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A crucial step in designing a new study is to estimate the required sample size. For a design
involving cluster sampling, the appropriate sample size depends on the so-called design effect,
which is a function of the average cluster size and the intracluster correlation coefficient (ICC).
It is well-known that under the framework of hierarchical and generalized linear models, a
reduction in residual error may be achieved by including risk factors as covariates. In this paper
we show that the covariate design, indicating whether the covariates are measured at the
cluster level or at the within-cluster subject level affects the estimation of the ICC, and hence
the design effect. Therefore, the distinction between these two types of covariates should be
made at the design stage. In this paper we use the nested-bootstrap method to assess the
accuracy of the estimated ICC for continuous and binary response variables under different
covariate structures. The codes of two SAS macros are made available by the authors for
interested readers to facilitate the construction of confidence intervals for the ICC. Moreover,
using Monte Carlo simulations we evaluate the relative efficiency of the estimators and
evaluate the accuracy of the coverage probabilities of a 95% confidence interval on the
population ICC. The methodology is illustrated using a published data set of blood pressure
measurements taken on family members.

© 2013 The Author. Published by Elsevier Inc. Open access under CC BY license.
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1. Introduction

Estimation of the intraclass correlation coefficient (ICC) is
relevant to many applications in survey sampling, genetic
epidemiology, reliability studies and other fields. In genetic
epidemiology it is used as a measure of familial aggregation,
i.e. as a measure of similarity of responses among siblings
who belong to the same family [1,2], while in interobserver
agreement studies, it is used as a measure of reliability [3]. In
Center, KFSHRC, Saudi
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cluster randomized trials and observational studies that
involve aggregates of individuals as sampling units; the ICC
measures the degree of similarity among individuals belonging
to the same cluster and must be taken into account in both the
estimation of sample size and the statistical analysis.

The ICC may be defined as the ratio of the between cluster
variance divided by the total variance (the sum of between
cluster variance and within cluster variance). When the trait of
interest ismeasured on quantitative scale (e.g. blood pressures,
body mass index) the ICC may be estimated using standard
expressions for variance components under the assumption of
multivariate normality. The most common model used for this
purpose is one-way random effects analysis of variance
(ANOVA) [4,5]. When the trait is measured on a binary scale,
the ANOVAmodelmay be used aswell to find a point estimator
for the ICC.
e.
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It may be desirable for the purpose of increasing precision
to extend the one-way random effects model to include one or
more covariates. In this case the selected covariate structure
would be expected to affect the estimated ICC and its standard
error. In particular we discuss three scenarios: when the
covariate is measured at the cluster level, measured at the
individual level andwhenmeasured at both levels of hierarchy.

In summary, the main objective of this paper is to derive a
covariate adjusted variance components estimator for the ICC
with corresponding standard error under the three proposed
covariate structures and under the assumption of multivariate
normality. For the case in which the response variable is
measured on a binary scale, we use the Generalized Estimating
Equations to find a working correlation estimate, accounting for
the measured covariates. We construct confidence limits for
the ICC using the non-parametric “Accelerated Bias-corrected
percentile” bootstrap known as BCa interval [6,7]. The asymp-
totic relative efficiency of the ICC estimators corrected for
the effect of measured covariates will be assessed relative to
the estimator obtainedwhen covariate effects are not accounted
for, using Monte Carlo simulations. Moreover, we use simula-
tions to evaluate the coverage probabilities of the 95%
confidence intervals on the population parameter. We illus-
trate the methodology presented in this paper on published
arterial blood pressure data collected from nuclear families.

The paper is structured as follows: In Section 2we introduce
the normal linear mixed model and the ANOVA estimator of
the ICC. Covariate adjusted ICC estimators and their large
sample standard errors are obtained using the delta method,
with comparisons made with the standard errors obtained
using bootstrap. In Section 3 we discuss the case of a binary
outcome, and introduce a BCa confidence interval for the ICC.
Section 4 presents an example using a published data set of
arterial blood pressures taken on nuclear families.

In Section 5, we design a Monte Carlo study to evaluate
the asymptotic efficiency of the proposed estimators and
evaluate the adequacy of the constructed confidence inter-
vals on the population values of the ICC. Two SAS macros for
nested-bootstrap cluster re-sampling that may be used to
facilitate the construction of confidence intervals for ICC in
the continuous and binary case are available from the first
author.

2. Effect of the covariate structure

In what follows we investigate four statistical models. The
first, we call the baseline or the unconditional mean model [8].
The second includes one covariatemeasured at the cluster level;
while the third includes a covariate measured at the individual
level, and the fourth includes both types of covariates.

