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Abstract

The complete form of the amplitude of one closed string Ramond–Ramond (RR), two fermionic strings
and one scalar field in IIB superstring theory has been computed in detail. Deriving 〈VCVψ̄VψVφ〉 by using
suitable gauge fixing, we discover some new vertices and their higher derivative corrections. We investigate
both infinite gauge and scalar u-channel poles of this amplitude. In particular, by using the fact that the
kinetic term of fermion fields has no correction, employing Born–Infeld action, the Wess–Zumino terms
and their higher derivative corrections, we discover all infinite t, s-channel fermion poles. The couplings
between one RR and two fermions and all their infinite higher derivative corrections have been explored.
In order to look for all infinite (s + t +u)-channel scalar/gauge poles for p + 2 = n, p = n cases, we obtain
the couplings between two fermions–two scalars and two fermions, one scalar and one gauge field as well
as all their infinite higher derivative corrections in type IIB. Specifically we make various comments based
on arXiv:1205.5079 in favor of universality conjecture for all order higher derivative corrections (with or
without low energy expansion) and the relation of open/closed string that is responsible for all superstring
scattering amplitudes in IIA, IIB.
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1. Introduction

D-branes [1–3] have been clarifying essential tools in most of the progresses in theoretical
high energy physics as well as in superstring theories. As an instance of dynamical aspects of
D-branes, one may consider the transition between both open and closed string [4]. D-brane
physics has diverse dual descriptions (see string dualities [5]). Some more examples like the
D0/D4 system with their explanations have been realized in the introduction of [6]. In particular
in [7] we have shown how the world volume must appear from super gravity point of view,
namely we set new kind of ADM reduction to IIB which was reduced to hyperboloidal H 5 space
in 5D and showed that A(ds) brane world might be understood.

In IIA (IIB) string theories, Dp-branes with even (odd) p (which is the spatial dimension
of a Dp-brane) are related to BPS branes in which there is no instability and supersymmetry
is not broken. Apart from these properties, BPS branes carry Ramond–Ramond (RR) charge.
To describe dynamics of branes, one has to work with some proper effective actions, namely one
has to deal with bosonic effective actions and also should distinguish it from its supersymmetric
version. Bosonic actions in the presence of various Dp-brane configurations were considered
in [8].

The supersymmetrized version of bosonic effective action that appeared in [8] has not been
completely found yet, however it is worth mentioning [9] as an important reference. In this paper,
in order to avoid some details we address some of the main references. One might start reading
[10] to explore the effective action for a bosonic Dp-brane. To follow the supersymmetric action
for a Dp-brane Ref. [11] should be considered.

For a comprehensive review of Myers terms, the Chern–Simons action, the Wess–Zumino
actions and more significantly for Born–Infeld action [12,13] and all references therein are sug-
gested. The three standard effective field theory methods namely pull-back, Taylor expansion and
Myers terms have been addressed in [14]. Some methods for looking for all the higher derivative
corrections of Myers, Chern–Simons and Born–Infeld actions, have been expressed in [14].

Let us point out an issue in favor of scattering theory in string theory. We may hint to a
conjecture which appeared in [15] where BPS open strings quantum effects might indicate the
host branes curvature. Given some attempts [16–18], it would be nice to find the complete form
of Wess–Zumino (WZ) and DBI actions. In this paper we provide some more data and our S-
matrix will be useful for all order α′ determination of DBI and WZ actions. We just refer to
[19] out of so many works that involved either the scattering from stable branes or dealt with
intriguing applications of the branes. Note that some of our higher derivative corrections come
from the couplings of lower dimensional branes with closed string RR, meanwhile lower dimen-
sional branes should be realized as some soliton objects. To be more specific, in [6] we explored
dissolving lower dimensional branes inside higher dimension branes [20]. Another example is
related to D(−1)/D3 configuration, where this system has N2 entropy behavior and this result
can be interpreted by taking into account higher order α′ Myers terms. Some applications of new
couplings (including their corrections) in M-theory are recently addressed in [21,20].

Having set some of the past works on Myers terms and WZ effective actions [12,22–26],
we would like to explore all the infinite two fermions–two scalars and two fermions, one scalar
and one gauge field couplings as well as their all order α′ higher derivative corrections. Basically
we want to find out all the infinite effective couplings between two fermions two scalars and two
fermions, a scalar and a gauge field by matching field theory vertices with an infinite number of
scalar/gauge (t + s + u)-channel poles of the string amplitude of 〈VCVφV ¯ Vψ 〉 for p + 2 = n,
ψ
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p = n cases (n is the rank of RR field strength H ) accordingly. These new couplings which we
intend to derive might have some applications to F-theory [27] as well as M-theory [6,20,21].

This work illustrates the fact that super Yang–Mills vertices such as two fermion–two scalar
couplings and in particular two fermion–one gauge–one scalar couplings give rise precisely to
the same scalar/gauge poles as those poles which appeared in the string theory amplitude of
〈VCVφVψ̄Vψ 〉.

This paper is organized as follows.
In the next section, we explain superstring scattering computations of a closed string RR field,

two fermion fields and one scalar field, to actually obtain the complete and closed form of the
correlators of 〈VCVφVψ̄Vψ 〉. Our computations make sense in IIB superstring theory as both
fermions here carry the same chirality.

Then by expanding the amplitude at low energy limit and by finding the desired vertices such
as the vertex of one RR, two fermion fields and its extensions (to all orders in α′) as well as
using WZ terms, we produce both infinite scalar and gauge u-channel poles for p + 2 = n and
p = n cases. We move on to produce all infinite t, s-channel fermion poles by obtaining the
infinite extensions of the vertex of one RR and two fermions. Finally we summarize our results
and talk about the deep relation that exists between a closed string and an open string and we
find that indeed it is responsible for matching superstring amplitudes with their effective field
theories. In order to avoid introducing some more details and notations, we refer the reader to
Appendices A and B of [14,22].

This paper provides some more information on the universal behavior of the higher derivative
corrections [23]. In particular the calculations of this paper clarify that the universal conjec-
ture for higher order corrections which appeared in [23] works even for fermionic amplitudes,
including two fermion–two scalar couplings. Thus our S-matrix serves one more test of our un-
derstanding of the full DBI, WZ effective actions. This universal conjecture might also be useful
for deriving all the singularities of the higher point functions of BPS amplitudes without the
need for applying direct conformal field theory computations. This universal behavior should
have origins coming from the deep relation of a closed and an open string. This relation may
clarify closed string’s composite nature only in terms of open strings. We describe it further in
the conclusion section.

2. Notations and analysis of 〈Vψ̄VψVφ〉

In this section we use conformal field theory methods to actually find out the entire amplitude
of a closed string RR (C-field), two fermions (with the same chirality) and one scalar field in the
world volume of IIB superstring theory.

