraoperative guidance of resection (Castillo et al., 2004;
Ganslandt et al., 1999; Korvenoja et al., 2006; Schiffbauer et al., 2002;
Tarapore et al., 2012).

Localization of the somatosensory cortex is typically achieved using
dipole fitting applied to the 1st main peak of the somatosensory evoked
field (SEF) following electrical simulation of themedian (MN) or poste-
rior tibial nerve (PTN). (Hari and Forss, 1999; Hari et al., 1996) The
changes in oscillatory power in the beta band andmu rhythm following
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Table 1
Diagnosis for all patients.

Diagnosis Nall (%) Nincluded (%)

Non-lesional epilepsy 168 (41.3) 134 (41.2)
Focal cortical dysplasia 50 (12.3) 45 (13.8)
Low grade glioma 50 (12.3) 39 (12)
Mesiotemporal gliosis 40 (9.8) 26 (8)
Stroke 19 (4.7) 18 (5.5)
DNET 11 (2.7) 9 (2.8)
Cavernoma 11 (2.7) 7 (2.2)
Traumatic brain injury 5 (1.2) 4 (1.2)
Developmental disorder 5 (1.2) 4 (1.2)
Tuberous sclerosis 5 (1.2) 2 (0.6)
High grade glioma 4 (1.0) 1 (0.3)
Cyst 4 (1.0) 4 (1.2)
Other 35 (8.6) 32 (9.8)
Total 407 (100) 325 (100)

DNET: dysembryoplastic neo-epithelial tumor.
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limb movement are typically localized using beam-former approaches
(Cheyne et al., 2006; Hillebrand and Barnes, 2005), and have been
shown to provide reliable preoperative localization of the hand motor
cortex in patients with epilepsy and brain tumors (Nagarajan et al.,
2008).

Localization of the hand primary motor and sensory cortex has been
studied extensively usingMEG, but less is known about the reliability of
somatosensory and motor responses of the foot in a clinical setting, es-
pecially in the presence of intracranial lesions (Hari et al., 1996; Mäkelä
et al., 2001; Nakamura et al., 1998; Willemse et al., 2007, 2010).

The clinical utility ofMEG tomap the sensorimotor cortex in surgical
candidates depends on the ability to accurately and reliably lateralize
and/or localize the primary sensorimotor cortex. In healthy subjects,
the strongest activation is typically found contralateral to the side of
stimulation or executed movement (Kakigi et al., 2000; Stippich et al.,
2007). However, patients with brain lesions may have altered topo-
graphic organization of cortical functions, which can affect the results
of non-invasive pre-surgical functional mapping (Lee et al., 2009;
Staudt, 2010); the occurrence of such reorganization for patients with
epilepsy is less clear, and may be related to underlying pathology. It is
conceivable that different lesions affect the somatosensory network in
different ways. Therefore, knowledge about the structural, as well as
functional, changes in the network in the presence of intracranial le-
sions or epilepsy has clinical significance for pre-surgical planning.

In this paper, we retrospectively evaluated the results of our clinical
MEG protocol in a large group of patients, eligible for epilepsy or tumor
surgery, with respect to the success rate in locating the contralateral
foot primary sensorimotor cortex in comparison to the hand. In addi-
tion, we studied whether differences between sensorimotor responses
of the hand and foot could be related to underlying pathology.

2. Methods

The procedures with respect to recording and analysis of responses
following electrical median nerve stimulation and hand movements
have been described previously by Hillebrand et al. (2013).

2.1. Patients

Patients were referred from the VU University Medical Center but
also externally from the University Medical Center Utrecht, Utrecht;
Kempenhaeghe, Academic Center for Epileptology, Sleep Medicine and
Neurological Learning & Development Disability, Heeze and SEIN,
Dutch Epilepsy Clinics Foundation, TheNetherlands. All 407 consecutive
patients referred for clinical MEG from April 2010 until March 2014
were evaluated. All patients had at least MEG recordings with at least
analysis of spontaneous activity. Themajority of patients also had an ad-
ditional motor and/or sensory paradigm tested as part of the routine
clinical workup. Exclusion of 82 patients who had no sensory or motor
paradigm tested, resulted in 325 patients for further analysis. The pa-
tients' diagnosis is summarized in Table 1.

