
Theoretical Computer Science 462 (2012) 1–11

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Variable length local decoding and alignment-free sequence comparison
Gilles Didier a,∗, Eduardo Corel b, Ivan Laprevotte c, Alex Grossmann c,
Claudine Landès-Devauchelle c

a Institut de Mathématiques de Luminy, CNRS FRE 3529, Aix-Marseille Université 13288 Marseille Cedex 9, France
b Institut für Mikrobiologie und Genetik, Georg-August Universität, 37077 Göttingen, Germany
c Laboratoire Statistique et Génome, CNRS UMR 8071, Université d’Evry-Val-d’Essonne, 91037 Evry, France

a r t i c l e i n f o

Article history:
Received 26 January 2012
Received in revised form 27 July 2012
Accepted 12 August 2012
Communicated by M. Crochemore

Keywords:
Coding
Prefix code
Algorithm
Genetic sequences comparison

a b s t r a c t

We present the variable length local decoding, a methodwhich augments the alphabet of a
sequence or a set of sequences. Roughly speaking, the approach distinguishes several types
of symbols/nucleotides according to their contexts in the sequences. These contexts have
variable lengths and are defined from a prefix code.

We first give an original algorithm computing the decoding with a complexity linear
both in time and memory space. Next, the approach is applied to alignment-free sequence
comparison. We give a heuristic way to select context lengths relevant to this question.
The comparison of sequences itself is based on the composition in ‘‘augmented’’ symbols
of their variable length local decodings. The results of this comparison are illustrated on a
biological alignment.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In [3,5], we introduced and studied theN-local decoding,which has the effect of turning a sequence (or a set of sequences)
into a new sequence over an alphabet with a greater variety of symbols. Briefly summarized, if one associates an identifier
to each subword of lengthN occurring in a sequence s, then anN-block coding of s is simply the sequence of identifiers of the
successive overlapping subwords of length N running along s. In general, two sequences can differ, even up to a letter-to-
letter bijection, and yet have a sameN-block coding. However we showed that, given anN-block coding, there is a ‘‘maximal
antecedent’’, from which any sequence having the same N-block coding can be obtained by a letter-to-letter map, in other
words by identifying some of its symbols. The N-local decoding of s is defined to be the maximal antecedent of the N-block
coding of s. In [5], we gave an algorithm of linear complexity depending only on the length of the sequence (not on the block
length N) to compute it. The decoding was next applied to genetic sequence analysis, notably to alignment-free comparison
[4].

The variable length local decoding, first introduced in [1]where it is called ‘‘C-escritura’’ (C-writing in Spanish), is a natural
extension of theN-local decoding. ‘‘Variable length’’ stands for that, rather than considering theN-block coding of s, we start
from a prefix code P (a set of words in which no element is prefix of another) and define the P -coding of s as the sequence
of identifiers of the successive overlapping elements of P running along s. In [1,2], it is shown that, given a P -coding c
and the lengths of the elements of P corresponding to all the identifiers, there exists again a maximal antecedent, that
similarly generates, by letter-to-letter maps, all the sequences that have c as a P ′-coding, for any prefix code P ′ whose
identifiers/elements have lengths which are consistent with those of P . The variable length local decoding of a sequence s
relatively to a prefix code P is then similarly defined as the maximal antecedent of its P -coding.

∗ Corresponding author. Tel.: +33 4 91 26 96 14; fax: +33 4 91 26 96 55.
E-mail addresses: gilles.didier@univ-amu.fr (G. Didier), eduardo.corel@genopole.cnrs.fr (E. Corel), ivan.laprevotte@genopole.cnrs.fr (I. Laprevotte),

alex.grossmann@genopole.cnrs.fr (A. Grossmann), claudine.devauchelle@genopole.cnrs.fr (C. Landès-Devauchelle).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.08.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82714487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2012.08.005
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:gilles.didier@univ-amu.fr
mailto:eduardo.corel@genopole.cnrs.fr
mailto:ivan.laprevotte@genopole.cnrs.fr
mailto:alex.grossmann@genopole.cnrs.fr
mailto:claudine.devauchelle@genopole.cnrs.fr
http://dx.doi.org/10.1016/j.tcs.2012.08.005

2 G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11

In the first part of the present work, we present an original algorithm computing the variable length local decoding
of a (set of) sequence(s) in a time and using a memory space both linear with its length. This algorithm can be seen as a
generalization of the one introduced in [5].

The second part is devoted to the application of the variable length decoding to the sequence comparison problem [12].
A preliminary step is the development of a heuristic selection of a prefix code adapted to the sequence comparison problem.
The resulting variable length decoding is then used to compute a basic dissimilarity based on the composition of sequences
in terms of local decoded symbols.

This approach is illustrated on the reference alignment of the Hepatitis C Virus Database Project [8]. We first show that
our dissimilarity is well correlated with the identity percentage computed from the alignment and, next, that it is perfectly
consistent with the known virus typing and subtyping.

The paper is organized as follows. In Section 2 are presented notations, definitions and results needed by the computation
of the variable length decoding. Section 3 is for the formal presentation of the algorithm, its proof and its complexity. In
Section 4, we show how to apply the decoding to alignment-free sequences comparison and illustrate the accuracy of the
results obtained on a biological alignment. Finally, we discuss the method and present some directions of work in Section 5.

2. Notations, definitions and preliminary results

For a set S, the notation #S stands for the cardinality of S.
A sequence s is indexed from 0 to |s| − 1, where |s| denotes the length of s. We denote s[i,j] the sequence sisi+1 . . . sj if

i ≤ j and the empty word ϵ otherwise.
Prefix has the usual meaning. A prefix of a sequence s is said to be proper if it is different of s.
A prefix codeP is a set of words satisfying the ‘‘prefix property’’, that is: no word ofP is a (proper) prefix of another word

of P . Let s be a sequence which we assume ending with a special symbol not occurring elsewhere in s. We say that a prefix
code P is s-compliant if, for all positions i of s, there exists an element w of P occurring at i. In what follows, s denotes a
sequence ending with a special character andP an s-compliant prefix code. Coding the sequence s by the s-compliant prefix
code P means to associate to each position i of s, the unique (thanks to the prefix property) element of P occurring at i,
which is written c(i).