Given the vast recent research works on scattering amplitudes, it is indeed impossible to ad-
dress all attempts on this subject, however we would like to address some of the works that
carried out at tree level computations [28–30,12,22,23]. The needed vertex operators for our
purpose are1

V
(0)
φ (x) = ξi

(
∂Xi(x) + α′ik · ψψi(x)

)
eα′ik·X(x),

V
(−1/2)

Ψ̄
(x) = ūAe−φ(x)/2SA(x)eα′iq·X(x),

V
(−1/2)
Ψ (x) = uBe−φ(x)/2SB(x)eα′iq·X(x),

1 We clearly consider α′ in this paper.
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V
(− 1

2 ,− 1
2 )

C (z, z̄) = (P−/H(n)Mp)αβe−φ(z)/2Sα(z)ei α′
2 p·X(z)e−φ(z̄)/2Sβ(z̄)ei α′

2 p·D·X(z̄), (1)

(p, q, k) become the momenta of the RR, fermion and scalar field accordingly. Their on-shell
condition is k2 = q2 = p2 = 0. Note that uA is the fermion’s wave function of Majorana–Weyl
in ten dimensions of space–time. Spin indices have been raised by Cαβ (charge conjugation
matrix),

(P−/H(n))
αβ = Cαδ(P−/H(n))δ

β, (2)

where the definitions of the traces are

Tr
(
P−/H(n)Mpγ k

) ≡ (P−/H(n)Mp)αβ
(
γ kC−1)

αβ
,

Tr
(
P−/H(n)MpΓ iab

) ≡ (P−/H(n)Mp)αβ
(
Γ iabC−1)

αβ
, (3)

where P− is a projection operator, P− = 1
2 (1 − γ 11) and the field strength of RR is

/H(n) = an

n! Hμ1···μnγ
μ1 · · ·γ μn,

where for type IIB theory, n = 1,3,5 and an = 1. We use doubling trick to deal with just holo-
morphic functions (for further details, see Appendix A of [14]). The amplitude of two fermions
and one gauge field has been found out in [31]; however, to get familiar with the notations let
us start working with tree level amplitude of two fermions and one scalar field. This three point
function 〈Vψ̄VψVφ〉 at disk level is given by

AΨ̄ ,Ψ,φ ∼
∑

non-cyclic

∫
dx1 dx2 dx3 Tr

〈
V

(−1/2)

Ψ̄
(x1)V

(−1/2)
Ψ (x2)V

(−1)
φ (x3)

〉
. (4)

Substituting the vertex operators and taking into account the following holomorphic corre-
lators 〈

Xμ(z)Xν(w)
〉 = −α′

2
ημν log(z − w),

〈
ψμ(z)ψν(w)

〉 = −α′

2
ημν(z − w)−1,〈

φ(z)φ(w)
〉 = − log(z − w). (5)

Eq. (4) can be written down as

Aψ̄,ψ,φ = iTp21/2πα′
∫

dx1 dx2 dx3 ξ1ix
−1/4
12 (x13x23)

−1/2

× |x12|α′ 2k1.k2 |x13|α′ 2k1.k3 |x23|α′ 2k2.k3

× 〈 : SA(x1) : SB(x2) : ψi(x3) : 〉ūA
1 uB

2 , (6)

Note that we have normalized the amplitude by a coefficient of (iTp21/2πα′). Using〈 : SA(x1) : SB(x2) : ψi(x3) : 〉 = 2−1/2x
−3/4
12 (x31x32)

−1/2(γ i
)
AB

,

one can show that (6) is now SL(2,R) invariant. We do gauge fixing as (x1, x2, x3) = (0,1,∞).
Setting this gauge fixing into (6), the amplitude becomes

AΨ̄ ,Ψ,φ = iTpπα′ūAγ i uBξi

(
Tr(λ1λ2λ3) − Tr(λ1λ3λ2)

)
. (7)
1 AB 2
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The final result of the string theory can be reproduced in field theory by extracting the kinetic
term of the fermion fields (2πα′Tp)Tr(ψ̄γ μDμψ). One has to extract the covariant derivative of
fermion field and take into account the commutator in its definition as (Diψ = ∂iψ − i[φi,ψ]).
It is also good to know that the Wick-like rule [32,33] has been extended in [25,26,12,14] to
find various correlators including two spin operators and an infinite number of fermions and/or
currents.

2.1. The complete and closed form of 〈VCVφVψ̄Vψ 〉

After providing the necessary details we now compute the complete form (entire result to all
orders in α′) of the scattering amplitude of one closed string RR (in the bulk), two fermions with
the same chirality and a scalar field in the world volume of BPS branes. Regarding the chirality
of the fermions our computation makes sense just in IIB superstring theory and the entire result
cannot be extended to IIA (because fermions have different chirality in IIA). As a matter of fact
neither there are any gauge nor scalar (t + s + u)-channel poles for this particular amplitude in
IIA. Therefore all order corrections of two fermions–two scalars and two fermions–a gauge–a
scalar of this paper cannot be applied to IIA. This 〈VCVφVψ̄Vψ 〉 amplitude can be looked for as
follows

ACφψ̄ψ ∼
∫

dx1 dx2 dx3 dzdz̄
〈
V

(0)
φ (x1)V

(−1/2)

ψ̄
(x2)V

(−1/2)
ψ (x3)V

(− 1
2 ,− 1

2 )

RR (z, z̄)
〉
. (8)

For disk amplitudes all three open strings have to be embedded on the boundary and RR
should be located inside of the disk. Notice that we just want to keep track of Tr(λ1λ2λ3)

ordering. By replacing all the vertex operators into (8), one might reveal that the amplitude
should be divided to two different parts (A1, A2). The final result is complicated so we decided
to carry out each part of the amplitude separately.

First, we look for (A1) in which for this part we need to know the correlation function of four
spin operators (with the same chirality) in ten dimensions. This correlation function can be found
in [34,35], thus we just replace it into the amplitude and the result should be read as

ACφψ̄ψ

1 = μpπ−1/2

4

∫
dx1 dx2 dx3 dx4 dx5 (P−/H(n)Mp)γ δξ1i

× ūA
1 uB

2 (x23x24x25x34x35x45)
−1

× 1

2

[(
γ μC

)
γ δ

(γμC)ABx43x52 − (
γ μC

)
γB

(γμC)Aδx45x23
]
I1 Tr(λ1λ2λ3), (9)

where we normalized the amplitude by μpπ−1/2

4 , xij = xi − xj , x4 = z = x + iy, x5 = z̄ =
x − iy, and

I1 = 〈 : ∂Xi(x1)e
α′ik1·X(x1) : eα′ik2·X(x2) : eα′ik3·X(x3) : ei α′

2 p·X(x4) : ei α′
2 p·D·X(x5) : 〉.

Using Wick theorem one obtains

I1 =
(

ipix54

x14x15

)
|x12|α′ 2k1·k2 |x13|α′ 2k1·k3 |x14x15| α′ 2

2 k1·p|x23|α′ 2k2·k3 |x24x25| α′ 2
2 k2·p

× |x34x35| α′ 2
2 k3vp|x45| α′ 2

4 p·D·p.

