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Lucas' Theorem for Prime Powers 

KENNETH s. DAVIS AND WILLIAM A. WEBB 

Lucas' theorem on binomial coefficients states that(~)== (i:~) · · · (i:P(i:~)(modp) where pis a 
prime and A= a,p' + · · · + a1p + a0 , B = b,p' + · · · + b1p + b0 are the p-adic expansions of 
A and B. If s ;;. 2, it is shown that a similar formula holds modulo p' where the product 
involves a slightly modified binomial coefficient evaluated on blocks of s digits. 

INTRODUCTION 

One of the most beautiful results concerning binomial coefficients is Lucas' Theorem 
[1, 2]. If 0.;;; B.;;; A are integers and p is a prime, write A and B in p-adic notation 
A= a,p' + · · · + a1p + a0 , B = b,p' + · · · + b 1p + b0 , where 0.;;; a;, b; < p and a, =I= 0. 
Then 

(A)= (a')(ar-1) ... (at)(ao)(modp). 
B b, b,_1 b 1 b0 

(1) 

If A- B = c,p' + · · · + c1p + c0 and p' I (~) then Kazandzidis [3) proved that 

(A)= (-p') IT ~(modp'+t). 
B i=Ob;! C;! 

This result is applicable for only one power of p for each (~), and in particular does 
not apply for t ;;::.1 if((~), p) = 1. Singmaster [5) also obtained similar results. 

For integers A and B as above, define the string A;i = a;a;_1 · · · ai for 0.;;; j.;;; i.;;; r, 
with B;i defined similarly. Corresponding to a string A;i is the integer d;i = a;pi-i + 
· · · + ai+tP + ai. Let .;;; be the lexical order on strings, so that A;i.;;; B;i iff d;i.;;; :ll;i, 
with 0; denoting the string of i + 1 zeros. 

We also define a modified binomial coefficient on such strings as follows. In the 
following assume j is fixed and write A; = A;i, etc. Also ps is a fixed power of p. 

If B; .;;;A; then (~·) = (~'). 
If A 0 < B0 then (~~) = p; and recursively if A;< B;, i ;;::.1, then (~;) = p(~;::: ). 
In general (~;) = p'a, where t;;;;. 0 and pI a. 
Formally, (~;) -l = p-'a-I, where a- 1 is such that aa-1 = 1(modps) and 0 < a-1 < 

ps. The following properties are clear: 
(1) (~•)(~·)- 1 = 1(modp8

). 

(2) If Ak ~ Bk and Ak+r < Bk+t for 1.;;; /.;;; i- k then (~;) = pi-k<~z). 
(3) Suppose p' II (~;). If A;;;;;. B; then it is well known that tis the number of borrows 
necessary in the subtraction d;- £YJ;. [4) If A;< B; then tis the number of borrows in 
the subtraction (pi+ 1 + d;) - £YJ;. Thus if ( ~;::) ( ~;) -t = p' a, where p I a, then t;;;;. 0. 

Our goal is to prove the following generalization of Lucas' Theorem which 
completely determines the value of any binomial coefficient modulo any prime power. 

THEOREM 1. For any integers 0.;;; B .;;; A and any prime power ps, 2 .;;; s .;;; r + 1, 

(
A) =I as-1 ... ao) '111 I aj+s-1 ... ai)l aj+s-2 . .. aj)-l 
B \bs-1 · · · bo j=l \bj+s-1 · · · bj \bj+s-2 • ' · bj 

= 1 As-t) '[i1 
1 Ai+s-t,j)l Ai+s-2,j)-

1 
(mod ps). 

\Bs-1 j=l \Bj+s-l,j \ Bj+s-2 
229 

(2) 
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The modified binomial coefficients are needed only in evaluating (~i), where Bj > Aj, 
so we have as an immediate corollary. ' 

CoRoLLARY. If b; :s::; a; for 0 :s::; i :s::; r then 

( A)= (.sti•-1) rfr (.stij+s-t,j)(.stlj+s-z,j)-t(modp•). 
B ~s-l j=l ~j+s-1,j ~j+s-2,j 

The following example illustrates how this theorem can be used in a specific case. 
Note that we can always reduce the calculation to ordinary binomial coefficients. 

Let p = 7 and s = 3, and suppose that the base 7 representations of A and B are 
A= 2413605 and B = 1261632. 

(
2413605) = J241)J41)-

1
J413)J13)-

1
Jl36)(36)-

1
J360)J60)-l/605) 

1201632 \120 \20 \201 \01 \016 16 \163 \63 \632 

= (241)(41)-
1

(413)(13)-
1

(136)(36)-
1

(360)r272(5) 
120 20 201 1 16 16 163 2 

= (33)(286) - 1(116)(10)-1(10)(3) - 1(98)(10) 

= (33)(6)(116)(229)(98)(10) = 98(mod 343). 

PROOF OF THEOREM 1 

The following lemma will be useful. 

LEMMA: 

( pA) = (A) Yf fi p(k +A - ~)- j 
pB B j=t k=1 pk - J 

for integer 0 :s::; B :s::; A. 