Definition 1. The relation ∼ is defined for all pairs (i, j) of positions of s by i ∼ j if there exists an integer ℓ ≥ 0 such that
c(i− ℓ) = c(j− ℓ) and |c(i− ℓ)| > ℓ.

We write≈ for the transitive closure of∼.

The relation ≈ is basically an equivalence relation (under the assumption that P is s-compliant) and we put ∆ for the
corresponding partition of positions of s.

The variable length local decoding with regard to P consists of assigning a same symbol to two positions i and j if and
only if they are in relation by≈. In other words, the variable length decoding d of s is, up to a letter-to-letter bijection, the
sequence defined by di = dj ⇔ i ≈ j.

To informally explain why the sequence d is also called ‘‘maximal antecedent’’ (more formal statements can be found in
[2]), let us first note that we have i ≈ j ⇒ si = sj, which means that di = dj ⇒ si = sj. It follows first that, since P is
a prefix code, the set of subwords P ′ = {d[i,i+c(i)−1] | 0 ≤ i < |s|} of d is also a prefix code. Moreover, the definition of
d ensures that for all elements w of P and all pairs (i, j) of positions of occurrences of w in s, we have di+k = dj+k for all
0 ≤ k < |w|. This means that the sequence that one obtains by coding d followingP ′ is, up to a letter-to-letter bijection, the
coding of s following P . This makes the variable length local decoding an antecedent of this last coding. Finally, the fact that
di = dj ⇒ si = sj implies the existence of a letter-to-letter map from d to s, and thus gives sense to the adjective ‘‘maximal’’.

Definition 2. For all positive integers k, the binary relation k
⌣ on the positions of s is defined for all pairs (i, j) of positions

of s by i k
⌣ j if at least one of the following assertions holds:

1. i = j,
2. there exists an integer ℓ ≥ 0 such that c(i− ℓ) = c(j− ℓ) and |c(i− ℓ)| − ℓ ≥ k.

We write k
⌣⌣ for the transitive closure of k

⌣.

The following remark follows from the transitivity or by direct application of Definition 2.

Remark 1. Let (i, j) be a pair of positions of s and k a positive integer.

1. i ≈ j if and only if i 1
⌣⌣ j;

2. if k > maxw∈P |w| then we have i k
⌣⌣ j⇔ i = j;

3. if i k+1
⌣⌣ j then i k

⌣⌣ j;
4. if i k+1

⌣⌣ j then i+ 1 k
⌣⌣ j+ 1;

G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11 3

Fig. 1. A sequence s with an s-compliant prefix code P (left) and the corresponding tree representation of


k>0 ∆k (right). Except for singletons, each
atom/node is displayed at the row corresponding to the partition of largest index where it occurs. An atom/node also belongs to the partitions of smaller
indices until it coalesces with another atom/node. For instance, {0, 6} belongs to both ∆2 and ∆1 , {3, 7} belongs to both ∆3 and ∆2 and {5} belongs to ∆k
for all k ≥ 2.

5. if i k
⌣⌣ j then s[i,i+k−1] = s[j,j+k−1];

6. i
|c(i)|
⌣⌣ j if and only if c(j) = c(i).

For all positive integers k, the relation k
⌣⌣ is an equivalence relation.Weput∆k for the corresponding partition of positions

of s.
With Definition 2 and Item 3 of Remark 1, we get that if k < k′ then ∆k is coarser than ∆k′ . In other words, all the

partitions ∆k are nested and can be represented as a set of trees where nodes are all the atoms in


k>0 ∆k, an atom/node
α being a child of an atom/node γ if γ ≠ α is the smallest atom such that α ⊂ γ . In particular, the leaves are the atoms
of ∆maxw∈P |w|+1 (singletons of positions of s) and the roots are the atoms of ∆1 (Fig. 1). Basically,


−1≤k<N ∆k and the

corresponding tree structures have less than 2|s| elements.
We distinguish the subset of k-special atoms∇k ⊂ ∆k defined by δ ∈ ∇k if there exist two positions i and j in δ such that

(i+ 1) ̸ k⌣⌣ (j+ 1). For the example of Fig. 1, we have ∇3 = {{3, 7}}, ∇2 = {{0, 6}, {4, 8}} and ∇1 = {{2, 4, 5, 8, 9}}.
We also distinguish the subset Γk ⊆ ∆k of k-code atoms defined by δ ∈ Γk if there exists an element w of P such

that |w| = k and δ = {i | c(i) = w}. If an element w of P occurs in s, then there exists an atom δ ∈ ∆|w| such that
δ = {i | c(i) = w} (Items 5 and 6 of Remark 1). In Fig. 1, we have Γ3 = {{1}, {3, 7}}, Γ2 = {{0, 6}}, Γ1 = {{2, 4, 5, 8, 9}}

An atom γ of ∆k is called k-specific if it does not belong to ∆k+1. The set of k-specific atoms is noted Θk. Note that a
singleton cannot be k-specific, whatever the value of k. For the example of Fig. 1,we haveΘ3 = {{3, 7}},Θ2 = {{0, 6}, {4, 8}}
and Θ1 = {{1, 3, 7}, {2, 4, 5, 8, 9}}.

For all positive integers k and all atoms γ ∈ ∆k+1, there exists a unique δ ∈ ∆k such that i+ 1 ∈ δ holds for all positions
i ∈ γ (cf. Item 4 of Remark 1). This atom δ is called the k-follower of γ and denoted Fk(γ). Note that Fk is a map from ∆k+1
to ∆k.

Remark 2. Let k be a positive integer. If β is an atom of ∆k+2 included in an atom α of ∆k+1, then the atom Fk+1(β) is
included in Fk(α). Conversely, if δ is an atom of ∆k+1 included in an atom γ of ∆k then all atoms α of ∆k+1 containing an
atom of F−1k+1(δ) satisfy Fk(α) = γ .

Remark 3. Let k be a positive integer. If an atom δ is k-special then it is k-specific.

Proof. If δ ∈ ∆k is not k-specific thenwehave i k+1
⌣⌣ j for all pairs (i, j) of δ.With Item4of Remark 1, it follows that i+1 k

⌣⌣ j+1
for all pairs (i, j) of atom δ which, by definition, cannot be k-special. �

Proposition 1. Let k be a positive integer. If an atom δ is (k + 1)-special then Fk(δ) is k-specific. Conversely, if an atom γ is
k-specific then we have γ ∈ Γk or F−1k (γ) ∩ ∇k+1 ≠ ∅.