By replacing I1 in the amplitude, we realize that the amplitude is SL(2,R) invariant. Using the
following Mandelstam variables
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s = −α′

2
(k1 + k3)

2, t = −α′

2
(k1 + k2)

2, u = −α′

2
(k3 + k2)

2,

and in particular carrying out a special gauge fixing as (x1 = 0, x2 = 1, x3 = ∞), one can obtain
the first part of the amplitude as

ACφψ̄ψ

1 = μpπ−1/2

4
(P−/H(n)Mp)γ δξ1i ū

A
1 uB

2

(−ipi

2

)

×
∫ ∫

dzdz̄ |z|2t+2s−2|1 − z|2t+2u−2(z − z̄)−2(t+s+u),

× [(
γ μC

)
γ δ

(γμC)AB(1 − z̄) + (z − z̄)
(
γ μC

)
γB

(γμC)Aδ

]
Tr(λ1λ2λ3), (10)

In order to actually get the entire result, these integrals must be done on the closed string position
(we propose [36] and Appendix B of [14] for further details). Therefore the complete form of the
first part of the amplitude is given as follows

ACφψ̄ψ

1 = μpπ−1/2

4
(P−/H(n)Mp)γ δξ1i ū

A
1 uB

2

(−ipi

2

)

×
[(

γ μC
)
γ δ

(γμC)AB

(
stL1 + 1

2
L2

)
+ (

γ μC
)
γB

(γμC)AδL2

]
× Tr(λ1λ2λ3), (11)

with

L1 = (2)−2(t+s+u)π
�(−u)�(−s)�(−t)�(−t − s − u + 1

2 )

�(−u − t + 1)�(−t − s + 1)�(−s − u + 1)
,

L2 = (2)−2(t+s+u)+1π
�(−u + 1

2 )�(−s + 1
2 )�(−t + 1

2 )�(−t − s − u + 1)

�(−u − t + 1)�(−t − s + 1)�(−s − u + 1)
. (12)

This part of the amplitude is not vanished for different cases. For example, for n = p + 2
the first term in (11) has infinite singularities in u-channel and in particular it involves many
contact terms. The expansion is low energy expansion which reflects the fact that all Mandelstam
variables must send to zero (for further details on the expansions see [12]). Hence, it becomes
obvious that the first term of (11) includes all massless poles; however, we postpone its field
theory computations to the next section to see what kinds of open strings, namely gauge/scalar
or fermion can be replaced in the propagator.

Let us move to the second part of the amplitude. Having replaced the second part of scalar
vertex operator and the other vertices into (8), the second part of the amplitude can be found as
follows

ACφψ̄ψ

2 = μpπ−1/2

4

∫
dx1 dx2 dx3 dx4 dx5 (P−/H(n)Mp)γ δξ1i (2ik1a)

× ūα
1 u

β

2 (x23x24x25x34x35x45)
−1/4

× 〈 : ψaψi(x1) : Sα(x2) : Sβ(x3) : Sγ (x4) : Sδ(x5) : 〉I Tr(λ1λ2λ3), (13)

in which

I = |x12|α′ 2k1·k2 |x13|α′ 2k1·k3 |x14x15| α′ 2
2 k1·p|x23|α′ 2k2·k3 |x24x25| α′ 2

2 k2·p

× |x34x35| α′ 2
2 k3·p|x45| α′ 2

4 p·D·p.
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The only subtlety in the second part of the amplitude is how to derive the correlation function
between four spin operators (with the same chirality) and one current. Here we try to summarize
the procedure of deriving this correlator. First, we need to take into account the following OPE

: ψμψν(x1) : Sα(x2) : ∼ −1

2

(
Γ μν

)λ

α
Sλ(x2)x

−1
12 , (14)

with the definition of antisymmetric matrix as

Γ μν = 1

2

(
γ μγ ν − γ νγ μ

)
.

The next step is to replacing this OPE (14) into the following correlator〈 : ψaψi(x1) : Sα(x2) : Sβ(x3) : Sγ (x4) : Sδ(x5) : 〉,
and make use of the rest of the correlator which is the correlator of four spin operators (it is
given in [35] and it has two different terms). Note that we have to apply the same formalism
for the other OPEs and finally add them up. Concerning this method we have eight different
terms; however, in order to obtain the final answer some extraordinary works are needed. Let us
point them out. We need to extract all gamma matrices and make use of the commutator and
anticommutator relations {γ a, γ b} = −2ηab , {γ a, γ i} = 0. The next step is to use the world-sheet
fermion correlators as below:〈

ψμ(z)ψν(w)
〉 = −α′

2
ημν(z − w)−1,〈 : SA(x1) : SB(x2) : ψi(x3) : 〉 = 2−1/2x

−3/4
12 (x31x32)

−1/2(γ i
)
AB

.

We also need to add all the terms carrying common coefficients of the gamma matrices.
Finally one has to construct different combinations of the gamma matrices. Having taken re-
marks that appeared in Appendices A.1, A.3, B.3 and Section 6 of [35], one can clarify how the
various terms come from. The final answer for 〈: ψaψi(x1) : Sα(x2) : Sβ(x3) : Sγ (x4) : Sδ(x5) :〉
has rather complicated result, therefore let us just point out several tests in favor of getting the
correct result for our correlator.

The first test of our computation is to produce the leading singularities of the amplitude in
which our calculation passes this test. The other unusual check after having replaced the final
answer for the correlator into the amplitude is in fact the SL(2,R) invariance of the amplitude
in which our result satisfies that constraint. We gauge fix the amplitude as before and evaluate
the integrals on closed string location. We write down the final answer for the second part of the
amplitude:

ACφψ̄ψ

2 = μpπ−1/2

16
(P−/H(n)Mp)γ δξ1i (2ik1a)ū

α
1 u

β

2

× (A21 +A22 +A23 +A24 +A25 +A26)Tr(λ1λ2λ3),

such that

A21 = −(
Γ aiμC

)
αβ

(γμC)γ δ

[
1

2
u(s + t)L1 + L3(−s − t)

]
,

A22 = −(
Γ aiμC

)
αδ

(γμC)γβ

[
L1(us) − 1

2
L2

]
,

A23 = (
Γ aiμC

)
γβ

(γμC)αδ

[
L1(ut) − 1

L2

]
,

2
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A24 = (
Γ aiμC

)
γ δ

(γμC)αβ

[
L1(st) + 1

2
L2

]
,

A25 = (P−/H(n)Mp)γ δξ1i (2ik1a)ū
α
1 u

β

2

[
u(s + t)L1 + L2

]((
γ iC

)
γβ

(
γ aC

)
αδ

− (
γ iC

)
αδ

(
γ aC

)
γβ

)
,

A26 =
[
−1

2
u(s − t)L1 + (−t + s)L3

](−(
γ iC

)
γ δ

(
γ aC

)
αβ

+ (
γ iC

)
αβ

(
γ aC

)
γ δ

)
, (15)

where L1, L2 appeared in (12) and L3 is

L3 = (2)−2(t+s+u)−1π
�(−u + 1

2 )�(−s + 1
2 )�(−t + 1

2 )�(−t − s − u)

�(−u − t + 1)�(−t − s + 1)�(−s − u + 1)
. (16)

The first terms of A21, A22, A25, A26 (A23) have just t -channel (s-channel) fermion poles
and in particular all the terms including the coefficients of L2 are just related to infinite contact
interactions of one RR, two fermions and one scalar field in which they do not have any contribu-
tion to the singularities. On the other hand the first term of A24 has just either infinite u-channel
gauge or scalar poles. Notice that the second terms of A21, A25, A26 involve just s-channel
fermion poles. Finally the third and fourth terms of A21, A26 consist of indeed an infinite num-
ber of massless (t + s + u)-channel poles. In field theory we would clarify what kinds of poles
we would have.