2.1. No covariates (baseline models)

The most commonly used model for estimating the ICC is
the one-way random effects model given by:

yij ¼ μ þ τi þ �ij ð1Þ

where μ is the grand mean of all measurements in the
population, τi reflects the effect of cluster i, and �ij is the error
term (i = 1, 2, … k; j = 1, 2, … ni). It is assumed that the
cluster effects {τi} are normally and identically distributed
with mean 0 and variance στ

2, the errors {�ij} are normally
and identically distributed with mean 0 and variance σ�

2, and
the {τi} and {�ij} are independent. For this model the ICC,
which may be interpreted as the correlation ρ between any
two members of a cluster, may be defined as

ρ ¼ σ2
τ

σ2
τ þ σ2

�

: ð2Þ

It is seen by definition that the ICC is defined as non-negative
in this model, a plausible assumption for the application of
interest here. We also note that the variance components στ

2

and σ�
2 can be estimated from the one-way ANOVA mean

squares [9–11] given in expectation by

E MSBð Þ ¼ σ2 þ n0σ
2
τ ; ð3Þ

where, n0 ¼ 1
k−1 N−∑k

i¼1n
2
i =N

h i
, and N = ∑ i = 1

k ni.

E MSWð Þ ¼ σ2
� :

The ANOVA estimator of the population intraclass correla-
tion is thus given by:

bρ0 ¼ MSB−MSW
MSBþ n0−1ð ÞMSW

ð4Þ

where MSB and MSW are, obtained from the usual ANOVA
table, with corresponding sums of squares

SSB ¼
Xk
i¼1

ni yi−yð Þ2

SSW ¼
Xk

i¼1

Xni

j¼1
yij−yi

� �2
:

Using the delta method, and to the first order of approxi-
mation, the variance of bρ0 [5] is given by:

var bρ0
� � ¼ 2 1−ρð Þ2 1þ n0−1ð Þρð Þ2

n2
0 k−1ð Þ 1− k

N

� � : ð5Þ

Note that when ni = n, i = 1, 2, … k, Eq. (5) reduces to

var bρ0
� � ¼ 2 1−ρð Þ2 1þ n−1ð Þρð Þ2

n n−1ð Þ k−1ð Þ : ð6Þ

This equation differs from the variance expression given
in [12,13] by a factor 1−1

k

� �
, which for large number of

clusters is 1. Note also that when ni = 1 (as in twin studies),
var bρ0

� � ¼ k−1 1−ρ2
� �2.

An approximate (1 − α) 100% confidence interval on ρ
may then be constructed as:

bρ0 � z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bρ0

� �q
: ð7Þ

Extensive simulations to evaluate the coverage probabilities
of the above interval showed [14] that this approximation
is adequate over a wide range of the parameter combinations
(ρ, k, n). For the different estimators of ICC that will be
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considered later in this paper and their variances, expres-
sion (7) provides an approximate (1 − α) 100% confidence
interval on the corresponding population parameter.

2.2. Effect of one measured covariate

The Stanish and Taylor [15] adjusted model (2) is given as
follows:

yij ¼ μ þ τi þ β xij−x
� �

þ �ij;

where xij represents a covariate measured without error and

x ¼ 1
N∑

k
i¼1∑

ni
j¼1xij.

Again, from Searle et al. [11] we have

E SSWð Þ ¼ N−K−1ð Þ σ2
� ; E MSWð Þ ¼ σ2

� ;

and E MSBð Þ ¼ 1
k−1

E SSBð Þ ¼ σ2
� þ n01σ

2
τ

where n01 ¼ 1
k−1

	
k−1ð Þn0−

∑k
i¼1n

2
i xi−xð Þ2

∑k
i¼1∑

ni
j¼1 xij−x

� �2



and xi ¼

−1 ni
ni ∑ j¼1xij.
Therefore, the ANCOVA estimator of ρ is given by:

bρ1 ¼ MSB−MSW
MSBþ n01−1ð ÞMSW

: ð8Þ

The asymptotic variance of bρ1, using the delta method is
given by:

var bρ1
� � ¼ 2 1−ρð Þ2 1þ n01−1ð Þρð Þ2

n2
01 k−1ð Þ 1− k

N

� � :

Note that

Xk
i¼1

Xni

j¼1

xij−x
� �2 ¼

Xk
i¼1

Xni

j¼1

xij−xi
� �2 þ

Xk
i¼1

ni xi−xð Þ2:

