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A fourth-order �nite di�erence method for the general
one-dimensional nonlinear biharmonic problems of �rst kind
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Abstract

We present two new �nite di�erence methods of order two and four in a coupled manner for the general one-dimensional
nonlinear biharmonic equation yIV =f(x; y; y′; y′′; y′′′) subject to the boundary conditions y(a) = A0; y′(a) = A1; y(b) =
B0; y′(b) = B1. In both cases, we use only three grid points and do not require to discretize the boundary conditions.
First-order derivative of the solution is obtained as a by-product of the methods. The methods are successfully applied to
the problems both in cartesian and polar coordinates. Numerical examples are given to illustrate the methods and their
convergence. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the fourth-order boundary value problem

yIV(x) = f(x; y(x); y′(x); y′′(x); y′′′(x)); a¡x¡b; (1)

subject to the natural boundary conditions

y(a); y′(a); y(b); y′(b) prescribed
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or equivalently, y′(x) = z(x),

yIV(x) = f(x; y(x); z(x); y′′(x); z′′(x)); a¡x¡b; (2)

subject to the natural boundary conditions

y(a); z(a); y(b); z(b) prescribed;

where −∞¡a6x6b¡∞. We refer to the di�erential equation (1) or (2) together with the pre-
scribed boundary conditions as the �rst kind problem. The existence and uniqueness of the �rst kind
problem were discussed in [1].
The interval [a; b] is divided into a set of points with an interval of h=(b− a)=(N +1), N being

a positive integer. The �nite di�erence approximation to Eq. (1) is obtained on [a; b] that consists of
the central point xk = kh and the two neighbouring points xk+1 = xk + h and xk−1 = xk − h; k=1(1)N ,
where x0 = a and xN+1 = b. A combination of the value of the solution y(x) and the value of its
derivative y′(x) are used to derive di�erence methods at the three grid points. The standard �ve-point
di�erence formula of Eq. (1) is obtained by using second-order central di�erences, which requires the
use of �ctitious points outside of the region [a; b]. The accuracy of the numerical solution depends
upon the boundary approximation used. The �nite di�erence methods which we present here in a
coupled manner are based on only three grid points for both second- and fourth-order methods.
i.e. no �ctitious points for incorporating the boundary conditions are required. It is mentioned here
that, so far, no fourth-order discretizations using three grid points is known for the di�erential
equation (1). Since we need to solve the coupled nonlinear system of equations at each mesh point,
the iterative methods of solution are frequently used. Therefore, a solution of coupled system of
nonlinear equations is often a very good starting vector for another iteration. Also, a proper choice
of the iterative method to be used has a great inuence on the amount of computational e�ort required
to solve a given problem. With a slowly converging iterative method, the amount of time required
may be so large, even with a very fast computer, as to make the solution of the problem impractical.
The systems that are generated by these methods, have a more complicated block structure than those
derived from the standard central di�erence methods. The linear systems have to be solved by block
successive overrelaxation (BSOR) method and nonlinear systems have to be solved by Newton’s
nonlinear block successive overrelaxation (NBSOR) method.

2. The �nite di�erence methods

Let the exact solution values of y(x) and z(x) at the grid point xk are denoted by Yk and Zk ,
respectively, and yk and zk are their approximate solutions, respectively.
Our methods are described as follows: For k = 1(1)N , let

�y′′
k = (zk+1 − zk−1)=(2h); (3a)

�z′′k = (zk+1 − 2zk + zk−1)=(h2) (3b)

and set �fk = f(xk ; yk ; zk ; �y
′′
k ; �z

′′
k ).

Then the di�erence method of order two for the given di�erential equation (1) is given by

− 2[yk+1 − 2yk + yk−1] + h[zk+1 − zk−1] =
h4

6
�fk (4a)
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and the corresponding di�erence method for the derivative y′ = z is given by

− 3[yk+1 − yk−1] + h[zk+1 + 4zk + zk−1] = 0: (4b)

Also, let

�y′′
k+1 = (3zk+1 − 4zk + zk−1)=(2h); (5a)

�y′′
k−1 = (−3zk−1 + 4zk − zk+1)=(2h); (5b)

�z′′k+1 =−12(yk+1 − 2yk + yk−1)=(h3) + (7zk+1 − 2zk − 5zk−1)=(h2); (5c)

�z′′k−1 = 12(yk+1 − 2yk + yk−1)=(h3) + (7zk−1 − 2zk − 5zk+1)=(h2); (5d)

��y
′′
k = 2(yk+1 − 2yk + yk−1)=(h2)− (zk+1 − zk−1)=(2h); (6a)

��y
′′
k+1 =−(23yk+1 − 16yk − 7yk−1)=(2h2) + (6zk+1 + 8zk + zk−1)=h; (6b)