Note that these infinite poles have to be produced either by infinite higher derivative correc-
tions to two scalars–two fermions or by two fermions–one scalar–one gauge field corrections
in IIB. The amplitude is also antisymmetric with respect to the interchange of the fermions as we
expected.

We make some comments on T-duality. The complete form of this S-matrix cannot be obtained
by setting T-duality to the previous results (see [22,23]), since our amplitude includes some terms
carrying pi (closed string momentum in transverse direction). These terms cannot derived by
applying T-duality, given the fact that winding modes are not embedded in the explicit form of
RR vertex operator. Likewise it is shown in [22] that CφAA (one RR, a scalar and two gauge
fields) amplitude cannot be fully derived from CAAA. Thus we employ direct computations to
find out some special patterns for superstring amplitudes, including fermion vertex operators.

The expansion is low energy expansion which reflects the fact that all Mandelstam variables
should send to zero (t, s, u → 0) such that this relation t +s+u = −papa holds. The closed form
of the expansion of stL1,L3 (to be able to produce u-channel poles [37] and (t + s +u)-channel
poles [12]) can be written down as

stL1 = −π3/2

[ ∞∑
n=−1

bn

(
1

u
(t + s)n+1

)
+

∞∑
p,n,m=0

ep,n,mup(st)n(s + t)m

]
,

L3 = −π5/2

2

( ∞∑
n=0

cn(s + t + u)n +
∑∞

n,m=0 cn,m[sntm + smtn]
(t + s + u)

+
∞∑

p,n,m=0

fp,n,m(s + t + u)p
[
(s + t)n(st)m

])
, (17)

where suL1 and utL1 can be derived by replacing t ↔ u and s ↔ u inside stL1 expansion and
L2 = −4(t + s + u)L3 which has just contact terms. Some of the coefficients are
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b−1 = 1, b0 = 0, b1 = 1

6
π2, b2 = 2ζ(3), c0 = 0,

c1 = −π2

6
, e0,0,1 = 1

3
π2, c2 = −2ζ(3), c1,1 = π2

6
,

e0,1,0 = 2ζ(3), e1,0,0 = 1

6
π2, e1,0,2 = 19

60
π4, e1,0,1 = 6ζ(3),

c0,0 = 1

2
, f0,1,0 = π2

3
, f0,0,1 = −2ζ(3). (18)

It is important to mention that the general structure of bn coefficients of this paper is exactly the
same structure of bn coefficients that appeared in the amplitude of one RR and three scalars and
they have quite universal behavior [12]; however, some coefficients of cn, fp,n,m include differ-
ences from the coefficients of non-BPS amplitudes [26]. Let us move to field theory section and
produce all u, t, s-channel gauge, scalar/fermion poles. In addition to them, we study different
(u+ t + s)-channel scalar and gauge poles in order to obtain all infinite higher derivative correc-
tions of two fermions–two scalars or two fermions–one gauge–one scalar in the world volume of
BPS branes of IIB superstring theory.

3. Infinite u-channel scalar poles for p + 2 = n case

One can expand all the terms of the closed form of 〈VCVφVψ̄Vψ 〉 which carry stL1 coefficient,
to actually produce both infinite u-channel scalar and gauge poles. It is shown in [12,14,22] that
the kinetic term of gauge and scalar fields do not receive any correction. If one considers the
stL1 expansion then one can collect all the infinite u-channel scalar poles of the string theory
amplitude as follows

ACφψ̄ψ

1 = μpipiπ

8

∞∑
n=−1

bn

(
1

u
(t + s)n+1

)
(P−/H(n)Mp)γ δξ1i ū

A
1 uB

2

× (
γ μC

)
γ δ

(γμC)AB Tr(λ1λ2λ3). (19)

In the above amplitude μ can be both world volume and transverse direction. First, we set it to
transverse direction (μ = j) and extract the trace as

(P−/H(n)Mp)γ δ
(
γ jC

)
γ δ

= 32

2(p + 1)!
(
εv

)a0···apH
j
a0···ap

. (20)

Replacing the trace in the amplitude we obtain

ACφψ̄ψ

1 = 2μpipiπ

(p + 1)!
∞∑

n=−1

bn

(
1

u
(t + s)n+1

)
ξ1i

× ūA
1 (γj )ABuB

2

(
εv

)a0···apH
j
a0···ap

Tr(λ1λ2λ3). (21)

In below we will show that the kinetic term of fermion fields has to be fixed and it does not
receive any correction. The massless poles should be reproduced by the following non-Abelian
kinetic terms2:

2 By replacing 2πα′φi = Xi the kinetic term of the scalar field gets canonically normalized; however, in this paper we
keep the standard notation for the kinetic term of the open strings as they appear in (22).



10 E. Hatefi / Nuclear Physics B 880 (2014) 1–22
−Tp

(
2πα′)Tr

(
(2πα′)

2
Daφ

iDaφi − (2πα′)
4

FabF
ba − Ψ̄ γ aDaΨ

)
. (22)

To work with the field theory of an amplitude including RR and some massless scalar fields one
must consider three different approaches to explore their vertices. Basically these methods are
either Wess–Zumino (WZ) terms that introduced by Myers [8], or the needed pull-back methods
or the so-called Taylor expansion (they are argued in Section 5 of [14]).