We have two remarks on the above set-up:

(i) If xij is measured at the cluster level, then xij ¼ xi. Hence

n01 ¼ n0−
1

k−1

Pk
i¼1n

2
i xi−xð Þ2Xk

i¼1
ni xi−xð Þ2

and the expectation of themean sumof squares between
clusters can be written as:

E MSBð Þ ¼ σ2
� þ n0σ

2
τ−

σ2
τ

k−1

Pk
i¼1n

2
i xi−xð Þ2Xk

i¼1
ni xi−xð Þ2

24 35: ð9Þ

It is clear from Eq. (9) that when one covariate is measured
at the cluster level, the expectedmean square between clusters
is reduced by the amount

σ2
τ

k−1

Pk
i¼1n

2
i xi−xð Þ2Xk

i¼1
ni xi−xð Þ2

24 35:
The covariate effect

CEF ¼
Xk
i¼1

n2
i xi−xð Þ2=

Xk
i¼1

ni xi−xð Þ2

is the ratio of two quantities that measure the extent of the
deviation of the cluster mean from the overall mean of the
measured covariate. The numerator in this expression is seen to
be weighted by the square of the cluster size, and the
denominator by the cluster size. We also note that the degrees
of freedom associated with the within cluster sum of squares is
reduced by 1, due to the estimation of the regression coefficient
β.

It is not generally clear how measuring a covariate on
the cluster level will affect the estimated value of the
ICC. However, in the case ni = n, i = 1, 2, … k, CEF = n
and E MSBð Þ ¼ σ2

� þ nσ2
τ

k−2
k−1

� �
.

While it is clear that an estimated ICC may decrease in
value, Stanish and Taylor [15] also identified situations when
this estimatemay increase in value. They based their argument
on the quantity:

w ¼ effect of x on within cluster variation
effect of x on between cluster variation

:

In casew b 1 adjusting for x tends to decrease the estimated
ICC, while when w N 1 adjusting for x tends to increase the
estimated ICC.

2.3. Effect of two measured covariates

The one-way random effects model with two covariates
may be written as:

yij ¼ μ þ τi þ β1 xij−x
� �

þ β2 zij−z
� �

þ �ij: ð10Þ

The expectations of the within and between mean
squares are given respectively by:

E SSWð Þ ¼ N−k−2ð Þσ2
�

E MSBð Þ ¼ σ2
� þ n02σ

2
τ ;

where, n02 = n0 − N′02, and

N′
02 ¼ 1

k−1

	
1
c

�
szz

Xk
i¼1

n2
i xi−xð Þ2−

−2sxz
Xk
i¼1

n2
i xi−xð Þ zi−zð Þ þ sxx

Xk
i¼1

n2
i zi−zð Þ2

�


sxx ¼
Xk
i¼1

Xni

j¼1

xij−x
� �2

; szz ¼
Xk
i¼1

Xni

j¼1

zij−z
� �2

;

sxz ¼
Xk

i¼1

Xni

j¼1
xij−x

� �
zij−z

� �
:

The derivation of these expressions is outlined in the
Appendix.

The estimator of the ICC in this case will be given as:

bρ2 ¼ MSB−MSW
MSBþ n02−1ð ÞMSW

:
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The large sample variance of bρ2 is given by:

var bρ2
� � ¼ 2 1−ρð Þ2 1þ n02−1ð Þρð Þ2

n2
02 k−1ð Þ 1− k

N

� � :

In what follows we assume that xij is measured at the
cluster level, that is xij ¼ xi , implying sxx ¼ ∑k

i¼1ni xi−xð Þ2
and sxz ¼ ∑k

i¼1ni xi−xð Þ zi−zð Þ.
It is not clear how the measured covariates affect the

estimated ICC, because the cross product term may either be
positive or negative. However, if the cluster size is relatively
constant ni ≃ n, and the two covariates are orthogonal, we may
write:

E MSBð Þ ¼ σ2
� þ n 1− 2

k−1

� �
σ2

τ : ð11Þ

3. The case of clustered binary data

Let yij = 1(0) denote the presence (absence) of a condition
in the jth observation from the ith cluster assume that:

Pr yij ¼ 1
h i

¼ μ ij; and Pr yij ¼ 0
h i

¼ 1−μ ij: ð12Þ

Murray et al. [16] considered the logit-scale additive
mixed effects model with random component bi to account
for the between clusters variations. This model is a special
case of the family of generalized linear mixed models.

log
μ ij

1−μ ij

" #
¼ x′ijβ þ bi: ð13Þ

In this model, bi is a random sample from a normal
distribution with mean 0 and variance σb