��y
′′
k−1 =−(23yk−1 − 16yk − 7yk+1)=(2h2)− (6zk−1 + 8zk + zk+1)=h (6c)

and set
�fk+1 = f(xk+1; yk+1; zk+1; �y

′′
k+1; �z

′′
k+1);

�fk−1 = f(xk−1; yk−1; zk−1; �y
′′
k−1; �z

′′
k−1);

��fk+1 = f(xk+1; yk+1; zk+1; ��y
′′
k+1; �z

′′
k+1);

��fk−1 = f(xk−1; yk−1; zk−1; ��y
′′
k−1; �z

′′
k−1):

Finally, let

��z
′′
k = �z′′k −

h
104

( ��fk+1 − ��fk−1) (7)

and set ��fk = f(xk ; yk ; zk ; ��y
′′
k ; ��z

′′
k ).

Then the di�erence method of order four for the di�erential equation and the corresponding
di�erence method for the derivative y′ = z are given by

− 2(yk+1 − 2yk + yk−1) + h(zk+1 − zk−1) =
h4

90
( ��fk+1 +

��fk−1 + 13
��fk) (8a)

and

− 3(yk+1 − yk−1) + h(zk+1 + 4zk + zk−1) =
h4

60
( �fk+1 − �fk−1): (8b)

Note that, y0; z0; yN+1 and zN+1 are prescribed. It is convenient to express the above �nite di�erence
schemes in block tridiagonal matrix form. If the di�erential equation (1) is linear, the resulting block
tridiagonal linear system can be solved using the block successive overrelaxation (BSOR) method;
in the nonlinear case, the system can be solved using the Newton’s nonlinear block successive
overrelaxation (NBSOR) method (see [4,5]).
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3. Derivation of the di�erence schemes and block iterative methods

We next discuss the derivation of the di�erence methods and block iterative methods. For deriva-
tion of the methods, we simply follow the approaches given in [2,3,8–11].
At the grid point xk , the given di�erential equation (2) can be written as

yIVk = f(xk ; yk ; zk ; y′′
k ; z

′′
k ) = fk; k = 1(1)N: (9a)

Similarly,

fk+1 = f(xk+1; yk+1; zk+1; y′′
k+1; z

′′
k+1); k = 1(1)N (9b)

and

fk−1 = f(xk−1; yk−1; zk−1; y′′
k−1; z

′′
k−1); k = 1(1)N: (9c)

In the following, we set H = @f=@z′′.
Using Taylor expansion about the point xk , we �rst obtain

− 2(yk+1 − 2yk + yk−1) + h(zk+1 − zk−1) =
h4

6
fk + T1; (10)

where T1 = O(h6).
From (3a) and (3b), we have �y′′

k=y′′
k +O(h

2) and �z′′k =z′′k +O(h
2). Now, replacing y′′

k = �y
′′
k+O(h

2)
and z′′k = �z′′k + O(h

2) in (9a), we �nd that �fk = fk + O(h2). Thus, the second-order approximation
for the di�erence equation given by (4a) is straightforward and by the help of (10) we can verify
that the local truncation error associated with the di�erence equation (4a) is of O(h2). Similarly, the
di�erence equation (4b) approximates the derivative y′ = z with O(h2) accuracy.
Similarly, by the help of Taylor expansion, we obtain

− 2(yk+1 − 2yk + yk−1) + h(zk+1 − zk−1) =
h4

90
(fk+1 + fk−1 + 13fk) + T2; (11)

where T2 = O(h8).
Now, we need O(h2)-approximation for z′′k+1. Let

�z′′k+1 =
1
h3
(a10yk + a11yk+1 + a12yk−1) +

1
h2
(b10zk + b11zk+1 + b12zk−1): (12)

Expanding each term on the right-hand side of (11) in Taylor series about the point xk and
equating the coe�cients of hp; (p=−3;−2;−1; 0 and 1) to zero, we get

(a10; a11; a12; b10; b11; b12) = (24; −12; −12; −2; 7; −5):
Thus, we obtain

�z′′k+1 =
−12
h3
(yk+1 − 2yk + yk−1) +

1
h2
(7zk+1 − 2zk − 5zk−1)

= z′′k+1 −
5h2

12
yVk +O(h

3 + h4): (13a)
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Similarly,

�z′′k−1 =
12
h3
(yk+1 − 2yk + yk−1) +

1
h2
(7zk−1 − 2zk − 5zk+1)

= z′′k−1 −
5h2

12
yVk +O(−h3 + h4): (13b)

Further, from (5a) and (5b), we have �y′′
k±1 = y′′

k±1 + O(h
2 + h3).