As the patients were not subjected to procedures and were not re-
quired to follow rules of behavior other than routine clinical care, ap-
proval of the study by the institutional review board (Medical Ethical
Research Committee, VU University Medical Center, Amsterdam, The
Netherlands) and informed consent was not required according to the
Dutch health law of February 26, 1998 (amended March 1, 2006), i.e.
Wet medisch-wetenschappelijk onderzoek met mensen (WMO; Medi-
cal Research Involving Human Subjects Act), Division 1, Section 1.2.

2.2. MEG recordings

MEG recordings were obtained using a 306-channel whole-head
neuro-magnetometer (Elekta Neuromag Oy, Helsinki, Finland) with
subjects lying inside a magnetically shielded room during MEG record-
ings (Vacuumschmelze GmbH, Hanau, Germany). The head position
relative to theMEG sensorswas recorded continuously using the signals
from four or five head-localization coils. The positions of the coils, as
well as the outline of the participants scalp (~500 points), were digi-
tized using a 3D digitizer (3Space Fastrak, Polhemus, Colchester, VT,
USA). This scalp surface was used for co-registration with the patients
anatomical MRI.

2.3. Anatomical MRI and co-registration

StructuralMR-imageswere available fromprevious studies or other-
wise acquired with a 1.5 or 3.0 T MR scanner, where the axial slice dis-
tance varied from 1.5 to 3 mm. Co-registration of these T1-weighted
MRIs with the MEG data was achieved by using surface matching soft-
ware developed by one of the authors (AH), resulting in an estimated
co-registration accuracy of approximately 4 mm (Whalen et al., 2008).
A single best fitting sphere was fitted to the outline of the scalp as ob-
tained from the co-registeredMRI,whichwas used as a volume conduc-
tor model for the dipole fitting and beam-former analysis described
below.

2.4. Somatosensory stimulation

MEG responses to electrical stimulation of the left and right median
nerve (MN) and the left and right posterior tibial nerve (PTN) were re-
corded. Constant current squarewave pulses (2Hz, 0.2ms duration, 500
epochs) were delivered trans-cutaneous at the wrist (MN) and the
ankle (PTN) just above motor threshold.

2.5. Motor task

Subjects performed voluntary hand movements consisting of slow,
unilateral, self-paced repetitive non-clenching opening and closing of
the hand at about 1 Hz. The movements were performed for 15 repeats
of 10 s movement followed by 10 s without movement. With foot
movements patients were instructed to alternate flexion and extension
at the ankle at about 1Hz.Movement instructionswere presented to the
subject using a brief tone (movement) or brief burst of white noise (no
movement). Movements were monitored on camera. Left and right
movements of the hand and foot were performed in separate runs.

2.6. Analysis

The MEG recordings were analyzed according to standard clinical
procedures for pre-surgical mapping of somatosensory and motor cor-
tex by an experienced MEG/EEG technician, and evaluated by a team
consisting of two experienced clinical neurophysiologists (HR and
CJS), MEG/EEG technicians and physicists (AH).



Table 2
Number of MEG recordings, localization results, failures and success rate (%) after sensory
stimulation and during motor tasks of the extremities.