One has to take into account the following field theory amplitude to produce all scalar
u-channel poles

A= V i
α(Cp+1, φ1, φ)G

ij
αβ(φ)V

j
β (φ, Ψ̄1,Ψ2). (23)

Here we should employ Taylor expansion to obtain the vertex of two scalars and one RR
(p + 1)-form field as follows:

i
λ2μp

2!(p + 1)!
∫

dp+1σ
(
εv

)a0···ap Tr
(
∂i∂jC

(p+1)
a0···ap

φiφj
)
, (24)

where λ = 2πα′. The vertex of one RR and two scalars can be constructed from (24)

V i
α(Cp+1, φ1, φ) = i

λ2μp

2!(p + 1)!
(−ipi

)
H

j
a0···ap

ξ1j

(
εv

)a0···ap Tr
(
λ1λ

α
)
. (25)

The scalar propagator is derived from scalar fields kinetic term (the first term in (22)). To obtain
the vertex of two on-shell fermions and one off-shell scalar field we need to work with the kinetic
term of fermion fields (the last term in (22)) where the commutator in the definition of covariant
derivative of fermion field has to be considered, such that

V
β
j (Ψ̄1,Ψ2, φ) = Tp

(
2πα′)ūA

1 γ
j
ABuB

2

(
Tr

(
λ2λ3λ

β
) − Tr

(
λ3λ2λ

β
))

,

G
ij
αβ(φ) = −iδαβδij

Tp(2πα′)2k2
= −iδαβδij

Tp(2πα′)2u
, (26)

k is the momentum of off-shell scalar field in the propagator. Now if we replace the above vertices
in the field theory amplitude of (23) then the first simple u-channel scalar pole of the string theory
amplitude (for n = −1 in (21)) can be precisely produced. However, the amplitude has infinite
u-channel poles. In order to deal with them a key point has to be made. The kinetic term of
fermion fields has no correction (as it is fixed in DBI action) and scalar propagator does not
receive any correction either (because it is just simple pole). Therefore the only way to produce
all the other massless scalar poles is to devote infinite higher derivative corrections to the vertex
of one RR (p + 1)-form field and two scalar fields as follows:

i
λ2μp

2!(p + 1)!
∫

dp+1σ
(
εv

)a0···ap

∞∑
n=−1

bn

(
α′)n+1

×Tr
(
∂i∂jC

(p+1)
a0···ap

Da0 · · ·DanφiDa0 · · ·Danφ
j
)
. (27)

Notice that in (27) all the commutators in the covariant derivative of scalar fields should be
ignored as we need not have any gauge field. Now by applying standard field theory techniques
we can extract the vertex of one RR, one on-shell fermion and an on-shell fermion field from
(27) as below:
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V i
α(Cp+1, φ1, φ)

= i
λ2μp

2!(p + 1)!
(−ipi

)
H

j
a0···ap

ξ1j

(
εv

)a0···ap

∞∑
n=−1

bn

(
α′k1 · k)n+1 Tr

(
λ1λ

α
)
, (28)

substituting (28) and (26) into (23), we obtain

α′πpiμp

(p + 1)! ξ1i ū
A
1 (γj )ABuB

2

∞∑
n=−1

bn

(t + s)n+1

u

(
εv

)a0···apH
j
a0···ap

Tr(λ1λ2λ3), (29)

which is exactly all the infinite u-channel scalar poles inside the string amplitude of (21), as we
expected. Hence to provide all infinite u-channel scalar poles in field theory, we had to generalize
the vertex of one RR (p + 1)-form field, an on-shell and an off-shell scalar field. We observed
that the closed string Ramond–Ramond has induced all infinite higher derivative corrections to
two scalar fields. This phenomenon seemed to be universal as it so happens for the other BPS
and non-BPS amplitudes (see [12,22,23,14]). In the next section we construct all infinite higher
derivative corrections of one RR (p − 1)-form field, one gauge and one scalar field to be able to
produce all the infinite u-channel gauge poles of Cφψ̄ψ amplitude.

4. Infinite u-channel gauge poles for p = n case

In this section we are going to produce all the singularities that appeared in A24. By extracting
the trace, replacing the first part of the expansion of stL1 (just singularities) and setting μ to be
located in world volume direction (μ = b) in A24, one can express all the infinite u-channel
gauge poles of the string theory amplitude as follows:

A24 = 4μpπξ1i (ik1a)

p! ūA
1 (γb)ABuB

2

∞∑
n=−1

bn

1

u
(t + s)n+1

× (
εv

)a0···ap−2ab
H i

a0···ap−2
Tr(λ1λ2λ3). (30)

Note that we have ignored the second term of A24 because it is just contact interaction which
has no singularity. In [12,14,22] we have explained how to derive all contact terms in the field
theory. To produce all the infinite u-channel gauge poles the following Feynman rule in field
theory has to be considered

A = V a
α (Cp−1, φ1,A)Gab

αβ(A)V b
β (A, Ψ̄1,Ψ2), (31)

where V a
α (Cp−1, φ1,A) can be derived by making use of the combination of Taylor expansion

and WZ terms as follows

i
λ2μp

p!
∫

dp+1σ Tr
(
∂iC(p−1) ∧ Fφi

)
. (32)

If we apply standard field theory techniques then one can feasibly derive the vertex of one
RR-(p − 1)-form field, one off-shell gauge field and one on-shell scalar field as below

V a
α (Cp−1, φ1,A) = i

λ2μp

p! Hi
a0···ap−2

ξ1ikap−1

(
εv

)a0···ap−1a Tr
(
λ1λ

α
)

(33)

where k is momentum of off-shell gauge field k = k2 + k3. To derive gauge propagator one
should work with the kinetic term of gauge fields. To obtain the vertex of two on-shell fermion
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fields and one off-shell gauge field (V b
β (Ψ̄1,Ψ2,A)), one needs to make use of the kinetic term of

fermions and also to extract covariant derivative of the fermion field (Daψ = ∂aψ − i[Aa,ψ]).
Essentially one has to take into account all possible orderings of the gauge and fermions to be
able to obtain V b

β (A, Ψ̄1,Ψ2) as well as gauge propagator

V b
β (A, Ψ̄1,Ψ2) = Tp

(
2πα′)ūA

1 γ b
ABuB

2

(
Tr

(
λ2λ3λ

β
) − Tr

(
λ3λ2λ

β
))

,

Gab
αβ(A) = −iδαβδab

Tp(2πα′)2k2
= −iδαβδab

Tp(2πα′)2u
, (34)

with k becomes off-shell gauge field propagator (ka = (k2 + k3)
a = (−p − k1)

a). Replacing
the above vertices in the field theory amplitude of (31) we can precisely find the first simple
u-channel gauge pole of the string theory (for n = −1 in the amplitude of (30)). The constraint
for Ramond–Ramond pa(εv)a0···ap−1a = 0 has also been used. It is worth trying to produce
all infinite u-channel massless gauge poles. We made some points in the previous section and
understood that the kinetic term of fermion fields has no correction and simple scalar/gauge prop-
agators also do not receive any correction. Hence, the only way to produce all the other u-channel
gauge poles is to propose higher derivative corrections to the vertex of one RR (p−1)-form field,
one on-shell scalar and an off-shell gauge field as follows

i
λ2μp

p!
∫

dp+1σ

∞∑
n=−1

bn

(
α′)n+1 Tr

(
∂iC(p−1) ∧ Da0 · · ·DanFDa0 · · ·Danφ

i
)
. (35)

Now we are ready to extract the higher extension of the vertex of V a
α (Cp−1, φ1,A) as below

V a
α (Cp−1, φ1,A) = i

λ2μp

p! Hi
a0···ap−2

ξ1ikap−1

(
εv

)a0···ap−1a
∞∑

n=−1

bn

(
α′k1 · k)n+1 Tr

(
λ1λ

α
)
.