Now, it is straightforward to verify that �fk±1 =fk±1 +O(h2± h3) and the di�erence equation (8b)
approximates the derivative y′ = z with O(h4) accuracy.
Next, we obtain O(h4)-approximation for y′′

k . Let

��y
′′
k =

1
h2
(a20yk + a21yk+1 + a22yk−1) +

1
h
(b20zk + b21zk+1 + b22zk−1): (14)

With the help of Taylor expansion, from (14), we �nd that if

(a20; a21; a22; b20; b21; b22) = (−4; 2; 2; 0; −1
2 ; 12 );

then

��y
′′
k =

2
h2
(yk+1 − 2yk + yk−1)− 1

2h
(zk+1 − zk−1) = y′′

k +O(h
4): (15a)

Similarly,

��y
′′
k±1 =

−1
2h2
(23yk±1 − 16yk − 7yk∓1)± 1

h
(6zk±1 + 8zk + zk∓1) = y′′

k±1 + O(h
4): (15b)

From (13) and (15) it follows that ��fk±1 provide O(h
2)-approximations for fk±1 and

��fk±1 = fk±1 − 5h2

12
yVk Hk +O(±h3 + h4): (16)

Next, we seek an approximation for z′′k in the form as given by (7). Let

��z
′′
k = �z′′k + ah( ��fk+1 − ��fk−1); (17)

where ‘a’ is a free parameter to be determined.
With the help of approximations (3b) and (16), from (17) we obtain

��z
′′
k = z′′k +

h2

12
(1 + 24a)yVk +O(h

4): (18)

From (15a) and (18) it follows that ��fk provides an O(h
2)-approximation for fk , and

��fk = fk +
h2

12
(1 + 24a)yVk Hk +O(h4): (19)

With the help of (16) and (19), from (8a) and (11), we obtain the local truncation error (LTE2)
associated with the di�erence scheme (8a) as

LTE2 =
−h6

360
(1 + 104a)yVk Hk +O(h8): (20)

The proposed di�erence method (8a) to be of O(h4), the coe�cients of h6 in (20) must be zero,
thus we obtain a=− 1

104 and the local truncation error reduces to LTE2 = O(h
8).
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Whenever f(x; y; z; y′′; z′′) is nonlinear, the di�erence equations (4) or (8) form a coupled nonlin-
ear block system. To solve such a system we could apply the Newton’s NBSOR method. To de�ne
the NBSOR method, we �rst write (4) or (8) in the form

�(y; z) = 0; (21a)

	(y; z) = 0; (21b)

where

y=




y1
y2
...
yN


 ; z =




z1
z2
...
zN


 ; �(y; z) =




�1(y; z)
�2(y; z)

...
�N (y; z)


 ; 	(y; z) =




 1(y; z)
 2(y; z)
...

 N (y; z)


 :

Let

J =

[
T11 T12
T21 T22

]

be the Jacobian of � and 	, which is the 2N th-order block tridiagonal matrix where

T11 =
@(�1; �2; : : : ; �N )
@(y1; y2; : : : ; yN )

=




@�1
@y1

@�1
@y2

0

@�2
@y1

@�2
@y2

@�2
@y3

0
@�N

@yN−1

@�N

@yN



;

T12 =
@(�1; �2; : : : ; �N )
@(z1; z2; : : : ; zN )

; T21 =
@( 1;  2; : : : ;  N )
@(y1; y2; : : : ; yN )

and T22 =
@( 1;  2; : : : ;  N )
@(z1; z2; : : : ; zN )

;

are the N th-order tridiagonal matrices.
Now, the matrix equation for NBSOR method is given by[

T11 T12
T21 T22

] [
�y
�z

]
=
[−�
−	

]
; (22)

where �y and �z are any intermediate values and with any initial approximations (y(0); z(0)) of
(yk ; zk); k = 1(1)N , we de�ne

y(n+1) = y(n) + �y(n); n= 0; 1; 2; : : : ; (23a)

z(n+1) = z(n) + �z(n); n= 0; 1; 2; : : : : (23b)

System (22) can be solved for �y(n+1) and �z(n+1) by using block SOR method (inner iterative
method) as follows:

T11�y(n+1) = ![− �(y(n); z(n))− T12�z(n)] + (1− !)T11�y(n); (24a)