Proof. The first assertion follows from the definitions of (k+ 1)-special and k-specific atoms.
Conversely, since γ is k-specific, there exist two positions i and j in γ ∈ ∆k (i.e. i

k
⌣⌣ j) such that i ̸k+1⌣⌣ j. From i k

⌣⌣ j, there
exists a sequence of positions of γ , x1, x2, . . . , xn such that x1 = i, xn = j and xm

k
⌣ xm+1 for all 1 ≤ m < n. But for i ̸k+1⌣⌣ j, there

is at least an integer 1 ≤ o < n such that xo ̸
k+1
⌣ xo+1. Here are two possibilities: either (xo − 1) k+1

⌣ (xo+1 − 1) or not. In the
first case and by definition, the atom of ∆k+1 containing (xo − 1) and (xo+1 − 1) both belong to F−1k (γ) and to ∇k+1. In the
second case, we have (xo−1) ̸k+1⌣ (xo+1−1), xo ̸

k+1
⌣ xo+1 and xo

k
⌣ xo+1. By Definition 2, this is possible only if c(xo) = c(xo+1)

and |c(xo)| = k. Items 5 and 6 of Remark 1 then ensure that γ ∈ Γk. �

Proposition 2. Let k be a positive integer. If an atom γ is k-specific without being a k-code atom then, for all δ ∈ ∆k+1 subset of
γ , there exist β ∈ F−1k (γ) ∩ ∇k+1 and α ∈ ∆k+2 subset of β , such that Fk+1(α) = δ.

Proof. The fact that γ is k-specific and δ ∈ ∆k+1 is a subset of γ implies the existence of a position i ∈ δ and position j ∈ γ

such that i k
⌣⌣ j and i ̸k+1⌣⌣ j. In the same way as in the proof of Proposition 1, there exists a sequence of positions of γ , x1, x2,

. . . , xn such that x1 = i, xn = j and xm
k

⌣ xm+1 for all 1 ≤ m < n. Let p be the smallest integer 1 ≤ p < n such that xp ̸
k+1
⌣ xp+1

(the existence of p follows from i ̸k+1⌣⌣ j). We then have xp ∈ δ and xp+1 ∉ δ.

4 G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11

Since both xp and xp+1 belong to γ , which is not a k-code atom, this is only possible if (xp − 1) k+1
⌣ (xp+1 − 1). Therefore

the atom β of ∆k+1 containing (xo − 1) and (xo+1 − 1) belongs both to F−1k (γ) and to ∇k+1. Remark 3 ensures that β is
(k+ 1)-specific. If α is the atom of ∆k+2 which contains the position (xo − 1), we have α ⊂ β and Fk+1(α) = δ. �

Remark 4. Let k be a positive integer and i be a position of s. If {i} ∉ ∆k then there exists a position q ≤ i and a position
p ≠ q such that |c(q)| ≥ i− q+ k and q c(q)

⌣⌣ p.

Proof. The singleton {i} does not belong to ∆k if and only if there exists a position h ≠ i of s such that i k
⌣ h. Definition 2

gives us the result. �

Lemma 1. Let i be a position of s with i < |s| − 1. If there exists a positive integer k such that {i} ∈ ∆k+1 and {i+ 1} ∉ ∆k then,
for all 1 ≤ ℓ ≤ k, there exists a position j > i such that {j} ∉ ∆ℓ, {j} ∈ ∆ℓ+1 and {p} ∉ ∆ℓ+1 for all positions i < p < j.

Proof. Let us assume that we have {i} ∈ ∆k+1 and {i+ 1} ∉ ∆k. From Items 2 and 3 of Remark 1, the fact that {i+ 1} ∉ ∆k

implies that there exists a position h ≠ i+ 1 such that i+ 1 k
⌣ h. Since {i} ∈ ∆k+1, we have i ̸k+1⌣ h− 1. By Definition 2, the

only possibility is that c(i+ 1) = c(h) and |c(i+ 1)| ≥ k.
Let ℓ be a positive integer smaller than k. In addition to the fact that |c(i+ 1)| ≥ k, this ensures that we have

i < i + |c(i+ 1)| − ℓ + 1 < |s|. In other words, (i + |c(i+ 1)| − ℓ + 1) is indeed a position of |s| strictly greater than
i. From c(i+ 1) = c(h) with |c(i+ 1)| ≥ k and by iterating Items 3 and 4 of Remark 1, we get that {p} ∉ ∆ℓ+1 for all
i < p < i + |c(i+ 1)| − ℓ + 1 and {i + |c(i+ 1)| − ℓ + 1} ∉ ∆ℓ. We now put j = i + |c(i+ 1)| − ℓ + 1. If {j} ∈ ∆ℓ+1,
the lemma is proved. Otherwise, according to Remark 4, there exists a position q ≤ j such that |c(q)| ≥ j − q − ℓ + 1 (for
{i} ∈ ∆k+1, we have also i < q). With the same argument as above, we get that {p} ∉ ∆ℓ+1 for all q ≤ p ≤ q+ c(q)− ℓ− 1
and {q + c(q) − ℓ} ∉ ∆ℓ. Since ℓ > 0, q + c(q) − ℓ is indeed a position of s. Moreover we have q + c(q) − ℓ > j and
{p} ∉ ∆ℓ+1 for all i < p ≤ q+c(q)−ℓ−1. Let us replace j by q+c(q)−ℓ. Once again, if {j} ∈ ∆ℓ+1, we are done. Otherwise,
we use Remark 4 to iterate the same steps and replace j with a greater position while keeping the property that {j} ∉ ∆ℓ

and {p} ∉ ∆ℓ+1 for all i < p < j. Since the sequence s is finite, we eventually obtain a position j > i such that {j} ∈ ∆ℓ+1,
{j} ∉ ∆ℓ and {p} ∉ ∆ℓ+1 for all i < p < j. �

Proposition 3. The number of pairs (i, k), where i is a position of s and k a positive integer, such that {i} ∈ ∆k+1 and Fk({i})
contains more than one position, is smaller than |s|.