C (%) I (%) B (%) Failure (%) Total (%) Success %

Sensory MEG
MN-L 282 (95.6) 1 (0.3) 0 12 (4.1) 295 (100) 95.9
MN-R 282 (94.6) 0 (0.0) 0 16 (5.4) 298 (100) 94.6
PTN-L 163 (75.8) 3 (1.4) 0 49 (22.8) 215 (100) 77.2
PTN-R 161 (74.2) 1 (0.5) 0 55 (25.3) 217 (100) 74.7
Total 888 (86.6) 5 (0.5) 0 (0.0) 132 (12.9) 1025 (100) 87.1

Motor MEG
HL 238 (82.1) 12 (4.1) 27 (9.3) 13 (4.5) 290 (100) 95.5
HR 239 (80.5) 12 (4.0) 26 (8.8) 20 (6.7) 297 (100) 93.3
FL 154 (68.1) 18 (8.0) 15 (6.6) 39 (17.3) 226 (100) 82.7
FR 162 (70.7) 12 (5.2) 11 (4.8) 44 (19.2) 229 (100) 80.8
Total 793 (76.1) 54 (5.2) 79 (7.6) 116 (11.1) 1042 (100) 88.9

C: contralateral; I: ipsilateral; B: bilateral; MN: median nerve; PTN: posterior tibial nerve;
L: left; R: right; HL: left hand; HR: right hand; FL: left foot; FR: right foot.
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2.7. Dipole fitting

Somatosensory evoked fieldswere offline-averaged (from−100ms
to + 150 ms with respect to stimulus onset). In accordance with our
standard procedure for localization of early SEF responses, the evoked
response was low-pass filtered at 70 Hz and high-pass filtered at
0.5 Hz, after baseline correction based on the window from −50 to
0 ms. A single equivalent current dipole (ECD) was fitted to the peak
of the SEF of the contralateral hemisphere during the first prominent
deflection (using xfit, version 5.5.18, Elekta Neuromag, Oy, Helsinki,
Finland).

2.8. Beamformer analysis

The MEG data for the motor task were band-pass filtered from 13 to
30 Hz (beta band) before sources were reconstructed using a dual-state
beamformer (beamformer, Elekta Neuromag, Oy, Helsinki, Finland). A
grid covering the entire brain, using a spacing of 5 mm, was used for
the localization of changes in neuronal power (Hillebrand et al., 2005).
A scalar beamformer implementation was used, which determines the
optimal current orientation for each voxel (Sekihara et al., 2004). The
10 s preceding each auditory cue to start (hand or foot) movements
were used for the control period and the 10 s following the auditory
cue were used for the active period. Approximately 10 s of data, taken
from the beginning of the recording (before the task was started),
were used to estimate the noise covariance. Taking this noise covariance
and the data co-variances from the active and passive periods, the
pseudo-t metric was computed for each voxel in the source grid (Vrba
and Robinson, 2001).

2.9. Statistical analysis

Results are presented for each of the (maximum four) sensory and
(maximum four) motor paradigms as a contra- (C), ipsi- (I) or bilateral
(B) result and failures were defined as MEG recordings with un-
interpretable results. The success rate of the MEG recordings for each
paradigm was defined as the number of MEG recordings with an inter-
pretative result (C-, I- or B) divided by the total number of performed
MEG recordings, i.e. excluding the MEG recordings with failures.

Paired proportions were analyzed by means of McNemar's test, sig-
nificance was set at p b 0.05 (IBM SPSS Statistics, version 22).

3. Results

Of the 325 patients, 168 (51.7%) were male (mean age: 29.3 yrs,
range 3.7–65.5) and 74 (22.8%) were under the age of 17 (43 males
(58.1%); mean age: 11.4; range 3.7–16.8). The distribution of the MEG
recordings in all patients is shown in Table 2. The majority of patients
(N = 291; 89.5%) had a sensory and motor paradigm recorded. Seven-
teen (5.2%) patients only had data with sensory stimulation and 17
(5.2%) patients only had motor data available. In total, 1025 sensory
and 1042 motor MEG recordings were performed.

The localization and lateralization results for all sensory and motor
recordings are shown in Table 2, including the number of failures and
success rates.