T22�z(n+1) = ![−	(y(n); z(n))− T21�y(n+1)] + (1− !)T22�z(n); (24b)

where ! ∈ (0; 2) is a relaxation parameter and n = 0; 1; 2; : : : . The above system of equations can
be solved by using tridiagonal solver (see [6,7]). Then by using outer iterative method (23), we can
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calculate y(n+1) and z(n+1); n = 0; 1; 2; : : : . In order for this method to converge it is su�cient that
the initial approximation (y(0); z(0)) be ‘close’ to the solution.
If the di�erential equation (1) is linear, then the di�erence method (4) or (8) in matrix form can

be written as[
A11 A12
A21 A22

] [
y
z

]
=
[
d1
d2

]
; (25)

where A11;A12;A21 and A22 are the N th-order tridiagonal matrices, d1 and d2 are vectors consisting
of right-hand side functions and some boundary conditions associated with the block system given
by (25).
Relative to the partitioning (25), the BSOR method is de�ned by

A11y(n+1) = ![− A12z(n) + d1] + (1− !)A11y(n); n= 0; 1; 2; : : : ; (26a)

A22z(n+1) = ![− A21y(n+1) + d2] + (1− !)A22z(n); n= 0; 1; 2; : : : ; (26b)

where ! is a real number known as the relaxation factor. With ! = 1, the BSOR method reduces
to the block Gauss–Seidel method. If !¿ 1 or !¡ 1, we have over relaxation or under relaxation,
respectively.

4. Convergence analysis

Let us consider the fourth-order di�erence methods (8a) and (8b), when applied to a model
equation yIV = f(x) can be written as

(yk−1 + yk + yk+1 − 3yk) +
h
2
(zk−1 − zk+1) =

−h4

180
(fk+1 + fk−1 + 13fk); (27a)

3
h
(yk−1 − yk+1) + (zk−1 + zk + zk+1 + 3zk) =

h3

60
(fk+1 − fk−1) (27b)

which can be written in block form as
 (L− 3I) h

2
M

3
h
M (L+ 3I)



[
y
z

]
=
[
d1
d2

]
; (28)

where

and y; z are two N -dimensional solution vectors and d1; d2 are vectors consisting of right-hand side
functions and some boundary values associated with (27). The BSOR method for the scheme (28)
is

y(n+1) = (1− !)y(n) − !h
2
(L− 3I)−1Mz(n) + !(L− 3I)−1d1; (29a)
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z(n+1) = (1− !)z(n) − 3!
h
(L+ 3I)−1My(n+1) + !(L+ 3I)−1d2: (29b)

Then the associated block SOR and block Jacobi iteration matrices of (29) are

L! =


 (1− !)I

−!h
2
(L− 3I)−1M

−3!
h
(L+ 3I)−1M (1− !)I


 (30a)

and

B =


 0

−h
2
(L− 3I)−1M

−3
h
(L+ 3I)−1M 0


 : (30b)

From the SOR theory, we know that if � is an eigenvalue of B then � is an eigenvalue of L!,

where (�+ !− 1)2 = �!2�2: (31)

To determine �, we let
[C1C2

]
be a partitioned eigenvector of B, then we have

−h
2
(L− 3I)−1MC2 = �C1; (32a)

−3
h
(L+ 3I)−1MC1 = �C2 (32b)

and on eliminating C2, we obtain
3
2 (L− 3I)−1M(L+ 3I)−1MC1 = �2C1: (33)

Now the rate of convergence of the BSOR method is dependent on the eigenvalues of B which are
given by

3
2�= �2; (34)

where � are the eigenvalues of (L2 − 9I)−1M 2 and (L − 3I)−1M and (L + 3I)−1M have coin-
cident eigenvectors. Since the eigenvalues of L and M are 1 + 2 cos(j�=(N + 1)) and 2 i cos(j�=
(N + 1)); j = 1; 2; : : : ; N , respectively, then B has purely imaginary eigenvalues and hence from
(34) the eigenvalues � of L! are real and positive satisfying 0¡�¡ ��= S((L2 − 9I)−1M 2), where
S(A) denotes the spectral radius of A.
Hence we can determine the optimal parameter as

!0 =
2

1 +
√
1− (3=2)� ; (35)

where �= S((L2 − 9I)−1M2). Thus we can determine the convergence factor

��= !0 − 1 = 1−
√
1− (3=2)�

1 +
√
1− (3=2)� : (36)

For convergence we must have | ��|¡ 1 to give the range

0¡�¡ 2
3 : (37)
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5. Application to problems in polar coordinates

Consider a class of singular fourth-order linear ordinary di�erential equation of the form