Proof. Let (i, k) be such that {i} ∈ ∆k+1 and Fk({i}) contains more than one position, which implies that {i + 1} ∉ ∆k.
Lemma 1 gives us the existence of a position j > i such that {j} ∉ ∆k, {j} ∈ ∆k+1 and {p} ∉ ∆k+1 for all positions i < p ≤ j.
Let (i′, k′) be a pair position-integer such that i′ < j, {i′} ∈ ∆k′ , {j} ∈ ∆k′+1\∆k′ and {p} ∉ ∆k′+1 for all positions i′ < p < j.
By Item 3 of Remark 1, the fact that {j} ∈ ∆k+1\∆k and {j} ∈ ∆k′+1\∆k′ implies that k′ = k. The positions i and i′ are now
both defined as the greatest position h smaller than j such that {h} ∈ ∆k+1. It follows that i = i′. Finally, we associate in
an injective manner, a position j of s to all pairs (i, k) such that {i} ∈ ∆k and Fk({i}) contains more than one position. This
proves that the number of such pairs is smaller than |s|. �

Corollary 1. The number of pairs (i, k), where i is a position of s and k a positive integer, satisfying {i} ∈ ∆k+1 and Fk({i}) ≠
Fk+1({i}), is smaller than |s|.

Proof. It suffices to note that if Fk({i}) ≠ Fk+1({i}) then Fk({i}) contains more than one position and to apply
Proposition 3. �

Proposition 4. The number of pairs (α, k), where α is an atom of ∪ℓ>0∆ℓ and k a positive integer, such that α contains more
than one position, α ∈ ∆k+1 ∩∆k and Fk(α) ≠ Fk+1(α), is smaller than 2|s|.

Proof. Let (α, k) be such that #α > 1, α ∈ ∆k+1 ∩ ∆k and Fk({α}) ≠ Fk+1(α). We associate to the pair (α, k), a finite
sequence (βα

p)0≤p≤mα of atoms of ∪ℓ>0∆ℓ constructed by setting βα
0 = α and by iteratively determining the next terms of

the sequence in the following way. Let us assume that βα
p belongs to ∆k+p+1 ∩∆k+p and that #βα

p > 1 (these assumptions
are granted for βα

0 = α). We pick an atom βα
p+1 in F−1k+p(β

α
p) ⊂ ∆k+p+1. The assumption that βα

p contains more than one
position ensures that F−1k+p(β

α
p) ≠ ∅: the only atom whose inverse image by Fk+p (if defined) could be empty, would be {0}.

Here are three mutually exclusive possibilities:

1. βα
p+1 ∈ ∆k+p+2 and #βα

p+1 > 1,
2. βα

p+1 ∈ ∆k+p+2 and #βα
p+1 = 1,

3. βα
p+1 ∉ ∆k+p+2(α).

In the first case, we increment p and iterate. In the second and third cases, we stop, setmα = p+1 and associate the pair
(βα

mα
, k+mα) to the pair (α, k). Note that in the first case, the assumptions βα

p ∈ ∆k+p+1 ∩∆k+p and #βα
p > 1 hold for the

incremented p. Since p increases at each step, the iteration eventually stops (Item 2 of Remark 1).

G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11 5

The process above allows us to associate to all pairs (α, k) such that α is an atom of ∪ℓ>0∆ℓ and k a positive integer,
satisfying #α > 1, α ∈ ∆k+1 ∩ ∆k and Fk(α) ≠ Fk+1(α), a pair (βα

mα
, k + mα) satisfying exactly one of the following

properties:

• βα
mα
∈ ∆k+mα (α), #βα

mα+1 = 1 and Fk+mα−1(β
α
mα

) = βα
mα−1 contains more than one position (Type 1 pairs),

• βα
mα

is (k+mα)-specific (Type 2 pairs).

With Proposition 3, we get that the number of Type 1 pairs is smaller than |s|. Item 3 of Remark 1 makes sure that to each
atom γ is corresponding (at most) a unique integer ℓ such that γ is ℓ-specific. Type 2 pairs are thus bounded by the number
of atoms of ∪ℓ>0∆ℓ, which is smaller than |s|.

Let us now consider a pair (δ, ℓ) – of any type – obtained by the previous process. This means that there exists (at
least) a pair (α, k) such that #α > 1, α ∈ ∆k+1 ∩ ∆k and Fk(α) ≠ Fk+1(α), from which we can construct a sequence
(βα

p)0≤p≤mα with δ = βα
p and ℓ = k+mα . The way in which this sequence is defined ensures that we have βα

p = Fk+p(βα
p+1),

βα
p ∈ ∆k+p+2 ∩ ∆k+p+1 and #βα

p > 1 for all 0 ≤ p < mα . Define the followers path (γp)0≤p<ℓ of (δ, ℓ) by γ0 = δ and
γp = Fℓ−p(γp−1) for all 0 < p < ℓ. We have γp ∈ ∆ℓ−p∩∆ℓ−p for all 0 < p ≤ mα , andmα is the smallest integer p satisfying
Fp(γp) ≠ Fp+1(γp). It follows that (α, k) is the unique pair to which can be associated (δ, ℓ) by the process above.

In conclusion, we injectively associate to all pairs satisfying the assumptions of the proposition, a pair which is taken
among a set containing less than 2|s| elements. This proves our bound. �

3. Algorithm

The main algorithm, Algorithm 1, iteratively constructs the partitions ∆k, starting from ∆maxw∈P |w|+1, which is made of
singletons corresponding to all the positions of s, to the partition∆1 = ∆, in which each atom contains the set of occurrence
positions of a symbol in the local decoding.

It takes as inputs:

• a table W containing the elements of P sorted following the decreasing order of their lengths (in particular |W[0]| =
maxw∈P |w|),
• the sets (Ow)w∈P , where Ow contains all the occurrence positions of w.

Under our basic assumptions on P (for instance that all its elements occur in s), these inputs occupy a memory space,
and can be constructed in a time, which are both linear with |s| . Indeed, the elements of P can be ordered using a counting
sort and sets (Ow)w∈P can be obtained from a suffix tree.