3.1. Somatosensory MEG

Somatosensory MEG recordings localized the contralateral primary
sensory cortex in 86.6% of all recordings (mean MN 95.1% versus
mean PTN 75.0%). Ipsilateral sensory responses were rare (0.5%); four
patients were identified with five ipsilateral responses. One patient
had a lobar hemi-microencephaly (see Fig. 1), one had non-lesional ep-
ilepsy (NLE), onehadmesial temporal sclerosis (MTS) and onehad a left
frontal oligodendroglioma WHO grade II. Failures occurred in 132
(12.9%) of the sensory MEG recordings. MEG recordings after MN
stimulation had a significantly (p b 0.001) higher success rate (95.3%)
compared to PTN stimulation (76.0%).
3.2. Motor MEG

Localization following handmovementwasmore successful (94.6%)
than for foot movement (81.8%; p b 0.001). Motor tasks resulted in con-
tralateral localization in 76.1% of the recordings; 5.2% of the MEG re-
cordings had ipsilateral motor results, 7.6% bilateral activation
patterns and 11.1% failures. Hand movements resulted in a mean of
4.1% ipsilateral and 9.1% bilateral responses, and foot movements had
a mean of 6.6% ipsi- and 5.7% bilateral responses.
3.3. Ipsilateral motor recordings

Of the 308 patients who had motor recordings, 43 (14%) patients
(28 male; mean age: 32.6 yrs; range 7.8–64.7) had one or more ipsilat-
eral responses. The distribution of the different localization results is
shown in Table 3, where it can be seen that the incidence of ipsilateral
motor responses varied between 8.3–50% for different patient groups.

Patients with a history of stroke, TBI or a developmental disorder
had a relatively high occurrence of ipsilateral results. However, the com-
parison of this combined patient group (stroke, TBI and developmental
disorder) versus the group with slow- or non- (growing) lesions (NLE,
FCD, MTS and LGG) did not reach statistical significance (p = 0.063).
The occurrence of ipsilateral results in patientswithNLE is similar to pa-
tients with lesional epilepsy (MTS, DNET, FCD).

Table 4 shows the distribution of theMEG results between the hand
and foot in the patients with ipsilateral motor responses.

Motor tasks of the foot showed significantly (p = 0.031) more ipsi-
lateral responses than for the hand. Ipsilateral responses of the hand
were equally distributed between left- and right hand motor tasks.
Left foot movement resulted in significantly more ipsilateral responses
(9.6%) versus right foot movement (6.5%, p= 0.046). Examples of ipsi-
lateral hand and foot responses are shown in Fig. 2.
4. Discussion

In the present study we usedMEG to assess the functional organiza-
tion of the hand and foot sensorimotor cortex in a heterogeneous group
of patients evaluated for epilepsy or tumor surgery. Somatosensory re-
sponses after PTN stimulation are less successful than MN responses
and ipsilateral somatosensory results are rare. MEG motor recordings
localize the contralateral M1 in the majority of cases but also show
ipsi- and bilateral M1 activation with differential occurrence in patient
groups, especially with foot movements.



Fig. 1. Axial (left), coronal (middle) and sagittal (right) MR images corresponding to a 35-year-old male with a left-sided motor weakness since the age of six months with symptomatic
therapy-resistant epilepsy with right-sided lobar hemi-microencephaly of the frontal lobe and insular region, in addition to polymicrogyric pachygyria. The only ipsilateral median nerve
(MN) result in thepatient groupwas found in this patient, who also had ipsilateral activation after posterior tibial nerve (PTN) stimulation and for both hand and footmotor responses. Top
panels: results of MN and PTN stimulation on both sides showing ipsilateral MN and PTN responses. Lower panels: task-related power decreases in the beta band during self-paced hand
and foot movements with localization in the ipsilateral hemisphere for both hand and foot movements. L: left; R: right; A: anterior; P: posterior.
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4.1. Ipsilateral somatosensory cortex localization

The most reliably elicited somatosensory responses are the early re-
sponses (N20m and P40m for MN and PTN stimulation respectively),
which usually cause a contralateral response at S1. MN stimulation
gives robust results and has been validated with structural and intraop-
erative cortical stimulationmapping (Ganslandt et al., 1999; Schiffbauer
et al., 2002).