�4u ≡
(
d2

dr2
+

�
r
d
dr

)2
u= f(r); 0¡r¡ 1; �= 1 and 2

or equivalently,

uIV = b(r)u′′′ + c(r)u′′ + d(r)u′ + f(r); 0¡r¡ 1; (38)

where b(r) = −2�=r; c(r) = �(2 − �)=r2; d(r) = �(� − 2)=r3; and for � = 1 and 2, �2 = (d2=dr2) +
(�=r)(d=dr) represents one-dimensional Laplacian operator in cylindrical and spherical coordinates,
respectively.
The boundary conditions are given by

u(0) = A0; u′(0) = A1; u(1) = B0; u′(1) = B1; (39a)

or

u′(0) = 0; u′′′(0) = 0; u(1) = B0; u′(1) = B1; (39b)

where A0; B0; A1 and B1 are constants. For � = 1 and 2, Eq. (38) represents fourth-order ordinary
di�erential equation in cylindrical and spherical symmetry, respectively. The numerical solution of
the di�erential equation (38) can be obtained by using �ve grid points. But so far, no second- and
fourth-order di�erence methods using three grid points are known for the singular equation (38).
The di�culties were experienced in the past, especially, for the fourth-order numerical solution of
the fourth-order ordinary di�erential equations in polar coordinates. The solution usually deteriorates
in the neighbourhood of the singularity r=0. In this section we re�ne our procedure in such a way
that the solutions retain the order and accuracy everywhere including the region in the vicinity of
the singularity r = 0.
Now replacing the variables x; y; z by r; u; u′ and applying the di�erence scheme (4) to the singular

equation (38), we obtain a second-order di�erence method as

− 2(uk+1 − 2uk + uk−1) + h(u′k+1 − u′k−1) =
h4

6
[bk �u

′′′
k + ck �u

′′
k + dku′k + fk]; (40a)

− 3(uk+1 − uk−1) + h(u′k+1 + 4u
′
k + u′k−1) = 0; k = 1(1)N; (40b)

where bk = b(rk); ck = c(rk); dk = d(rk); fk = f(rk); and �u
′′′
k ; �u

′′
k are already de�ned in (3).

Similarly, replacing the variables x; y; z by r; u; u′ and applying the fourth-order di�erence scheme
(8b) to the singular equation (38), we obtain

−2(uk+1 − 2uk + uk−1) + h(u′k+1 − u′k−1)

=
h4

90
[13(bk �u

′′′
k + ck ��u

′′
k + dku′k + fk)

+ (1− hp0)(bk+1 �u
′′′
k+1 + ck+1 ��u

′′
k+1 + dk+1u′k+1 + fk+1)

+ (1 + hp0)(bk−1 �u
′′′
k−1 + ck−1 ��u

′′
k−1 + dk−1u′k−1 + fk−1)]; k = 1(1)N; (41)
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where

p0 =
−�
4rk

; bk±1 = b(rk±1); ck±1 = c(rk±1); dk±1 = d(rk±1); fk±1 = f(rk±1):

Note that, scheme (41) fails when the solution is to be determined at k =1, although the scheme
is of O(h4). We overcome this di�culty by modifying the method (41) in such a way that the
solutions retain the order and accuracy even in the vicinity of the singularity r = 0.
We consider the following approximations:

bk±1 = bk ± hb′k +
h2

2
b′′k +O(±h3 + h4); (42a)

ck±1 = ck ± hc′k +
h2

2
c′′k +O(±h3 + h4); (42b)

dk±1 = dk ± hd′
k +

h2

2
d′′

k +O(±h3 + h4); (42c)

fk±1 = fk ± hf′
k +

h2

2
f′′
k +O(±h3 + h4): (42d)

Now using approximation (42) in (41) and neglecting the higher-order terms, we can rewrite (41)
in compact operator form as

−2(uk+1 − 2uk + uk−1) + h(u′k+1 − u′k−1)

=
h2

90
[24p0bk − 24b′k + 18ck + h2(12p0b′′k + 8p0c

′
k − 4c′′k )]�2r uk

+
h3

180
[30p0ck − 30c′k + 15p0h2c′′k ](2�r�r)uk

+
h4

90
[30c′k − 30p0ck + 15dk + h2(−15p0c′′k + d′′

k − 2p0d′
k)]u

′
k

+
h2

90
[15bk + h2(b′′k − 2p0b′k + 7c′k − 7p0ck + dk)]�2r u

′
k

+
h3

180
[24b′k − 24p0bk − 3ck + h2(−12p0b′′k + 5c′′k − 10p0c′k + 2d′

k − 2p0dk)](2�r�r)u′k

+
h4

90
[15fk + h2(f′′

k − 2p0f′
k)]; k = 1(1)N: (43a)

Similarly, using the di�erence scheme (8b), a fourth-order approximation for the derivative u′ for
the singular equation (38) in compact form may be written as

−3(uk+1 − uk−1) + h(u′k+1 + 4u
′
k + u′k−1)

=
−2h
5

bk�2r uk +
h3

30
(ck + b′k)�

2
r u

′
k +

h2

60
[12bk + h2(c′k + dk)](2�r�r)u′k

+
h5

30
(d′

ku
′
k + f′

k); k = 1(1)N: (43b)

Finite di�erence equation (40) or (43) alongwith the boundary conditions (39a) give a 2N × 2N
linear system of equations for the unknowns u1; u2; : : : ; uN ; u′1; u

′
2; : : : ; u

′
N .