(36)

Notice that (36) is all order extension of (33). Substituting (36) into (31) we are able to exactly
reproduce all infinite u-channel gauge poles of the amplitude that appeared in (30). Hence closed
string Ramond–Ramond (p−1)-form field has proposed all infinite higher derivative corrections
to an on-shell scalar and one off-shell gauge field. We might wonder about this universal behavior
of higher derivative corrections that RR has induced to open strings. Just for the completeness
we mention that, this phenomenon has also been seen in non-BPS brane systems (see [14]).

5. Infinite t, s-channel fermion poles

For Cφψ̄ψ amplitude, there is no graviton propagator in s, t channels, because the particle
exchanged must have non-zero fermion number. Furthermore, the particles exchanged are cor-
responding to open string excitations thus for these channels there is no coupling between one
Ramond vertex operator, one scalar and one graviton as one cannot saturate the total super ghost
charge for disk amplitude. Therefore the only propagator for these channels is indeed fermionic
propagator. To find all the singularities related to t -channel we need to replace just the first term
of usL1 expansion inside A21,A22,A25,A26, extract the related traces and simplify the ampli-
tude more. By applying these points, we are able to write down all t (s)-channel fermion poles of
the string amplitude as below:



E. Hatefi / Nuclear Physics B 880 (2014) 1–22 13
A = α′μpπξ1i (2ik1a)

(p + 1)! ūA
1

(
γ a

)
AB

uB
2

∞∑
n=−1

bn

[
1

t
(u + s)n+1 − 1

s
(u + t)n+1

]

× (
εv

)a0···apH i
a0···ap

Tr(λ1λ2λ3). (37)

The amplitude is totally antisymmetric under interchange of the fermionic strings (s ↔ t), thus
there is no need to produce all s-channel poles. We just produce all fermionic t -channel poles and
finally by interchanging 2 ↔ 3 and s ↔ t in all kinematic relations, all s-channel fermionic poles
can be concluded as well. All the terms that include L2 coefficients are just contact interactions
and have nothing to do with these singularities. Let us write down the rule to derive all the
fermionic t -channel poles

A = Vα(Cp+1,Ψ3, Ψ̄ )Gαβ(Ψ )Vβ(Ψ, Ψ̄2, φ1). (38)

The fermion propagator is found by making use of the kinetic term of fermion fields (the last
term in (22)). If we extract the covariant derivative of fermion inside its kinetic term (Diψ =
∂iψ − i[φi,ψ]) and count all possible orderings of the scalar and fermions, we can derive the
vertex of one on-shell, one off-shell fermion and an on-shell scalar field (Vβ(Ψ, Ψ̄2, φ1)) as well
as fermion propagator as below

Vβ(Ψ, Ψ̄2, φ1) = Tp

(
2πα′)ūA

1 γ
j
Aξ1j

(
Tr

(
λ1λ2λ

β
) − Tr

(
λ2λ1λ

β
))

,

Gαβ(ψ) = −iδαβ

Tp(2πα′)/k
= −iδαβγ a(k1 + k2)a

Tp(2πα′)t
. (39)

In order to find Vα(Cp+1, Ψ̄ ,Ψ ), one has to find out new coupling between one RR (p+1)-form
field, one on-shell and one off-shell fermion field in the world volume of BPS branes as follows

i
(2πα′)μp

(p + 1)!
∫

dp+1σ Tr
(
Ca0···ap Ψ̄ γ j ∂jΨ

)(
εv

)a0···ap , (40)

which is in fact supersymmetrized version of known bosonic couplings. Note that the equations
of motion for fermions must be taken into account (/k2aū = /k3au = 0) as well. Now the vertex of
one RR (p + 1)-form field, one off-shell and one on-shell fermion field can be derived from (40)
as follows

Vα(Cp+1, Ψ̄ ,Ψ2) = i
(2πα′)μp

(p + 1)! Hi
a0···ap

γ iu2
(
εv

)a0···ap Tr
(
λ3λ

α
)
. (41)

If we replace the vertices that appeared in (39) and (41) to the field theory amplitude of (38) then
we can find the first simple t -channel fermion pole of the string theory amplitude (for n = −1
in (37)). Once more in order to derive all infinite t - or s-channel fermion poles, one has to impose
the infinite higher derivative interactions to new coupling (40). Thus the kinetic term of fermion
field should be fixed. Now one has to look for the infinite higher derivative corrections to the
vertex of Vα(Cp+1,Ψ3, Ψ̄ ) as follows

i
(2πα′)μp

(p + 1)!
∫

dp+1σ

∞∑
n=−1

bn

(
α′)n+1

×Tr
(
Ca0···apDa0 · · ·DanΨ̄ γ iDa0 · · ·Dan∂iΨ

) (
εv

)a0···ap . (42)

If we consider (42) then the complete form of the Vα(Cp+1,Ψ3, Ψ̄ ) to all orders in α′ will
become
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Vα(Cp+1, Ψ̄ ,Ψ ) = i
(2πα′)μp

(p + 1)! Hi
a0···ap

γ iu2
(
εv

)a0···ap Tr
(
λ3λ

α
) ∞∑

n=−1

bn

(
α′k3.k

)n+1
. (43)

An important point should be emphasized, namely all the commutator terms inside the covariant
derivative of fermion fields in (42) must be neglected. Note that in producing all fermion poles
in field theory side, we have employed the equations of motion for fermion fields /k2ū = /k3u = 0
as well. Replacing (43) into (38), one can show that all fermion t (s)-channel fermion poles
are exactly reconstructed. Therefore the closed string Ramond–Ramond (p + 1)-form field has
induced an infinite number of higher derivative corrections to two fermions, two scalar fields as
well as one scalar–one gauge field. This clearly confirms that, this phenomenon (producing all
poles of the string amplitude by postulating infinite higher derivative corrections to the vertex of
one RR and some open string vertex operators) is quite universal and might be useful for deriving
all the singularities of the higher point functions of either BPS or non-BPS branes without the
need for knowing the exact results of the world sheet integrals of the higher point functions.

5.1. Infinite higher derivative corrections to two fermions–two scalars and all scalar poles
for p = n − 2 case

The first goal of this section is to produce poles order by order and to actually observe whether
or not the universal conjecture on all order α′ higher derivative corrections (which has been made
for bosonic amplitude in [23]) can be held for the fermionic amplitudes. Another goal would
be determining all the infinite higher derivative corrections of two fermions–two scalars in IIB
superstring theory. We first consider the infinite massless scalar (s + t + u) = −papa channel
poles of the string amplitude of Cp+1Ψ̄ Ψ φ. If we extract the related traces in the second term of
A26 then one finds out all the singularities as below

A= −α′π−1/2μp

(p + 1)!
(
εv

)a0···apH i
a0···ap

ξ1i (2ik1a)ū
A
1

(
γ a

)
AB

uB
2 Tr(λ1λ2λ3)

[
(−t + s)L3

]
.