In our study, we also found robust contralateral results afterMN and
PTN stimulation. However, few patients (and only 0.5% of the MEG re-
cordings) showed ipsilateral somatosensory responses. In adults, ipsi-
lateral somatosensory responses have been described with MEG in
normal subjects (Korvenoja et al., 1995, 1999), as well as in patients
(Kanno et al., 2003). In a large group of 482 heterogeneous patients,
Table 3
Number of patients (N) with ipsilateral motor responses (N_ipsi).

Diagnosis Patients

N % N_ipsi % of N

NLE 128 41.6 14 10.9
FCD 42 13.6 5 11.9
LGG 36 11.7 4 11.1
MTS 24 7.8 2 8.3
Stroke 18 5.8 5 27.8
DNET 8 2.6 1 12.5
Cavernoma 7 2.3 1 14.3
TBI 4 1.3 2 50.0
Develop. disorder 4 1.3 2 50.0
Cyst 4 1.3 0 0.0
Tuberous sclerosis 2 0.6 0 0.0
HGG 1 0.3 0 0.0
Other 30 9.7 7 23.3

308 100 43 14.0

NLE: nonlesional epilepsy; LGG: low grade glioma; FCD: focal cortical dysplasia; MTS:
mesiotemporal sclerosis; DNET: dysembryoplastic neo-epithelial tumor; TBI: traumatic
brain injury; Develop. disorder: developmental disorder; HGG: high-grade glioma.
2.9% of the patients showed an ipsilateral MN response, but no relation
could be established between the underlying disease and the presence
of an ipsilateral response, which is in accordance with our results. Ipsi-
lateral MN responses have also been described in cerebral palsy
(Guzzetta et al., 2007; Wilke et al., 2009), as in one of our patients
(Fig. 1).

It has been hypothesized that an ipsilateral response is a normal var-
iant in the population (Kanno et al., 2003) but another possible explana-
tion for this rare occurrence is a lack of transcallosal inhibition of
the ipsilateral S1 area after unilateral somatosensory stimulation
(Hlushchuk and Hari, 2006). Others, using either a different source
model (MEG) or imaging modality (fMRI), found that unilateral MN
stimulation can activate both the left and right S1 in healthy subjects
(Korvenoja et al., 1999; Sutherland and Tang, 2006). However, as usual-
ly the single ECD model is used for clinical MEG applications, as in our
study, we can only make comparisons with previous studies using the
same model.

There are only a few studieswith PTN-evokedmagnetic responses in
the presence of intracranial pathology (Schiffbauer et al., 2002;
Willemse et al., 2007), and ipsilateral PTN responses have not been de-
scribed previously with MEG. We found four ipsilateral PTN responses
in three patients with different pathology and the only ipsilateral MN
response was also found in one of these patients (Fig. 1). It is unclear
whether this lateralization reflects functional reorganization orwhether
other factors may contribute. For MN SEFs, we know that tactile inter-
ference can reduce the contralateral response and can increase the ipsi-
lateral response, possibly via excitatory transcallosal pathways
(Schnitzler et al., 1995). We do not know whether this is also true for
the foot and whether patients induced this involuntarily. Others
Table 4
Distribution of MEG results in the patients with ipsilateral motor recordings.

MEG recording N N_ipsi (%)

Hand 81 24 (29.6)
Foot 67 30 (44.8)



Fig. 2. Axial (left) and coronal (right) MR images showing two examples of task-related
power decreases in the beta band, demonstrating ipsilateral motor responses in Cases 2
and 3 during hand or foot movements. Case 2: 9-year-old female with intractable and
non-lesional epilepsy showing pronounced ipsilateral cortical responses for both hands
with localization in the hand area. Foot movements, despite good performance, show no
cortical response (not shown). Case 3: 36-year-old female with focal cortical dysplasia
in the depth of the central sulcus of the left hemisphere shows a contralateral response
of both hands and the left foot. Right foot movements show an ipsilateral response at
the medial wall of the primary motor cortex. L: left; R: right; A: anterior; P: posterior.
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however, have concluded that ipsilateral responses after PTN stimula-
tion might also be explained by its location, adjacent to the inter-
hemispheric fissure (Kakigi et al., 1995).