2. Yelland et al. [17]
considered a log-transformation on the success probability,
hence converting the between cluster variance to the proba-
bility scale. They used Monte-Carlo simulation to compare the
variance components estimates of the ICC to that obtained
from the unadjusted ANOVAmodel. Themain objective of their
study was to evaluate the relative bias in the estimation of the
ICC under different modeling strategies. Yelland et al. [17]
indicated that their study had several limitations the most
important of which was that the true value of the ICC was
unknown. Therefore it was not possible to compare the
estimated ICC values to the true value. Since our main concern
in this paper is with the accuracy in estimation, to achieve this
objective we use the well-developed GEE methodology [18],
together with the bootstrap methodology to construct confi-
dence interval on the ICC. The GEE method is semi-parametric,
and estimates of the regression parameters, which is its main
target, are derivedwithout full specification of themultivariate
joint distribution ofyi′ ¼ yi1; yi2;…yini

� �′
. Instead, specification

of the likelihood of the marginal distribution of yij is given
together with a working correlation matrix for the vector of
observations in each cluster. That is the GEEmethod avoids the
need to specify a form for the multivariate distribution of the
binary responses yi by only assuming a functional form
(Bernoulli distributions for each observation within a cluster).
The covariance structure is then treated as a nuisance.
Consistent estimates of the variance of the regression coeffi-
cients are obtained under the assumption of independence
across clusters, evenwhen the assumed correlation structure is
incorrect.

Firstwe relate themean of themarginal response to a linear
combination of the covariates, omitting the random compo-
nent bi from Eq. (13).

We choose the form of an ni × ni working correlation
matrix Σi for each yi (i = 1, 2, … k). The (j; j′) element of Σi is
the known or estimated correlation between (yij, yij′). This
working correlation may depend on a vector of unknown
parametersα, which is assumed to be same for all clusters [18].

Although the correlation matrix Σi can differ from cluster
to cluster, we assume here that the ICC in the working matrix
is an average of intraclass correlations across clusters. Thus
an exchangeable correlation Σij′ = ρ is used for this purpose.
In this case the working covariance matrix for yi equals:

v αð Þ ¼ A1=2
i

X
i
αð ÞA1=2

i ;

where

Σi αð Þ ¼
1 α … α
α 1 … α
α α … 1

24 35;

Ai ¼
var yij

� �
0
⋮
0

0…
var yij

� �
…

0
0

var yij
� �

26664
37775;

and var(yij) = μij(1 − μij).
The GEE estimator of β is the solution ofXk

i¼1

∂μ i

∂β

� �′

Σ−1 bα� �
yi−μ ið Þ ¼ 0

where μi = E(yi).
Liang and Zeger [18] proposed an estimator for α based on

the residuals

brij ¼ yij−bμ ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibμ ij 1−bμ ij

� �r :

Under the common correlation (exchangeable), that is
Corr(yij, yil) = α for all (i, j, l) on estimator for α is:

bα ¼
Xk

i¼1

Xni
j¼1

Xni−1
l¼ jþ1

brijbril= Xk
i¼1

ni
2

� �
−p

� �
ð14Þ

where p is the number of covariates in the logistic regression
model. Usually we take bα in an approximation for the ICC [18].

4. Data analysis and bootstrap confidence intervals

4.1. Example: Miall and Oldham's blood pressures, family data

The data used for illustration here are obtained from a
survey that aimed at assessing the levels of similarity in systolic
and diastolic blood pressures among family members living
within 25 miles of Rhonda Fach Valley in South Wales and
published by Miall and Oldham [19]. Observations were made



Table 2
Effect of measured covariates on the estimated working correlation under
different covariate structures using the GEE method.

Statistic Model 1 Model 2 Model 3 Model 4

bρ 0.169 0.154 0.017 0.022
Bootstrap variance 0.002 0.002 0.002 0.003
BCa 95% confidence
interval

(0.165,
0.173)

(0.148,
0.160)

(0.013,
0.021)

(0.017,
0.026)
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on parents and their offspring, with each observation
consisting of systolic and diastolic blood pressures measured
to the nearest 5 mm Hg. However among 250 sampled
families, only 204 contained information on brothers and
sisters. Furthermore, because of the impossibly low systolic
blood pressure (15 mm Hg) for one daughter, another family
was omitted leaving 203 families for the analysis. Since these
data were given on a continuous scale, we transformed the
measurements into a binary scale. The dichotomization was
such that for an individual whose blood level was above 130/
85, the assigned binary score is yij = 1, else yij = 0. This
dichotomization follows the definition of hypertension provid-
ed by the Institute of Medicine.