Our algorithm benefits from the fact that partitions are nested, which allows us to represent all atoms α in ∪k>0∆k as a
node belonging to a family of trees, where an atom α is the direct ancestor of an atom β if it is the smallest atom containing
β . The atoms/nodes of the subtree rooted at an atom/node α are exactly those included in α. We introduce the notations
used to deal with these tree structures. For a node α, P(α) denotes its direct ancestor or parent (Null if it doesn’t have one)
and C(α), the set of children of α. Note that each time the parent of α is set to a node β (i.e. P(α)← β), α is implicitly added
to the set of children of β . This means that C(β) ← C(β) ∪ {α} is performed but not explicit in Algorithm 1. The function
new_node is a basic primitive which allocates and returns a new node with no child and a Null parent.

Algorithm1 also dealswith the sets of atoms defined in the preceding section:Θk and∇k (k-specific and k-special atoms).
We also consider the set ∇k of k-specific atoms which are not k-special, that is ∇k = Θk \ ∇k. Beside their inclusion
tree structure, atoms/nodes α are also linked by their k-followers Fk(α) (the follower of a node returned by new_node
is initialized to Null). Again, setting the k-follower of a node α to a node β (i.e. Fk(α) ← β) implicitly adds α to the set
F−1k (β).

In order to make the algorithm clearer and consistent with the notations of the preceding section, we keep indexing by
k or k + 1 the sets of atoms as well as the follower links. Actually, the algorithms are still accurate if one removes all the
indices. This is clear for the sets ∇k, ∇k and Θk : ∇k and ∇k are computed from scratch at the end of the kth iteration in
order to be used as ∇k+1 and ∇k+1 in the next iteration, while Θk is always empty when an iteration starts. The case of the
follower links is discussed below.

Let us startwith Algorithm1, ourmain algorithm. The initialization consists in creating all the atoms/nodes of∆|W[0]|+2 =
∆|W[0]|+1 and setting their (|W[0]| + 1)-followers, which, by Item 2 of Remark 1, are both trivial: atoms are singletons
({p})0≤p<|s| and F|W[0]|+1({p− 1}) = {p} (loops at Lines 1 and 2). The variable c used to parse the sorted table W of elements
of P and the sets listed above are also initialized on Line 3.

Line 4 of Algorithm 1 starts themain loop. The kth iteration, k taking its values in the set of lengths of the codewords ofP
in decreasing order, computes first all the k-specific atoms, so that, at the end of this iteration, the atoms of ∆k correspond
exactly to the root nodes of the tree structures, and, secondly, performs all the necessary updates for the next iteration, that
is, computes ∇k and ∇k and the k-follower links. Remark that during the kth iteration, a root node belongs to ∆k+1 or ∆k
(possibly to both). More specifically, a node belongs to ∆k+1 if and only if it is either a root node not belonging to Θk or the
direct child of a root node belonging to Θk.

Proposition 1 says that an atom α is k-specific only if it is a k-code atom or if F−1k (α) ∩ ∇k+1 ≠ ∅. This is why the
main loop contains two internal loops. The first one (Lines 6–9) runs over the elements of P with length k and creates the

6 G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11

corresponding k-code atoms. The second loop (Lines 11–21) constructs the k-specific atoms α such that F−1k (γ)∩∇k+1 ≠ ∅.
It runs over the k between two successive (different) lengths of elements of P (there is not necessarily an element of length
k in P for any k).

Algorithm 1: compute ∆1

1 for p← 0 to |s| − 1 do {p} ← new_node;
2 for p← 1 to |s| − 1 do F|W[0]|+1({p− 1})← {p};
3 c ← 0; ∇|W[0]|+1 ← ∅; ∇ |W[0]|+1 ← ∅; Θ|W[0]| ← ∅;
4 repeat
5 k← |W[c]|;
6 repeat
7 Compute_Atom_Code(W[c]);
8 c ← c + 1;
9 until c ≥ #P or |W[c − 1]| > |W[c]|;

10 if c < #P then m← |W[c]| else m← 0;
11 repeat
12 forall δ ∈ ∇k+1 do
13 if Fk(δ) = Null then
14 Compute_Follower (δ);

15 forall δ ∈ ∇k+1 do Fk(δ)← Fk+1(α); /* where α ∈ C(δ) */
16 ∇k ← ∅; ∇k ← ∅;
17 forall γ ∈ Θk do
18 if ∃(α, δ) ∈ C(γ)2 such that Fk(α) ≠ Fk(δ) then ∇k ← ∇k ∪ {γ };
19 else ∇k ← ∇k ∪ {γ }

20 k← k− 1; Θk ← ∅;
21 until k ≤ m or ∇k+1 = ∅;
22 until c ≥ #P ;

Code atoms

For all the elements w of length k in P , Loop Lines 6–9 calls Procedure Compute_Atom_Code, which creates the
corresponding k-code atoms. In order to get all the children of the k-code atom corresponding to an element w ∈ P with
|w| = k, this procedure climbs up from the singleton atoms corresponding to occurrence positions of w, to a root node (at
this point, a root node corresponds to an atom of ∆k+1). It uses two temporary sets of atoms: Λ and Φ . Each node parsed
during the climbing is added to the set Λ in order to be avoided by the next iterations. The set Φ stores the nodes of ∆k+1
(the root nodes) which are included in the current k-code atom. Note that a k-code atom γ is not always k-specific. This
corresponds to the case when #Φ ≤ 1 and there is nothing to do here (Line 8). If #Φ > 1 (this atom is then k-specific),
the k-code atom γ is created and is added to Θk. Next, its set of children is set to Φ and the follower link of all atoms of
∆k+1 having this new atom as k-follower has to be updated (Lines 12–16). From Remark 2, these atoms are exactly the ones
of ∆k+1 which contain an atom having a child of γ as (k + 1)-follower link. Let α be an atom of C(γ) and ζ be an atom of
F−1k+1(α) ⊂ ∆k+2. If ζ itself belongs to ∆k+1 (which is equivalent to being either a root node or the direct child of a node
of Θk – condition Line 13), we set Fk(ζ) to γ . Otherwise, we set the k-follower link of P(ζ) to γ . According to Remark 2,
performing this for all α ∈ C(γ) and all ζ ∈ F−1k+1(α) ensures us that we parse all atoms having γ as k-follower link.

Other specific atoms

We also have to compute the k-specific atoms γ which are not k-code atoms, that are such that F−1k (γ) ∩ ∇k+1 ≠ ∅.
These atoms are computed by the loop Lines 11–21 of Algorithm 1 (this loop runs on k but its bounds ensure that there are
no k-code atoms between them). To this end, we parse the atoms δ of∇k+1, and call Procedure Compute_Follower (δ) to
compute the atom of ∆k which is the k-follower of δ.