Our data confirm that ipsilateral somatosensory cortical activation is
rare, and that somatosensory cortical activation remains in the lesioned
hemisphere, even in the presence of lesions, in contrast tomotor activa-
tion (Wilke et al., 2009).

4.2. Ipsilateral hand responses

Unilateral hand movements usually give the strongest activation
patterns in contralateral M1 (cM1). Ipsilateral motor cortex involve-
ment during unilateral voluntary movements has been reported with
MEG studies (Cheyne et al., 2006; Kristeva et al., 1991; Taniguchi
et al., 2000) and has also been demonstrated using beamformer analysis
in healthy subjects (Jurkiewicz et al., 2006) and patients with intracra-
nial lesions (Nagarajan et al., 2008; Taniguchi et al., 2004; Willemse
et al., 2010). Exclusive ipsilateral activity was found in the sensorimotor
cortex, the premotor cortex (PMC) and the inferior parietal lobule (IPL)
during movement of the affected hand in brain tumor patients with
mostly high-grade gliomas around the central sulcus, and it was hy-
pothesized that recruitment of ipsilateral motor areas was needed to
maintain effective movement of the affected hand (Taniguchi et al.,
2004). Using fMRI, Tozakidou et al. (2013) found an increased occur-
rence of ipsilateral M1 activation in a large group of patients with tu-
mors of the central region, especially in fast-growing lesions such as
grade IV gliomas and metastases (Tozakidou et al., 2013). In our study,
we only had one patient with a high-grade glioma and hence we were
not able to confirm these findings. We only found exclusive ipsilateral
activation in a small proportion of the datasets, which is in accordance
with the findings of others (Nagarajan et al., 2008; Willemse et al.,
2010).
Enhanced ipsilateral activity has been described in the presence of
pathology (Carpentier et al., 2001; Stoeckel and Binkofski, 2010).
Carpentier et al. showedwith fMRI in a heterogeneous group of patients
with different types of tumors, arteriovenous malformations and epi-
leptogenic cortical malformations, that ipsilateral activation was more
pronounced in the latter group (Carpentier et al., 2001). It is generally
accepted that such lesions, acquired in the pre- and perinatal period
can be compensated easier by the immature brain than the adult
brain, with ipsilateral takeover of motor functions (Stoeckel and
Binkofski, 2010). This could explain the findings from Carpentier et al.,
but also the increased ipsilateral responses in our patients with devel-
opmental disorders. Patients with a history of stroke and TBI have also
shown frequent ipsilateral responses, which could be explained by a
disruption of inter-hemispheric inhibition as described in stroke pa-
tients using the recovered hand (Cao et al., 1998) or TBI patients with
corpus callosum lesions (Takeuchi et al., 2012).

Themajority of our patients had lesional (MTS, FCD), or non-lesional
epilepsy and data about ipsilateral motor responses in these patient
groups are rare, but could be potentially interesting for resective epilep-
sy surgery around motor areas. We only found one report of an ipsilat-
eral response inMTS (Chlebus et al., 2004) andone case reportwith FCD
(Maegaki et al., 1995). Recently, Mäkelä et al. described two patients
from a group of 19 patients with intractable epilepsy, with unexpected
motor cortex localization, of whomone had a history of a large perinatal
vascular infarction in the left hemisphere and ipsilateral hand motor
cortex representation in the right hemisphere (Mäkelä et al., 2013).
Motor cortex plasticity in the presence of epilepsy could be the result
of functional network alterations in lesional, perilesional but also re-
mote neocortical areas as has been described in MTS and FCD (Caciagli
et al., 2014). It is conceivable that patients with NLE, which is a hetero-
geneous group with different epileptogenic mechanisms, also show
functional reorganization comparable to epileptic patients with struc-
tural lesions.