In a recent paper Field and Walsh [20] suggested several
approaches to bootstrap clustered data. In a random sample of k
clusters each of size n, they considered the observations as fixed
with inferences made with respect to the random sampling
mechanism. In this case their main concern was with the
accommodation of different forms of cluster sampling. One of
the simplest approaches is the so-called “cluster bootstrap”.
Roberts andXitao [21] implemented a specific form of bootstrap
cluster sampling which they named “nested bootstrap” using
the PROC MIXED procedure in SAS [22]. Note that PROC MIXED
is designed to fit hierarchical data with normally distributed
responses, and is not appropriate for the analysis of binary
response data. We therefore modified the bootstrap macro so
that SAS PROC GLM is used to calculate the between and the
withinmean of squares of the appropriate analysis of covariance
(ANCOVA) fromwhichwe obtain the bootstrap replications, the
bootstrap estimate, and hence the bootstrap standard errors.
The SAS bootstrap macros are available and may be requested
from the first author.

In Tables 1 and 2, Model 1 is the unconditional meanmodel
(no covariates), Model 2, is the regression model with cluster
specific covariates (in this case we used the mother's systolic
blood pressures), Model 3 is the regression model with within
cluster varying covariate (in this casewe used the sib's gender),
while Model 4 contains both types of covariates. We note from
both Tables that the covariate design structure clearly affects
the estimated values of the ICC.While there is a clear pattern of
decline in the values of ICC in Table 1, we found thatModel 4 in
the binary case has a higher ICC relative to Model 3. It is also
important to note that, the standard errors under the four
models are fairly stable. Moreover, in Table 1, the bootstrap
standard errors are almost identical to their first order
approximations.

The bootstrap provides an attractive approach for obtaining
simple estimates of the standard error and bias of the ICC from
the estimated working correlation. In this section we denote
the working correlation estimator of ICC by bρw . The SAS code
Table 1
Effect of measured covariates on the estimated ICC and its variance under
different covariate structures based on the ANCOVA analyses.

Statistic Model 1 Model 2 Model 3 Model 4

bρ 0.360 0.295 0.247 0.226
Bootstrap variance 0.001 0.002 0.002 0.003
Analytica variance 0.002 0.003 0.002 0.002

a Note that analytic variances of the estimated ICC under Models 2, 3, and
4 are obtained by substituting, n0 = 3.08, for Model 1, n01 = 3.16 for Model
2, n02 = 3.06 for Model 3 and n02 = 3.14 for Model 4 in Eq. (5).
needed to obtain this estimator from the working correlation
using a logit-link is given by

Proc Genmod;
Classcluster ID;
Modely ¼ gender mother sbp=dist ¼ bin link ¼ logit;
Repeated subject ¼ cluster ID=Type ¼ exchcorrw;
Run;

ð15Þ

Note that gender is a subject specific covariate, while
mother's systolic blood pressure is a cluster specific covariate.
We should also note that the estimated regression coefficients
under the logit-link have Population-Averaged (PA) log-odds
ratio (OR) interpretation which is the recommended measure
of association between covariates and the binary response
under cross-sectional study design [18]. For prospective and
cohort studies, the relative risk (RR) is used as a measure of
association between response and risk factors. The above SAS
code can be used to produce RR estimatewhen the link = log is
used in the option of the Model statement in place of the
link = logit. We also noted that the estimated value of the
working correlation under theGEE is the same regardless of the
link function.

The nested bootstrap SAS-macro for clustered data produces
bootstrap replicates bρw ¼ bρw1; bρw2;…bρwk

� �
.

The corresponding bootstrap standard error is approxi-
mated by the empirical standard deviation of bρw, i.e.:

eσ bρw

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b−1

Xb
l¼1

eρwl−eρb

� �2

vuut → σ bρw

� �
as b → ∞, where eρb ¼ 1

b∑
b
l−1eρwl.