(44)

The expansion of L3 has infinite (t + s + u)-channel poles so let us see its expansion before the
simplification:

L3 = −π5/2
(

1

2(t + s + u)
+ π2(t2 + s2 + u2)

12(t + s + u)
+ ξ(3)(t3 + s3 + u3 + tsu)

(t + s + u)
+ · · ·

)
. (45)

For the moment we just work with the first (t + s + u)-channel pole. Reminding the coupling of
one RR and one scalar field is worthwhile for the field theory amplitude

λμp

∫
dp+1σ

1

(p + 1)!
(
εv

)a0···ap Tr
(
φi

)
H

(p+2)
ia0···ap

. (46)

In order to produce the first (t + s + u)-channel scalar pole, the following Feynman rule has to
be taken into account

A= V i
α(Cp+1, φ)G

ij
αβ(φ)V

j
β (φ, Ψ̄ ,Ψ,φ1), (47)

where the scalar propagator can be readily derived from the kinetic term of the scalar fields and
V i

α(Cp+1, φ) is derived from (46) so that
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G
ij
αβ(φ) = −iδαβδij

Tp(2πα′)2k2
= −iδαβδij

Tp(2πα′)2(t + s + u)
,

V i
α(Cp+1, φ) = i

(
2πα′)μp

1

(p + 1)!
(
εv

)a0···apH i
a0···ap

Tr(λα). (48)

Notice that scalar in V i
α(Cp+1, φ) must be Abelian so Tr(λα) makes sense for the Abelian ma-

trix λα . If one looks at (44) then one understands that the first simple (t + s + u)-channel scalar
pole has to be discovered by all the couplings between two scalars and two fermions in such a
way that they should carry three momenta. The reason for this sharp result is that in (44) apart
from the field strength of RR (which is absorbed in V i

α(Cp+1, φ)), the other terms carry three
momenta. One can show that in field theory analysis the kinematic factor of (−t + s) can be
factorized. This is the key point in favor of a given universal conjecture of all infinite α′ higher
derivative corrections of the string amplitudes. Further details can be found in [23]. In order to
find out two fermion two scalar couplings we need to write down all possible desired couplings
carrying three momenta as below

Tp(2πα′)3

4

(
Ψ̄ γ aDbΨ DaφiDbφi + DaφiDbφiΨ̄ γ aDbΨ

)
,

Tp(2πα′)3

8
Ψ̄ γ aDaΨ DbφiDbφi. (49)

Based on the prescription for all order higher order corrections given in [23], one needs to con-
sider the multiplication of the kinetic terms of the open strings to end up with their all order α′
higher derivative corrections. Thus for this part of the amplitude, we must multiply the kinetic
terms of the fermion fields and scalar fields which considered in (49). Note that the coefficients
of the couplings in (49) would be fixed in such a way that the first (t + s +u)-channel scalar pole
in (44) would be resulted. Likewise the last section, all the commutator terms in the definitions
of the covariant derivative of fermion/scalar fields must be overlooked. In order to produce the
field theory vertex operators for the following coupling

Ψ̄ γ aDbΨ DaφiDbφi,

one has to consider two possible orderings

Tr(λ2λ3λ1λβ), Tr(λ2λ3λβλ1),

where λβ is related to Abelian scalar field in the propagator. By Replacing these orderings to

the Feynman amplitude (47), Tr(λ1λ2λ3) is produced. Thus by extracting Tp(2πα′)3

4 (Ψ̄ γ aDbΨ ×
DaφiDbφi + DaφiDbφiΨ̄ γ aDbΨ ) couplings of (49) and by considering all their orderings one
obtains

V
j
β (φ, Ψ̄ ,Ψ,φ1) = i

Tp(2πα′)3

4
ūA

(
γ a

)
AB

uBξ1j

(
−k1a

t

2
− k4a

s

2

)
Tr(λ1λ2λ3λβ).

Note that in order to derive V
j
β (φ, Ψ̄ ,Ψ,φ1), we used the momentum conservation (k1 + k2 +

k3 + k4)
a = 0 and made use of the equations of motion for fermion fields (ka

2γaū = ka
3γau = 0).

Setting these remarks, we are able to find the vertex of two on-shell fermions, one on-shell and
one off-shell scalar field as follows

V
j
β (φ, Ψ̄ ,Ψ,φ1) = i

Tp(2πα′)3

k1aū
A
(
γ a

)
AB

uBξ1j

(
− t + s

)
Tr(λ1λ2λ3λβ). (50)
4 2 2
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Now if we replace (50) into (47) and also consider the first term of (45) to (44) then we are able
to exactly produce the first (t + s + u)-channel scalar pole of (44).

For (Ψ̄ γ aDaΨ DbφiDbφi) coupling one has to consider two different mentioned orderings.
If one extracts this coupling and considers standard field theory techniques then we may obtain

V
j
β (φ, Ψ̄ ,Ψ,φ1) = −ik3aū

A
(
γ a

)
AB

uBξ1j uTr(λ1λ2λ3λβ),

one might apply on-shell condition (t + s + u = 0) to the above vertex operator to remove Man-
delstam variable of u; however, by applying the equation of motion for fermion field (/k3u

B = 0)

to the above vertex, we realize that, this coupling does not have any contribution to field theory
amplitude. It is clear from the expansion of L3 (45) that the string amplitude (44) has infi-
nite massless (t + s + u)-channel scalar poles [37]. It is also seen in [14] that the vertex of
V i

α(Cp+1, φ) and the simple scalar propagator do not require any corrections, so one expects that
all infinite (t + s +u)-channel scalar poles are related to all order α′ higher derivative corrections
of two fermions–two scalar fields of IIB superstring theory.