In healthy adults, there is increasing evidence that upper limb func-
tion relies on the balanced control of cM1 and ipsilateral M1 (iM1) and
it is assumed that iM1 assists cM1 by modulating the extent of
transcallosal inhibition (Allison et al., 2000; Ferbert et al., 1992;
Kobayashi et al., 2003; van Wijk et al., 2012; Ziemann et al., 1999). Be-
fore activation of both primary motor cortices in unilateral movements
there is evidence that ipsilateral PMC activity precedes activity in cM1
(Huang et al., 2004; Liuzzi et al., 2010), which may explain bilateral ac-
tivity found in fMRI studies. It is possible that the ipsilateral responses in
our study are related to PMC activity instead of M1 activity, because
they are in close anatomical relationship with overlap in temporal dy-
namics, or that the result is an average of both, which makes it difficult
to disentangle these sources. Finally, participation of the ipsilateral sen-
sorimotor cortex in unilateral limb movements by the partially
uncrossed descending fibers of the corticospinal tract recently has
been reconsidered as a compensatory pathway in stroke patients
(Bradnam et al., 2013).

4.3. Ipsilateral foot responses

We found an increased occurrence of ipsilateral responses after foot
movements. This could not be explained by previous M/EEG studies on
lower limb movements which indicated bilateral activity over the sen-
sorimotor areas after voluntary movements (Müller-Putz et al., 2007;
Pfurtscheller et al., 1997; Pittaccio et al., 2011) or the contribution of
the PMC and supplementary motor area (SMA) (Pittaccio et al., 2013).

Comparable fMRI studies however, have shown that active ankle
dorsiflexion was associated with a greater relative contribution of iM1
and PMC than finger movements (Ciccarelli et al., 2005; Sahyoun
et al., 2004), suggesting amore significant role of iM1 in themotor plan-
ning of lower limbmovements than for similar handmovements. These
findings may explain the increased ipsilateral foot responses in our
study and previous findings in patients with perirolandic lesions
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(Willemse et al., 2010). Another possible explanation could be related to
task complexity, where ipsilateral activation, especially in M1, has been
considered to reflect the degree of task complexity for the upper limb
(Verstynen et al., 2005). A comparable study with respect to the lower
limb found significant differences between ipsilateral sensorimotor ac-
tivity during large-amplitude (40°) dorsiflexion at 0.5 Hz, compared
with small amplitude (15°) dorsiflexion, suggesting that larger ampli-
tude dorsiflexion is a more difficult task (MacIntosh et al., 2004). Our
patients were instructed to perform ankle dorsiflexion and plantar flex-
ion in themost comfortable way at about 1 Hz, however we do not con-
sider foot movements more complex than hand movements as a
possible explanation for the increased ipsilateral foot responses.

The previous studies were all performed in healthy subjects and our
results may indicate functional plasticity in the presence of disease.
However, since EMG was not performed in our study, we cannot rule
out the possibility of subtle mirror movements of the contralateral
limb as another explanation. Future investigation of footmotor function
is required to elucidate the clinical value of ipsilateral motor responses.

Our results demonstrate that themotor network in a large heteroge-
neous population of patients with lesions or epilepsy (or both) mostly
show expected contralateral responses, but also that ipsilateral motor
responses may occur. This may have implications for surgical planning
in order to avoid post-operative motor deficits (see example in Fig. 3).