R.K. Mohanty / Journal of Computational and Applied Mathematics 114 (2000) 275–290 285

If the boundary conditions of type (39b) are used, then r = 0 is a part of the solution space and
the solution is to be determined at this point. In this case, we need two extra di�erence equations
valid at r = 0.
For simplicity, let us consider the case when �=2. Then the di�erential equation (38) reduces to

uIV +
4
r
u′′′ = f(r): (44)

Since u′(0) = u′′′(0) = 0; in the limit, at r = 0, Eq. (44) may be written as

5uIV = f(0) (45)

and the corresponding di�erence equation of O(h2) and of O(h4) at r = 0 are given by

2(u0 − u1) + hu′1 =
h4

60
f0 (46)

and

2(u0 − u1) + hu′1 =
h4

900
[15f0 + h2f′′

0 ]; (47)

respectively, where we have used the condition u′0 = u′′′0 = 0, i.e. u1 = u−1 and u′1 =−u′−1.
Equations (41) alongwith (46), or (44) alongwith (47) produce a (2N + 1) × (2N + 1) linear

system of equations which can be solved for the unknowns u0; u1; : : : ; uN ; u′1; u
′
2; : : : ; u

′
N .

Now consider the coupled nonlinear singular equations of the form

uIV = a(r)[u′v′′ + v′u′′] + f(r); 0¡r¡ 1; (48a)

vIV =−a(r)u′u′′ + g(r); 0¡r¡ 1; (48b)

where a(r) = 1=r and at the end points u(0); v(0); u′(0); v′(0); u(1); v(1); u′(1) and v′(1) are
known. The above system of equations represent model equations of equilibrium for a load sym-
metrical about the centre (see [12]).
Second-order di�erence methods for u; v; u′ and v′ for solving the system (48) are straightforward

and are given by

− 2(uk+1 − 2uk + uk−1) + h(u′k+1 − u′k−1) =
h4

6
[ak(u′k �v

′′
k + v′k �u

′′
k) + fk]; (49a)

− 2(vk+1 − 2vk + vk−1) + h(v′k+1 − v′k−1) =
h4

6
[− aku′k �u

′′
k + gk]; (49b)

− 3(uk+1 − uk−1) + h(u′k+1 + 4u
′
k + u′k−1) = 0; (49c)

− 3(vk+1 − vk−1) + h(v′k+1 + 4v
′
k + v′k−1) = 0; (49d)

where ak = a(rk); fk = f(rk) and gk = g(rk).
Using the same technique, as in the case of linear di�erence scheme (43), di�erence methods of

O(h4) for u; v; u′ and v′ for solving the system (48) in compact operator form are given by

− 2(uk+1 − 2uk + uk−1) + h(u′k+1 − u′k−1) =P1[15fk + h2f′′
k ]

+ 10P2[a∗(2�r�r)(u′kv
′
k) + ha′k(2 + �2r)(u

′
kv

′
k)]
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−P4[a∗(2�r�r)u′k + ha′k(2 + �2r)u
′
k](2�r�r)vk

−P4[a∗(2�r�r)v′k + ha′k(2 + �2r)v
′
k](2�r�r)uk

−P3[(2a∗ − 13
2 ak)u′k + ha′k(2�r�r)u′k + ak�2r u

′
k]�

2
r vk

−P3[(2a∗ − 13
2 ak)v′k + ha′k(2�r�r)v′k + ak�2r v

′
k]�

2
r uk

+P2[(10a∗ − 13
2 ak)(2�r�r)u′k + 10ha

′
k(2 + �2r)u

′
k]v

′
k

+P2[(10a∗ − 13
2 ak)(2�r�r)v′k + 10ha

′
k(2 + �2r)v

′
k]u

′
k

+P2[ak(2�r�r)u′k + 2ha
′
ku

′
k]�

2
r v

′
k

+P2[ak(2�r�r)v′k + 2ha
′
kv

′
k]�

2
r u

′
k ; (50a)

− 2(vk+1 − 2vk + vk−1) + h(v′k+1 − v′k−1) =P1[15gk + h2g′′k ]

− 5P2[a∗(2�r�r)(u′k)
2 + ha′k(2 + �2r)(u

′
k)
2]