PROOF: 

(
pA) = (pA)(pA -1) · · · (p(A- B)+ 1) 
pB (pB)(pB -1) · · · 1 

= (pA)(p(A- 1)) ... p(A- B) X Yl fi p(k +A- B)- j 

(pB)(p(B - 1)) · · · p j=1 k=t pk- j 

and the result follows by cancelling pB in the first factor. 0 

Our proof of Theorem 1 uses induction on A. It is trivial for A < p. From now on let 
A; =A;o etc. Let ll (An Br) = ll (A, B) denote a product of the type on the right side 
of (2), and 

n* <A, B> = n (A, B>(A·-1
)-

1

. 
Bs-1 

The result is also clear for r = s - 1 since (~) = ( ~;), so we may assume r?!: s. 
Assume that (2) holds for all integers A 1 less than A and all B :s::; A 1 and suppose that 

A =arpr + · · · +ao, ar=I=O. 
We consider several cases, depending on the values of a0 and bo. 
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Case 1: a0 = 0 and b0 = 0. Let ak = akpk-1 + · · · + a1 and fh = bkpk-1 + · · · + b1, so 
A = .stJ,,0 = pa, and B = 9.i,,0 = p{3,. Hence, 

(3) 

by the lemma. 
Since 0 ~ {3, ~a,< A, we may apply the induction hypothesis to (~;). We also note 

that formally, the expressions for IT (A, B) and IT (a" {3,) are identical except for two 
factors. Hence, 

(4) 

= ((X')(As-1)(As-1,1)-
1
. 

{3, Bs-1 Bs-1,1 

If psI($~) then both sides of (2) are zero and case 1 is settled. Otherwise, let pJ...II ($~) 
where A< s. Then comparing (3) and ( 4), equation (2) holds iff 

Yi TI p(k +a,-~,)- j = (As-1)(As-1,1)-
1
(modps-J...). (5) 

j=1 k=1 pk-1 Bs-1 Bs-1,1 

By earlier remarks, 

where Au;;;:.: Bu for some u;;;:.: 0, 0 ~ t < s. If u = 0, 

( As-1) = ps-1 = (As-1,1) 
Bs-1 Bs-1,1 

and the right hand side of (5) is 1. For u > 0, we also have 

and so the right side of (5) becomes 

= (PfXu )(a") -1 = (a") Yl IT p(k +au- ~u)- j (a") -1 

Pf3u f3u f3u j=1 k=1 pk-1 f3u 

= tf IT p(k + au - ~u)- j (mod ps). 
j=1 k=1 pk-1 

Thus it now suffices to show 

p-1 {j, p(k +(X _ {3) _ 1. p-1 fJu p(k +(X _ {3) _ 1· IT IT r . r IT IT r . ' (modps-J...). (6) 
j=1 k=1 pk-1 j=1 k=1 pk- 1 

Also, since t ~A it suffices to prove (6) modulo ps-t = p"+l. Finally, since p(cx,­
{3,) = p( au - f3u)(mod p"+1), it suffices to show 

1=f TI p(k +a,-~,)- j = l(modps-J...). (7) 
j=1 k=fJu+1 pk-1 
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We observe that px- j runs over a reduced residue system modulo pu+1 as 
1 ~ j ~ p - 1 and x runs over any pu consecutive integers. In (7), k runs over 
fJr- fJu = brpr + · · · + bu+1Pu consecutive integers. This in (7), both p(k + ar- fJr)- j 
and pk- j runs over a reduced residue system modulo pu+\ exactly brpr-u + · · · + 
bu+1 times, which proves (7). 

Case 2: a0 =F 0 and b0 =F 0. The result is trivial if A = B. If A ~ B + 1 then (3) follows 
immediately from applying the induction hypothesis to (A 8 1) and (~ = D and noting 
that 

Case 3: a0 =F 0 and b0 = 0. We note that pI B + 1 and pI A - B and, furthermore, 

(A) ( A ) B + 1 
B = B+1 A-B· 

By Case 2, equation (3) holds for (B'!- 1) and so it suffices to show that 

p• In· IAs-1)- n· I As-1 ) ~' 
\Bs-1 \Bs-1 + 1 A - B 

where TI* = TI*(A, B)= TI* (A, B + 1). Since A= .si._1 and B = oo._1(modp•) we 
must show that 

Now, 

I A•-1) = P,l Au), 
\Bs-1 \Bu 

where Au > Bu for some u = s - t - 1 > 0, and also 

I As-1 ) ,1 Au ) 
\Bs-1 + 1 = p \Bu + 1 ' 

where Au ~ Bu + 1. By earlier remarks TI* is divisible by a non-negative power of p 
and so it suffices to show that 

(8) 

(~:)(.siu- OOu)- (B:~ 1)(oos-1 + 1) = (::)(.siu- OOu)- ( 00~~ 1)(oou + 1) = 0, 

so equation (8) holds. 

Case 4: a0 = 0 and b0 =F 0. This is similar to Case 3. By Case 1, the theorem holds for 
(~), where b0 = 0 and a0 = 0. For A fixed, a0 = 0, assume true for (~), where 
0 ~ b0 ~p- 2, and note that 

( 
A ) (A) A -B 

B+1 = B B+1 
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where p I A - B and p 1 B + 1. As before, it suffices to show that 

(9) 

It may happen that 

/ As-1 ) jAs-1) 
\Bs-1 + 1 = p• = \Bs-1 ' 

in which case (9) is immediate. Otherwise, 

( As-1 ) 1( Au ) 
Bs-1 + 1 = p Bu + 1 ' 

where Au~ Bu + 1 and the rest is the same as Case 3. 
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