4.4. Limitations of the study

The results of motor mapping with a beamformer approach depend
on thresholding the pseudo-t value at each voxel location. Usually
motor activity of the hand shows a strong contralateral activity peak
and a weak ipsilateral activity peak, depending on the threshold. In-
versely, the occurrence of ipsilateral responses in our group, does not
rule out the possibility of a concurrent contralateral responses as well.
For practical purposes, we choose the side of the strongest activity and
the results of bilateral responses, i.e. nearly equal responses were not
evaluated as a separate group. Furthermore, the clinical imaging proto-
col only evaluated decreases in beta band spectral power, information
on a possible increase in beta band power is therefore lacking in the
analyses presented here. An increase of beta band power can be found
in sensorimotor areas following voluntary movement and somatosen-
sory stimulation (Neuper et al., 2006), but the clinical valuewith respect
to localization of motor execution is unclear.
Fig. 3. Axial (left), and sagittal (right) MR images of a 40-year-old patient with recurrent
motor seizures (epilepsia partialis continua) of the left hand since the age of two, due to
cortical dysplasia in the hand area of the rightmotor cortex. TheMEGmotor findings sug-
gested functional reorganizationwith lateralization of the left hand to the left hemisphere
(task-related power decreases in the beta band during self-paced movements of the left
hand (red) and right hand (green). Identification of the epileptogenic focus was necessary
with invasive techniques. The MEG results supported additional functional mapping as
well and therefore, subdural grid monitoring of the right hemisphere was performed,
showing an extensive and scattered area formotor hand function. Surgery was performed
with premotor removal of tissue andmultiple subpial transections of the right handmotor
cortex. Postoperatively, the patient had noneurological deficits of the left armand a signif-
icant seizure reduction. L: left; R: right; A: anterior; P: posterior.
The spatial resolution of MEG with respect to source localization of
midline structures such as the foot sensorimotor cortex is an important
issue. Detectability of sources in foot sensorimotor cortex by MEG, may
be compromised by their depth, yet these sources have a favorable ori-
entation (Hillebrand and Barnes, 2002).

Beamformer analysis offers further improvements in spatial resolu-
tion compared to dipole fitting (see Appendix in Hillebrand and
Barnes, 2003) (Hillebrand and Barnes, 2003), and the spatial resolution
was optimized through the use of a large number of channels, a long co-
variance window, and the use of a bandwidth that matched the fre-
quency distribution of the signals of interest (Brookes et al., 2008).
However, despite these efforts and the fact that themajority of patients
showed foot activation at the expected contralateral foot motor cortex,
we cannot rule out the possibility of false foot-lateralization in some
cases.

Even in this large group of 325 patients the number of patients with
signs of functional reorganization is too small for reliable statistical in-
ferences. Future studies in larger patient groupswith stroke, TBI and de-
velopmental disorders will have to show whether the observed trend
towards increased ipsilateral responses in these patient groups is a con-
sistent finding.

The failures of theMEG recordings could be attributed to some tech-
nical constraints (e.g. the presence of a vagal nerve stimulator or stimu-
lation artifacts) or patient-related factors, such as fear for electrical
stimulation, restlessness or mirror movements.

Data about handedness were only partially available and not ana-
lyzed. Although handedness is known to affect hemispheric asymmetry
(Solodkin et al., 2001; Verstynen et al., 2005), this is usually related to
task complexity. Simple motor tasks, as in our study, elicit similar re-
sponses in both hands, which were also found in our study as well as
in other studies with intracranial lesions (Cheyne et al., 2006;
Nagarajan et al., 2008;Willemse et al., 2010).With respect to the results
of sensory stimulation, sensory dominance has not been established
with electrical median nerve or pneumatically driven finger stimulation
(Chen et al., 2012; Zhu et al., 2007).

5. Conclusion

A clinical imaging protocol using MEG with respect to sensorimotor
cortex activation has a high success rate with respect to identification of
the contralateral sensorimotor cortex.

Functional reorganization in the primary somatosensory cortex is
rare, but can occur in the primary motor cortex in patients with intra-
cranial lesions and non-lesional epilepsy, especially during foot move-
ments. The presence of ipsilateral neural reorganization, especially
around the foot motor area, may support clinicians to perform careful
mapping of the hand and foot in both hemispheres prior to surgery, to
minimize postoperative deficits.
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