Remark 5. Let k be a positive integer and γ be an atom of ∆k which is k-specific without being a k-code atom.
1. Let δ ∈ ∇k+1. We have Fk(δ) = γ if and only if Fk+1(α) ⊂ γ for all atoms α ∈ ∆k+2 included in δ (an atom of ∇k+1 is

(k + 1)-specific, thus does not belong to ∆k+2). In terms of trees structure, it says that Fk(δ) = γ if and only if all the
(k+ 1)-followers of the children nodes of δ have γ as parent.

2. Two atoms δ and δ′ belong to F−1k (γ) ∩ ∇k+1 if and only if there exists a sequence (δi)1≤i≤p of atoms of F−1k (γ) ∩ ∇k+1
satisfying δ1 = δ, δp = δ′ and, for all 1 ≤ i < p, that there exist α ⊆ δi and β ⊆ δi+1, both belonging to ∆k+2, such that
Fk+1(α) = Fk+1(β).

3. We have γ = ∪α∈Ψ Fk+1(α), where Ψ contains all the atoms α of ∆k+1 which are subsets of an atom of F−1k (γ) ∩ ∇k+1.

G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11 7

Procedure Compute_Atom_code(w)

1 Λ← ∅; Φ ← ∅;
2 forall p ∈ Ow do
3 δ← {p};
4 while P(δ) ≠ Null and δ ∉ Λ do
5 Λ← Λ ∪ {δ}; δ← P(δ);
6 if P(δ) = Null and δ ∉ Λ then
7 Λ← Λ ∪ {δ}; Φ ← Φ ∪ {δ};

8 if #Φ > 1 then
9 γ ← new_node; Θk ← Θk ∪ {γ };

10 forall α ∈ Φ do
11 P(α)← γ ;
12 forall ζ ∈ F−1k+1(α) do
13 if P(ζ) = Null or P(ζ) ∈ Θk (i.e. ζ ∈ ∆k+1) then
14 Fk(ζ)← γ ;
15 else if Fk(P(ζ)) = Null then
16 Fk(P(ζ))← γ ;

Proof. Items 1 and 3 are straightforward from definitions and basic properties, therefore we prove only Item 2. Let a and
a′ be two positions of δ and δ′, respectively. Since Fk(δ) = Fk(δ′) = γ , we have a + 1 k

⌣⌣ a′ + 1. By Definition 2, there
exists a sequence of positions x1, x2, . . . , xn such that x1 = a + 1, xn = a′ + 1 and xm

k
⌣ xm+1 for all 1 ≤ m < n. Moreover,

assuming that γ is not a k-code atom then implies that xm ̸
k+1
⌣ xm+1 ⇒ xm − 1 k+1

⌣ xm+1 − 1. Let j[ℓ] be the ℓth index such
that xj[ℓ] ̸

k+1
⌣ xj[ℓ]+1. With what precedes, there exists an atom δℓ ∈ ∇k+1 containing both xj[ℓ]− 1 and xj[ℓ]+1− 1. For all such

ℓ but the last one, all positions xm with j[ℓ] < m ≤ j[ℓ+ 1] belong to a same atom of ∆k+1. It follows that the atom α ⊆ δℓ

containing xj[ℓ]+1 and the atom β ⊆ δℓ+1 containing xj[ℓ+1], verify Fk+1(α) = Fk+1(β). The converse is a direct consequence
of the definitions. �

The preceding remark is used by Procedure Compute_Follower to compute the k-specific atom γ corresponding to a
(k+ 1)-special atom δ (i.e. such that Fk(δ) = γ). The set Ω , initialized to {δ}, is devoted to temporarily storing the atoms of
F−1k (γ)∩∇k+1 and grows each time a node belonging to F−1k (γ)∩∇k+1 is encountered (Line 11). The loop starting at line 4
first picks an atom α in Ω and considers all its children β . In the case that Fk+1(β) was not encountered before (i.e. is not a
child of γ), γ becomes its parent. Next, all atoms ζ having the same (k+ 1)-follower link as β are taken into account (Lines
6–11). This has a twofold purpose. First, we have to set or update the k-follower link of the atoms of ∆k+1 to which they
belong. A second purpose is to check if these atoms of ∆k+1 are ‘‘new’’ (k + 1)-special atoms belonging to F−1k (γ). In this
case, they are added to Ω (Line 11) in order to be processed during a next iteration of the main loop of the procedure.

Procedure Compute_Follower(δ)

1 γ ← new_node; Θk ← Θk ∪ {γ }; Ω ← {δ}; Fk(δ)← γ ;
2 while Ω ≠ ∅ do
3 α← pop(Ω);

/* pop(Ω) picks an element ω in Ω, removes it from Ω and finally returns ω. */
4 forall β ∈ C(α) such that Fk+1(β) ∉ C(γ) do
5 P(Fk+1(β))← γ ;
6 forall ζ ∈ F−1k+1(Fk+1(β)) do
7 if P(ζ) = Null or P(ζ) ∈ Θk then
8 Fk(ζ)← γ ;
9 else if Fk(P(ζ)) = Null then

10 Fk(P(ζ))← γ ;
11 if P(ζ) ∈ ∇k+1 then Ω ← Ω ∪ {P(ζ)};

Follower links

At each iteration of the main loop of Algorithm 1, we need the (k + 1)-follower links of all nodes in ∆k+2, in order to
make sure that we have set the k-follower links of all nodes in ∆k+1 at the end of this loop. Let δ be a node of ∆k+1. We have
to face the following mutually exclusive situations:

8 G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11

1. δ ∉ Θk+1 and Fk(δ) ∉ Θk: in this case, we have Fk(δ) = Fk+1(δ) and the follower link does not have to be updated.
2. δ ∉ Θk+1 and Fk(δ) ∈ Θk: Fk(δ) has to be updated at the creation of Fk(δ). Since δ ∉ Θk+1, there exists an atom

β ∈ C(Fk(δ)) such that δ ∈ F−1k+1(β).
3. δ ∈ Θk+1 and Fk(δ) ∈ Θk: Fk(δ) has to be updated at the creation of Fk(δ). Since δ ∈ Θk+1, there exists an atom

β ∈ C(Fk(δ)) such that C(δ) ∩ F−1k+1(β) ≠ ∅.
4. δ ∈ Θk+1 and Fk(δ) ∉ Θk: Fk(δ) is Null and has to be set to Fk+1(β), where β ∈ C(δ).