We can see from the replicated bootstraps (Table 3) that
there is a significant skewness and kurtosis in the empirical
distribution of bρ . Hence the normal approximation used to
construct confidence intervals is no longer valid. However
there are several methods to construct bootstrap confidence
intervals including the Gaussian bootstrap, bootstrap-t and the
percentile bootstrap [6]. Again, due to the significant skewness
in the distribution of bρ, the first two methods of calculating the
confidence intervals are not suitable. The percentile bootstrap
did not perform well even though it does not assume
normality. We therefore used the so-called bias-corrected,
accelerated (or BCa) percentile interval. Shao & Tu [7] provided
a good review of this method. It is recommended that to obtain
sufficiently accurate 95% BCa confidence intervals, the number
of bootstrap samples, should be at least 1000. In our example,
we used 2000 bootstrap samples to construct a BCa confidence
interval for the ICC. We assessed the normality of the
distribution of the estimated ICC under the four models first
graphically using the Q–Q plots of the bootstrap samples, and
using an approach proposed by D' Agostino et al. [23]. These



Table 3
Skewness and kurtosis of the bootstrap replicates for the 4 models.

Continuous outcome models Dichotomous outcome models

1 2 3 4 1 2 3 4

Skewness
(se)

.148
(.046)

− .227
(.035)

− .127
(.03)

− .07
(.026)

.191
(.055)

.177
(.055)

.132
(.055)

.11
(.055)

Kurtosis
(se)

.233
(.092)

− .040
(.071)

− .394
(.06)

− .42
(.05)

.153
(.109)

.195
(.109)

.063
(.109)

.02
(.109)

P-value 0.0002 0.00000 000000 00000 .0008 .02 .047 .017
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authors provided a simple SAS macro to calculate the values of
a chi-square omnibus test statistic that utilizes both the
skewness and kurtosis of the bootstrap replicates to assess
the departure from normality. For the example data, Figs. 1–4
for the continuous response case and Figs. 5–8 for the binary
case, we find that the empirical distributions of the bootstrap
samples are skewed and leptokurtic, with the corresponding
p-values indicating that the hypothesis of normality is not
supported. The results are shown in Table 3.

5. Asymptotic relative efficiency and
coverage probabilities

5.1. Continuous variables

We consider Model 1 (no covariates included) as the
baseline model. We shall assess the performance of other
models relative to the baseline model using the concept of
asymptotic relative efficiency (ARE). This is just the limit as
k → ∞ of Var bρ1

� �
=Var bρ j

� �
j ¼ 2;3;4.

Since we have closed forms for the variance expressions
we provide ARE plots in Figs. 9–11 of EFF ¼ Var bρ1

� �
=Var bρ2

� �
for k = 10, 20, 50.

We used the combinations n = 2, 5, 10, 20, 50; and ρ = 0.1,
0.2, 0.5, 0.7, 0.9. As can be seen, ARE levels are low for small
values of ρ and small average cluster sizes. However, the ARE
Fig. 1. Q–Q plot for 2000 bootstrap samples of ICC based on Model 1 (no
covariates).
rapidly increases and plateaus at about 99%. In Table 4 we show
the ARE values for the case of two covariates, one measured at
the cluster level, and the other is varying within cluster. In this
case we designated the covariate xij as a within-cluster constant
covariate taking only two values either 0 or 1. The covariate zij
is taken as within-cluster varying covariate taking the values
(−1, 1). Values of Var bρ1

� �
=Var bρ2

� �
are given in Table 4. As can

be seen the ARE follows the same pattern shown in Figs. 9–11.

5.2. Clustered binary data

For Model 1, the asymptotic variance of the ICC estimator
for clustered binary data was given in closed form by Mak
[24], and Zou & Donner [25]. We denote this by Var bρb

� �
.

When covariates are included, there is no closed form
expression for the asymptotic variance of the ICC estimator.
To evaluate the performance under the models proposed in
Section 4, we shall again use the concept of ARE. The ARE was
used by Sutradhar and Das [26] to evaluate the effect of the
misspecification in the correlation structure on the efficiency
loss in the estimated regression coefficient using the GEE.
Chaganty and Joe [27] demonstrated that consistency and
ARE of the regression coefficient estimators are guaranteed
under exchangeable correlation structure.

In this section we use Monte-Carlo simulation of clustered
binary data for a fully specified probability model, assuming
Fig. 2. Q–Q plot for 2000 bootstrap samples of ICC based on Model 2 (cluster
level covariate is mother's systolic blood pressure levels).

image of Fig.�2


Fig. 3. Q–Q plot of 2000 bootstrap samples. Response measured on continuous
scale, one covariate measured at the within cluster level (subject's diastolic
blood pressure levels).

Fig. 5. Q–Q plot of 2000 bootstrap sample for the working correlation for
binary response (GEE without covariates).
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exchangeable correlation (common intraclass correlation).
Thereafter evaluate the ARE of the estimated working correla-
tion obtained by the GEE under the correct specification, when
two measured covariates are included in the study design. We
shall use the same covariate structure for xij and zij as indicated.
We set ρ = 0.3, 0.7; n = 5, 10; and k = 10, 20.