+P4[a∗(2�r�r)u′k + ha′k(2 + �2r)u
′
k](2�r�r)uk

+P3[(2a∗ − 13
2 ak)u′k + ha′k(2�r�r)u′k + ak�2r u

′
k]�

2
r uk

−P2[(10a∗ − 13
2 ak)(2�r�r)u′k + 10ha

′
k(2 + �2r)u

′
k]u

′
k

−P2[ak(2�r�r)u′k + 2ha
′
ku

′
k]�

2
r u

′
k ; (50b)

− 3(uk+1 − uk−1) + h(u′k+1 + 4u
′
k + u′k−1) =Q1f′

k

+Q2[2ak(2�r�r)u′k ·(2�r�r)v′k+4ak(u′k�
2
r v

′
k+v′k�

2
r u

′
k)

+2ha′ku
′
k(2�r�r)v′k + 2ha

′
kv

′
k(2�r�r)u′k]; (50c)

− 3(vk+1 − vk−1) + h(v′k+1 + 4v
′
k + v′k−1) =Q1g′k

−Q2[ak(2�r�r)u′k · (2�r�r)u′k + 2ha
′
ku

′
k(2�r�r)u′k

+4aku′k�
2
r u

′
k]; (50d)

where we denote

P1 =
h4

90
; P2 =

h3

90
; P3 =

2h2

45
; P4 =

h2

12
; Q1 =

h5

30
; Q2 =

h3

120
;

ak = a(rk); fk = f(rk); gk = g(rk); a∗ = ak +
h2

2
a′′k ; etc:;

and �ruk = (uk+1=2− uk−1=2) and �ruk = 1
2(uk+1=2 + uk−1=2) are central and average di�erence operators

with respect to r-direction, respectively.
Note that, schemes (40), (43), (49) and (50) are free from the terms 1=(k ± 1) hence very easily

solved for k=1(1)N in the region (0; 1). In Section 3, we have already discussed the NBSOR method
for scalar general nonlinear equation. In a similar manner, NBSOR method with four unknowns can
be expressed for the coupled nonlinear di�erential equations. The resulting block tridiagonal systems
(40) and (43) can be solved using BSOR method and (49) and (50) can be solved using NBSOR
method.
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Table 1
Problem 1: The RMSE

Scheme (40) Scheme (43)

h � = 1 � = 2 � = 1 � = 2
1
8 u 0:6737 (−03) 0:2214 (−02) 0:9155 (−04) 0:2005 (−03)

u′ 0:2137 (−02) 0:1081 (−01) 0:3365 (−03) 0:5835 (−03)
1
16 u 0:1501 (−03) 0:6109 (−03) 0:6562 (−05) 0:1492 (−04)

u′ 0:4995 (−03) 0:3859 (−02) 0:2584 (−04) 0:5486 (−04)
1
32 u 0:3576 (−04) 0:1590 (−03) 0:4273 (−06) 0:1047 (−05)

u′ 0:1206 (−03) 0:1337 (−02) 0:1746 (−05) 0:4508 (−05)
1
64 u 0:8769 (−05) 0:4051 (−04) 0:2690 (−07) 0:7053 (−07)

u′ 0:2972 (−04) 0:4648 (−03) 0:1118 (−06) 0:3382 (−06)

6. Numerical illustrations

To illustrate our methods and to demonstrate computationally its convergence, we have solved
four problems, two linear using BSOR method and two nonlinear using NBSOR method whose
exact solutions are known to us. In each case, we took the unit length [0; 1] as our region of
integration. The right-hand side functions and boundary conditions may be obtained using the exact
solutions. The initial vectors

→
0 are used in all cases and the iterations were stopped when the average

absolute error tolerance 610−12 was achieved. Theoretically, it is di�cult to calculate the value of
! in general case. Therefore, while solving nonlinear equations, we have considered only �ve inner
iterations and the value of ! = 1. However, for linear model equation we are able to provide the
value of !. All computations were carried out using double precision arithmetic at the Computer
Service Centre, University of Delhi.

Problem 1. The problem is to solve (38) subject to the boundary conditions (39a). The exact
solution is u = r4 sin r. The root mean square errors (RMSE) are tabulated in Table 1 for � = 1
and 2.

Problem 2. The problem is to solve (44) subject to the boundary conditions of the form (39b). The
exact solution is u= cosh r. The RMSE are tabulated in Table 2.

Problem 3. yIV = y(y′ + y′′ + y′′′) + f(x); 0¡x¡ 1, subject to the natural boundary conditions
prescribed. The exact solution is y = e2x. The maximum absolute errors (MAE) and RMSE are
tabulated in Table 3.

Problem 4. The system of nonlinear equations (48) are to be solved subjected to the natural boundary
conditions prescribed. The exact solutions are u=cos r and v=er . The MAE and RMSE are tabulated
in Table 4.