There is nothing to do in Case 1. Cases 2 and 3 are handled by the loops Lines 12–16 of Procedure Compute_Atom_Code
and Lines 6–11 of Procedure Compute_Follower. It remains to deal with atoms of Case 4, which are exactly the ones
belonging to ∇k+1. This is done in Loop Line 15 of Algorithm 1.

Let us explain why in practice each atom/node has just one follower link, which is updated when needed. It is enough
to remark that we just need the (k + 1)-follower links, which go from ∆k+2 to ∆k+1. By induction, we can prove that
all the (k + 1)-follower links are valid when an iteration of the main loop starts. The only issue which could arise might
be if we use an updated k-follower link as a (k + 1)-follower link. One can see that no such confusion is possible. In the
Procedure Compute_Atom_Code, all the elements of Φ are in ∆k+1 and by construction (subsets of occurrence positions of
words of P partitions the whole set of positions) cannot be involved in another call of Compute_Atom_Code. In Procedure
Compute_Follower, we consider first follower links of atoms β , which belong to ∆k+2 and not to ∆k+1 (as children of an
atom of this set). The other follower links used go to Fk+1(β) which do not belong to ∆k.

End of main loop

At this point (Line 16 of Algorithm 1), we have computed all the k-specific atoms and updated the follower function to Fk
for all atoms of ∆k+1. It just remains to determine the sets∇k and∇k before starting the next iteration. This is done in Loop
Lines 17–18, running over atoms of Θk, which is split into∇k and∇k following the remark just below (a direct consequence
of Remark 3).
Remark 6. Let k be a positive integer. An atom γ is k-special if and only if it is k-specific and it contains two atoms α and β
of ∆k+1 satisfying Fk(α) ≠ Fk(β).

Complexity

Proposition 5. Algorithm 1 runs in O(|s|) times using O(|s|) memory space.

Proof. The memory space used by the algorithm is linear with |s|. It uses first a set of trees with |s| leaves, each internal
node having at least two children. Moreover, the number of follower links, the other structure needed, is O(|s|) (Corollary 1
and Proposition 4).

To evaluate the total time complexity, let us first consider the total time required to create k-code atoms (Lines 2–7 of
Procedure Compute_Atom_Code). Since each node parsed is added to a set Λ and avoided in the next iterations, the total
number of iterations is smaller than the number of edges ‘‘parent/child’’, thus than |s|. Since its destination becomes a child of
a k-specific atom, each follower link is processed atmost once by Loop starting Lines 12 of ProcedureCompute_Atom_Code.
The total number of iterations is then smaller than the number of follower links, thus O(|s|) (Corollary 1 and Proposition 4).

Let us split the total time complexity consumed by Procedure Compute_Follower into two parts: the first one for the
time spent in Loop starting Line 6, and the second one for gathering what remains. With the same argument as before, the
total number of iterations of Loop starting at Line 6 is O(|s|). The total time spent during the second part is also linear with
|s|: at each iteration of Loop starting at Line 4, a parent–child edge is created and a node is processed at most once by the
main loop.

Each atom/node appears as an element of Θk, thus as an element of ∇k or ∇k, for at most one value of k. It implies that
the total number of iterations of both Loop Line 15 and Loop Lines 17–21 is O(|s|). �

4. Alignment-free sequences comparison

In this section, we are concerned with a set of sequences S = (S(i))i. Note that all definitions, results and algorithms of
the preceding section, established for a single sequence, extend naturally to sets of sequences (one just needs to replace
‘‘position’’ by pair ‘‘index of sequence/position in the sequence’’). Our strategy is to define, and compute, a variable length
local decoding of the set of sequences, with a prefix code adapted to the sequences of the set, and then to compare the
compositions of sequences of this decoding.

4.1. Building a prefix code

Building a prefix code which is compliant with a given set of sequences can always be done by pruning the suffix trie or
tree of this set, somehow in the same way as the context algorithm used in learning variable lengths Markov chains does
(except that this last one deals with suffix codes and prefix tries [9]). To decide which node to prune, we need an adequate
criterion. The one we choose is based upon the occurrence probabilities of the corresponding words.

G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11 9

Fig. 2. Score of the local decoding (dashed) and the Pearson coefficient of the related dissimilarity with the reference identity percentage (plain) versus the
threshold used to build the corresponding prefix code.

More specifically, to construct our prefix code, we start by fixing a probability threshold t . Next, we parse the suffix tree of
S from the root node and prune at the shallowest nodes of the suffix tree which are associated to words having a probability
smaller than t to occur more than once in the whole set of sequences. These probabilities are computed under an order 1
Markov model estimated from the set of sequences, and are in practice approximated from a binomial distribution like in
[11], thus using a constant computation time per node.

4.2. A heuristic to select a threshold

Fixing an arbitrary threshold might sound a good way to select a prefix code well suited to the composition and the total
length of the set of sequences. Unfortunately, a multiple testing issue arises here. While the length of the set of sequences
grows, one has to consider longer words – deeper nodes – for a same probability threshold t . The longer the words we
consider, the greater their number, and so is the probability that some of them occur more than once.

To tackle this issue, we define the score of a local decoding L = (L(i))i of S (L is itself a set of sequences) in the following
way. For a decoded symbol x, we put occ(x, L) for the number of occurrences of x in L and pres(x, L) for the number of
sequences of L in which x occurs. The score of L is now defined as:

score(L) =


x such that
pres(x,L)>1

occ(x,L)<2.pres(x,L)

pres(x, L).

The variable length local decoding that we choose is the one that we obtain from the prefix code corresponding to the
threshold achieving the greatest score. The plot of the score of a local decoding associated to a threshold t , versus t is roughly
unimodal. For small values of t , there are a lot of symbols x such that pres(x, L) = 1, while, as t goes to 1, there are more
and more symbols x such that occ(x, L) ≥ 2.pres(x, L). In these two cases, a lot of symbols x do not contribute to the score.
Indeed, we observe an intermediate value of t which maximizes the score (dashed plot of Fig. 2).