The simulation steps are:

1. We define logit (πij) = β1xij + β2zij.
2. Set β1 = β2 = 1 and π = ∑ i = 1

k ∑ j = 1
n πij/nk, as in

[26,27].
Fig. 4. Q–Q plot of 2000 bootstrap samples of ICC for the case of continuous
response and two covariates (one measured at the cluster level and
measured at the sib-within cluster level).
3. Generate pseudo random variables μij from the beta-
distribution with parameters: a ¼ π 1−ρð Þ

ρ and b ¼ 1−ρð Þ 1−πð Þ
ρ .

4. Generate Bernoulli (1,μij) for set i = 1, 2, k and j = 1, 2,… n.
We therefore have a sequence of Beta-Bernoulli trials.

5. Use the GEE to fit 2000 simulated data sets generated
under the above set-up for each combination (k,n,ρ),
specifying exchangeable correlation.

6. Compute the mean and variance of the estimated working
correlation bα, say denoted by var bα� �

.

The ARE ismeasured by the ratioEFF ¼ Var bρb

� �
=Var bα� �

. For
a limited number of parameter combinations we summarize
the results in Table 5. As can be seen, there is a similar trend to
Fig. 6. Q–Q plot for 2000 bootstrap samples for the working correlation
based on Model 2 (GEE with one cluster level covariate).
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Fig. 7. Q–Q plot of 2000 bootstrap samples for the working correlation (GEE
with one covariate measured at the subject within cluster level).

Fig. 9. Plots of ARE for k = 10.
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Table 4. Larger values of k, n, and ρ gave ARE values that are
approximately 100 indicating that there is almost no efficiency
loss in this case.

Thus inclusion of covariates, although produces different
values of the estimated ICC under different models, the
precisions of the estimates are still within acceptable level
when compared to the model that does not include measured
covariates.

We note that Crowder [28] demonstrated that the param-
eters involved in working correlation matrix are subject
to “uncertainty of definition which can lead to a breakdown
Fig. 8. Q–Q Plot of 2000 bootstrap samples for the working correlation (GEE
with two covariates).
of the asymptotic properties of the estimators”. Therefore,
in the above simulation, we simulated data under common
(exchangeable) correlation to avoid the effect ofmisspecification
on the estimation of the working correlation.

We note also that Yelland et al. [17] investigated the effect
of covariate adjustment on the relative bias, which turned out
to be severe under a variety of conditions. Thus far, we have
demonstrated through the example that the covariate adjust-
ment affected the estimated values of the ICC. It is therefore
desirable to investigate the effect of the adjustment on the
coverage probabilities of a 95% confidence interval. The results
of the limited simulations are summarized in Table 6. For
100(1 − α)% confidence interval with α typically 0.05, the
coverage error will be Pr(ρl b ρ b ρu) = (1 − α) + ε, for
some unknown constant ε, where ε → 0 as the sample size
gets larger. Allowing for theMonte Carlo error, wemay declare
the confidence intervals with coverage probabilities within 0:

95F1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95 :05ð Þ
2000 ¼ 0:940; :959ð Þ

q
limits as satisfactory. In
Fig. 10. Plots of ARE for k = 20.
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Fig. 11. Plots of ARE for k = 50.

Table 6
Simulated coverage probabilities of 95% confidence intervals on the population
ICC for binary response data.

Model 1
(no covariates)

Model 4
(2-covariates)

k n ρ = 0.3 0.7 ρ = 0.3 0.7

10 5 0.956 0.954 0.932a 0.948
10 10 0.951 0.953 0.940 0.985
20 5 0.955 0.951 0.948 0.962a

20 10 0.942 0.944 0.934a 0.953

a Means that the coverage is outside the desired limits.
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Table 6, the limited number of simulated coverage indicates
that while for the model with no covariates, the estimated
probabilities are all within the allowable limits, few of such
probabilities are outside the set limits for the model with two
covariates. Improvement of the estimated coverage may be
achieved by increasing the number of clusters.