Now for the model problem yIV = (12 + 48x2 + 16x4)ex
2
; 0¡x¡ 1 when applied to the coupled

di�erence equation (8) subjected to appropriate natural boundary conditions with the exact solution
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Table 2
Problem 2: The RMSE

Schemes (46) and (40) Schemes (47) and (43)

h u u′ u u′

1
8 0:2683 (−04) 0:1101 (−03) 0:1048 (−04) 0:3090 (−04)
1
16 0:6982 (−05) 0:3701 (−04) 0:1028 (−05) 0:2896 (−05)
1
32 0:1782 (−05) 0:1263 (−04) 0:9225 (−07) 0:2390 (−06)
1
64 0:4433 (−06) 0:4305 (−05) 0:7747 (−08) 0:1573 (−07)

Table 3
Problem 3: The MAE and RMSE

Scheme (4) Scheme (8)

h MAE RMSE MAE RMSE
1
8 y 0:2314 (−02) 0:1600 (−02) 0:4665 (−04) 0:3216 (−04)

y′ 0:9420 (−02) 0:5697 (−02) 0:2166 (−03) 0:1257 (−03)
1
16 y 0:5684 (−03) 0:3757 (−03) 0:3151 (−05) 0:2080 (−05)

y′ 0:2205 (−02) 0:1330 (−02) 0:1285 (−04) 0:7554 (−05)
1
32 y 0:1412 (−03) 0:9165 (−04) 0:2007 (−06) 0:1299 (−06)

y′ 0:5425 (−03) 0:3236 (−03) 0:7923 (−06) 0:4631 (−06)

Table 4
Problem 4: The MAE and RMSE

Scheme (49) Scheme (50)

h MAE RMSE MAE RMSE
1
8 u 0:1098 (−04) 0:7702 (−05) 0:5593 (−05) 0:3832 (−05)

v 0:5124 (−05) 0:3483 (−05) 0:1590 (−05) 0:1115 (−05)
u′ 0:3968 (−04) 0:2648 (−04) 0:2551 (−04) 0:1369 (−04)
v′ 0:1867 (−04) 0:1308 (−04) 0:6140 (−05) 0:3893 (−05)

1
16 u 0:2825 (−05) 0:1859 (−05) 0:5396 (−06) 0:3600 (−06)

v 0:1330 (−05) 0:8757 (−06) 0:1154 (−06) 0:7678 (−07)
u′ 0:9905 (−05) 0:6484 (−05) 0:2582 (−05) 0:1303 (−05)
v′ 0:4165 (−05) 0:3083 (−05) 0:4324 (−06) 0:2678 (−06)

1
32 u 0:7063 (−06) 0:4572 (−06) 0:4609 (−07) 0:3042 (−07)

v 0:3355 (−06) 0:2175 (−06) 0:7753 (−08) 0:5079 (−08)
u′ 0:2533 (−05) 0:1599 (−05) 0:2296 (−06) 0:1106 (−06)
v′ 0:1048 (−05) 0:7562 (−06) 0:2891 (−07) 0:1768 (−07)
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Table 5
Model problem

Block Gauss–Seidel Block SOR

h � No. of !0 No. of �est !est
iterations iterations

1
4 0:4969 91 1:34 30 0:5 1:333
1
8 0:6328 441 1:63 67 0:625 1:600
1
16 0:6565 1762 1:7961 133 0:656 1:777
1
32 0:6648 6722 1:8932 276 0:664 1:880
1
64 0:6666 25260 1:9450 561 0:666 1:939

y=e x
2
, we can derive estimates for ! and � from the formula !est =2=(1+ ch). For values of c=2,

we obtain the result for �est = 2
3(1− c2h2), which is con�rmed by the results given in Table 5.

7. Concluding remarks

The numerical results con�rm that the �nite di�erence methods obtained from the new discretiza-
tions technique outlined in Section 2 do yield second- and fourth-order convergence for the solution
and its derivative of the fourth-order ordinary di�erential equations. It is mentioned here that for
meaningful local truncation errors the partial derivatives of f(x; y; z; y′′; z′′) with respect to x should
be continuous atleast twice and four times in [a; b] for the second- and fourth-order �nite di�erence
methods, respectively. Di�erence formulas for mesh points near a boundary are obtained without the
use of �ctitious points, thereby eliminating the usual di�culty encountered in using central di�erence
methods. Further, it is shown that the structured block matrix systems discussed can be solved in
an e�cient manner by the BSOR and NBSOR method. During computation we found that for con-
vergent results our di�erence schemes require a large number of iterations, thus the order drops in
some cases due to the e�ect of round-o� errors, but numerical oscillations do not appear throughout
the computation.
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