Note that the threshold selection stage is not very time consuming since we assume that the plot score versus threshold
is unimodal and perform a dichotomic mode search to find it.

4.3. Dissimilarity

We use the same basic dissimilarity as in [5]. Let (L(i))i be the variable length decoding of set of sequences (S(i))i which
is the ‘‘best’’ according to the threshold selection of Section 4.1. Let occ(x, L(i)) be the number of occurrences of a symbol x
in the decoded sequence L(i). The dissimilarity between sequences S(i) and S(j) is then defined in the following way:

d(S(i), S(j)) = 1−


x

min{occ(x, L(i)), occ(x, L(j))}

min{|S(i)|, |S(j)|}
.

10 G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11

Fig. 3. Neighbor-joining tree computed from the variable length local decoding dissimilarity (drawn using Archaeopteryx [6]).

Note that


x min{occ(x, L(i)), occ(x, L(j))} is the largest number ofmatches that canbe observedbetween two sequences
having the same symbol compositions as L(i) and L(j), while min{|S(i)

|, |S(j)
|} is the largest number of matches that can

be observed between two sequences having lengths |S(i)
| and |S(j)

|. In particular, we have d(S(i), S(j)) = d(S(j), S(i)) and
d(S(i), S(i)) = 0.

4.4. An application: Hepatitis C virus typing

To evaluate the relevance of the preceding dissimilarity in terms of sequence comparison, we consider the reference
alignment of the Hepatitis C Virus Database Project [8], which contains the sequences of complete genomes of 117 Hepatitis
C viruses of various types and subtypes. Sequences lengths go from 9112 to 9689.

G. Didier et al. / Theoretical Computer Science 462 (2012) 1–11 11

We start by computing the identity percentages between each pair of lines of the alignment. The identity percentage
between two lines is here defined as the number of matches between these lines divided by the length of the shortest
sequence. Next, we transform each alignment into a set of sequences (by removing all gaps) and compute the variable
length local decoding dissimilarity. A first way to evaluate its accuracy is given by the Pearson correlation coefficient
computed over the upper or lower triangular part (excluding diagonal) of the dissimilarity and the corresponding part of
the identity percentage taken as reference. Our dissimilarity is correlated with a Pearson coefficient of about 0.93 to the
identity percentage in the multiple alignment.

To check how relevant is the heuristic selecting the prefix code, we plot on Fig. 2 the evolution of the Pearson coefficient
of dissimilarities arising from local decodings regarding prefix codes computed from the threshold t , as well as the evolution
of the score defined in Section 4.2, both versus t . We observe that the mode of the score plot corresponds remarkably well
to the range of thresholds where the correlation with the identity percentage is maximal.

Finally, we compute the neighbor joining tree of our dissimilarity by using SplitsTree4 [7] (Fig. 3). This tree is perfectly
consistent with the typing and subtyping of the viruses. In Fig. 3, the type of each sequence is given by the number starting
its identifier and its subtype by the letter just following it. One can observe that, for each type/subtype of viruses, there is a
subtree which contains all the corresponding sequences and only these ones.

5. Conclusion

The variable length local decoding can be seen as an alternative to alignment for sequence comparison, while not being
time or memory consuming: it has the same order of complexity as what is needed just to read sequences.

We plan to run a more systematic evaluation of the approach over biological dataset, as well as to apply the approach to
other related questions, like the selection of multiple alignment anchors to be taken as input by software such as DIALIGN
[10].

On a more methodological point of view, there is not much left to do to improve the algorithm, but there is still work to
do to improve the way of selecting a ‘‘good’’ prefix code: we select the prefix code which has the best score (in the sense
of Section 4.2) only among the set of prefix codes which can be obtained by the threshold pruning process described in
Section 4.1. A natural improvement would be to increase the set of prefix codes among which we compute the score, while
keeping feasible computation times.

References

[1] V. Acuña, C-writing and classification by context (Spanish). Thesis of M.Sc. in computer science, Universidad de Chile, 2004.
[2] V. Acuña, G. Didier, A. Maass, Coding with variable block maps, Theoretical Computer Science 369 (1–3) (2006) 396–405.
[3] G. Didier, Caractérisation des n-écritures et application à l’étude des suites de complexité ultimement n+ cste, Theoretical Computer Science 215 (1–2)

(1999) 31–49.
[4] G. Didier, L. Debomy, M. Pupin, M. Zhang, A. Grossmann, C. Devauchelle, I. Laprevotte, Comparing sequences without using alignments: application

to HIV/SIV subtyping, BMC Bioinformatics 8 (1) (2007) 1.
[5] G. Didier, I. Laprevotte, M. Pupin, A. Hénaut, Local decoding of sequences and alignment-free comparison, Journal of Computational Biology 13 (8)

(2006) 1465–1476.
[6] M.V. Han, C.M. Zmasek, Phyloxml: XML for evolutionary biology and comparative genomics, BMC Bioinformatics 10 (1) (2009) 356.
[7] D.H. Huson, D. Bryant, Application of phylogenetic networks in evolutionary studies, Molecular Biology and Evolution 23 (2) (2006) 254–267.
[8] C. Kuiken, K. Yusim, L. Boykin, R. Richardson, The Los Alamos Hepatitis C sequence database, Bioinformatics 21 (3) (2005) 379–384.
[9] J. Rissanen, A universal data compression system, IEEE Transactions on Information Theory 29 (5) (1983) 656–664.

[10] A.R. Subramanian, M. Kaufmann, B. Morgenstern, et al., Dialign-tx: greedy and progressive approaches for segment-based multiple sequence
alignment, Algorithms Molecular Biology 3 (6) (2008).

[11] J. van Helden, B. André, J. Collado-Vides, Extracting regulatory sites from the upstream region of yeast genes by computational analysis of
oligonucleotide frequencies 1, Journal of Molecular Biology 281 (5) (1998) 827–842.

[12] S. Vinga, J. Almeida, Alignment-free sequence comparison a review, Bioinformatics 19 (4) (2003) 513–523.

	Variable length local decoding and alignment-free sequence comparison
	Introduction
	Notations, definitions and preliminary results
	Algorithm
	Alignment-free sequences comparison
	Building a prefix code
	A heuristic to select a threshold
	Dissimilarity
	An application: Hepatitis C virus typing

	Conclusion
	References