6. Discussion

Previous work [29,30] has demonstrated that the efficiency
of statistical estimation in the generalized linear mixed model,
depends on both cluster size and themagnitude of the ICC. The
synergetic effect of both cluster size and the ICC is known in the
survey sample literature as the design effect (DEF) and is given
by DEF = 1 + (n − 1)ρ, where n is the average cluster size. In
studying the effect of covariate structure on statistical infer-
ences arising from generalized linear models for clustered data
Table 4
ARE of the ICC estimator: Two measured covariates and continuous response.

k n ρ % EFF

10 2 0.0 96
10 2 0.3 97
10 2 0.5 98
10 4 0.0 97
10 4 0.3 99
10 4 0.5 99
20 2 0.0 98
20 2 0.3 99
20 2 0.5 99

Table 5
ARE of the GEE estimator in the case of two measured covariates.

k n ρ % EFF

10 5 0.3 82
10 10 0.3 97
20 5 0.7 92
20 10 0.7 97
we found it useful to distinguish between two types of
covariates. The first type, a cluster constant or cluster-level
covariate, does not vary between units within cluster, i.e.xij ¼ xi
for j = 1, 2,… ni. An example would be mother or father blood
pressure level in family studies. The other type, a within cluster
covariate which varies across the subjects within a cluster is
gender. We found that these sources of variations have varying
effects on the estimated ICC. We also found that the effect of
measured covariates is the samewhether they aremeasured on
the continuous or the categorical scale. Second; in fitting GEE to
obtain estimates of the working correlation for clustered binary
response data, using either the logit-link or the log-link has no
effect on the estimated ICC. Our final recommendation is that in
thedesign stage of studieswhere the sampling units are clusters
of individuals, investigators should decide in advance on the
number of measured covariates, together with the covariate
structure. The available SAS macros can then be used to assess
theuncertainty about the estimated ICCwhether the response is
measured on the continuous scale, or categorical binary.
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Appendix. Derivation of the expectation of mean square
between clusters in the case of two measured covariates

To obtain the estimators of the variance components σ�
2

and στ
2 model (11) can be written as:

y ¼ x1β þ x2τ þ �≡ xbþ �

where y ¼ y1; y2;…ykð Þ′; yi ¼ yi1; yi2;…yini

� �′

x1 ¼
e1 x1 z1
e2
⋮

x2
⋮

z2
⋮

ek xk zk

264
375; x2 ¼

e1 0 … 0
0
⋮

e2 … 0

0 0 … ek

264
375

β ¼
μ1
β1
β2

24 35; τ ¼
τ1
τ2
⋮
τk

264
375; b ¼ β

τ

	 

xi ¼ xi1−xð Þ; x2i−xð Þ;… xini−x

� �h i
′

zi ¼ zi1−zð Þ; zi2−zð Þ;…zini
−z

h �
�′

and finally x = (x1 x2)′.
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Following Searle et al. [11] we can show that:

E SSWð Þ ¼ N−k−2ð Þσ2
:

However E(SSB) may be obtained in several steps.
Omitting details, we note that

E MSBð Þ ¼ 1
k−1

	
σ2

τ Tr x′2 I−x1 x′1x1
� �−1

x′1

� �
x2

� �
þσ2

e rank xð Þ−rank x1ð Þ½ �

x′1x1 ¼
N 0 0
0 Sxx Sxz
0 Sxz Szz

24 35
x′2x2 ¼

n1 0 … 0
0
⋮

n2 … 0

0 0 … nk

264
375

x′1x1
� �−1 ¼

N−1 0 0
0

Szz
c

− Sxz
c

0 − Sxz
c

Sxx
c

26664
37775:

The corrected sum of squares Sxx ¼ ∑k
i¼1∑

ni
j¼1 xij−x

� �2
Szz ¼

Xk
i¼1

Xni
j¼1

zij−z
� �2

sxz ¼
Xk

i¼1

Xni
j¼1

xij−x
� �

zij−z
� �

; and

c ¼ sxxszz−s2xz:

Moreover, rank(x) = rank(x′x) = k + 2, rank x1ð Þ ¼ 3;
Trace x′2x2

� � ¼ N

Trace x′2x1 x′1x1
� �−1

x′1x2

� �
¼

Xk
i¼1

n2
i

N
þ 1

c

	
szz

Xk
i¼1

n2
i xi−xð Þ2−

−2sxz
Xk
i¼1

n2
i xi−xð Þ zi−zð Þ þ sxx

Xk
i¼1

n2
i zi−zð Þ2�:

Finally we obtain:

E MSBð Þ ¼ σ2
� þ n02σ

2
τ

where

n02 ¼ n0−
1

k−1

	
1
c

�
szz

Xk
i¼1

n2
i xi−xð Þ2−

−2sxz
Xk

i¼1
n2
i xi−xð Þ zi−zð Þ þ sxx

Xk
i¼1

n2
i zi−zð Þ2

�

:
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