Let us now generalize our method to find out all order α′ higher derivative corrections to two
fermion–two scalar field couplings to be able to produce all the infinite (t + s +u)-channel scalar
poles. Indeed we need to apply some higher derivative operators (Dnm, D′

nm) to all couplings
that have non-zero contributions to the field theory amplitude (the first and second term in (49)).
Having taken the following couplings3

Ln,m = π3α′ n+m+3

× Tp

(
an,m Tr

[
Dnm

(
Ψ̄ γ aDbΨ DaφiDbφi

) +Dnm

(
DaφiDbφiΨ̄ γ aDbΨ

) + h.c.
]

+ ibn,m Tr
[
D′

nm

(
Ψ̄ γ aDbΨ DaφiDbφi

) +D′
nm

(
DaφiDbφiΨ̄ γ aDbΨ

) + h.c.
])

,

(51)

with the following definitions of the higher derivative operators of Dnm,D′
nm

Dnm(EFGH) ≡ Db1 · · ·DbmDa1 · · ·DanEFDa1 · · ·DanGDb1 · · ·DbmH,

D′
nm(EFGH) ≡ Db1 · · ·DbmDa1 · · ·DanEDa1 · · ·DanFGDb1 · · ·DbmH,

we are now able to show that all the infinite (t + s + u)-channel scalar poles can be produced.
In order to do so, we focus on the terms that carry an,m coefficients. If we apply standard field
theory techniques, consider hermitian conjugate of the first and second couplings in (51), take
into account momentum conservation in world volume direction, use the equations of motion for
fermion fields and finally take all different possible orderings4 then one obtains the vertex of two
on-shell fermions–one on-shell and one off-shell scalar to all orders of α′ as follows:

V
j
β (φ, Ψ̄ ,Ψ,φ1) = iTp

(2πα′)3

4
k1aū

A
(
γ a

)
AB

uBξ1j

(
− t

2
tnsm + s

2
tmsn

)
Tr(λ1λ2λ3λβ).

(52)

Now if one replaces (52) into (47) then one is able to produce exactly all the infinite
(t + s +u)-channel scalar poles in (44). For instance by putting n,m = 0 inside (52), we showed

3 Recent computations for all order α′ higher derivative corrections of two fermions–two tachyons confirm that the
same universal conjecture holds even for non-BPS branes (see [38]).

4 Notice that BPS branes do not carry Chan–Paton factor so we do not expect to have any (−Dnm), (−D′
nm) operators

in the couplings (51).



E. Hatefi / Nuclear Physics B 880 (2014) 1–22 17
(compare (52) with (50)) that the first (t + s + u)-channel scalar pole is produced. Let us go on,
now by replacing n = 1, m = 0 to (52) we obtain

V
j
β (φ, Ψ̄ ,Ψ,φ1) = iTp

(2πα′)3

4
k1aū

A
(
γ a

)
AB

uBξ1j

(
− t2

2
+ s2

2

)
. (53)

Let us replace (53) into the field theory amplitude (47) and also consider the second term of the
L3 expansion of (17) inside (44). To do so, we discover that the over all coefficient of string
amplitude (k1a(s − t)) can be extracted from (53). The rest of the coefficients in field theory
amplitude, namely 1

2 (s + t) would be canceled if we would compare them with the coefficient of
c1,1(s + t) of the string amplitude. Therefore the first simple (t + s + u)-channel scalar pole of
the string and field theory amplitude is exactly matched. If we concentrate on the terms in (51)
carrying bn,m coefficients and extract the vertex we derive

V
j
β (φ, Ψ̄ ,Ψ,φ1) = iTp

(2πα′)3

4
k1aū

A
(
γ a

)
AB

uBξ1j

(
− t

2
unsm + s

2
tmun

)
Tr(λ1λ2λ3λβ).

(54)

However, one has to apply on-shell condition (s + t + u) = 0 into the above vertex to be able to
produce all the infinite scalar poles. Indeed similar checks for all order α′ higher derivative cor-
rections to the other amplitudes in [12,22] have been carried out. This ends our goal of exploring
all order α′ higher derivative corrections to two fermions–two scalars of the world volume of
BPS branes in type IIB superstring theory.

5.2. The higher derivative corrections to two fermions–one gauge and one scalar field and the
infinite gauge poles for p = n case

The final singularities in the amplitude of Cp−1Ψ̄ Ψ φ are related to all infinite massless
(s + t + u)-channel gauge poles of the string theory. The goal of this section is to find out non-
zero couplings of one gauge–one scalar and two fermions of IIB string theory and to fix their
coefficients by producing all infinite gauge poles of the string amplitude. Of course, essentially
one wants to derive all the infinite corrections. It would also be nice to see whether or not the
universal conjecture about higher derivative corrections to all orders in α′, made in [23] holds for
fermionic amplitude? Our last goal is to fix the coefficients of all order corrections. In fact these
coefficients must be found just by comparing the couplings in field theory with string theory
amplitude and not by any other tools such as T-duality. One finds the singular terms in the string
amplitude for p = n case as follows:

A = −α′π−1/2μp

(p)!
(
εv

)a0···ap−1aHa0···ap−1ξ1i (2ik1a)ū
A
1

(
γ i

)
AB

uB
2 Tr(λ1λ2λ3)[−2tL3].

(55)

A crucial remark is in order. The vertex of RR, looks like to the fermions vertex operators so
one may suppose the prescription for 〈VCVAVAVA〉 in [12] or 〈VCVφVAVA〉 in [22]5 can be
applied to this section as well but in this section we are looking for two fermions–one gauge–one
scalar couplings. Thus we are not allowed to make use of the kinetic term of the gauge fields

5 The complete form of two gauge–two scalar couplings to all orders in α′ is found by comparing field theory amplitude
with string theory amplitude of 〈VCVφVAVA〉 in [22].
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because we need to take into account one scalar/gauge couplings to the other fields. Indeed in
〈VCVφVψ̄Vψ 〉 there is no external gauge field so these one scalar/gauge–two fermion couplings
have to be searched just by comparison the field theory vertices with string theory S-matrix.
Eventually all the coefficients of the field theory couplings must be fixed through comparisons
field theory couplings with S-matrix elements.

We have already pointed out that the expansion of L3 had infinite (t + s + u)-channel poles.
Let us first carry out field theory computations to produce just the first simple (t + s +u)-channel
gauge pole. First of all we need to have the coupling between one RR (p − 1)-form field and one
gauge field as follows

i
(
2πα′)μp

∫
dp+1σ

1

(p)!Cp−1 ∧ F. (56)

This coupling is derived in [12]. In the amplitude of one RR and three gauge fields [12], we saw
that V (Cp−1,A) does not receive any correction. Hence, for producing all the infinite gauge
poles for p = n case, one expects that the only corrections are related to the corrections of one
off-shell gauge, one on-shell scalar field and two fermion fields (to all orders in α′ in IIB su-
perstring theory). Thus the infinite higher derivative corrections should be explored by matching
all the infinite gauge poles of the string amplitude of Cp−1Ψ̄ Ψ φ with field theory amplitude.
The Feynman rule is

A= V a
α (Cp−1,A)Gab

αβ(A)V b
β (A, Ψ̄ ,Ψ,φ1), (57)

where the gauge propagator is obtained from the kinetic term of gauge fields and V a
α (Cp−1,A)

is derived from (56) such that

Gab
αβ(A) = −iδαβδab

Tp(2πα′)2k2
= −iδαβδab

Tp(2πα′)2(t + s + u)
,

V a
α (Cp−1,A) = i

(
2πα′)μp

1

(p)!
(
εv

)a0···ap−1aHa0···ap−1
Tr(λα). (58)

The gauge field in V a
α (Cp−1,A) must be Abelian so Tr(λα) makes sense just for the Abelian

matrix λα . By looking at (55) one understands that the first simple (t + s + u)-scalar pole has
to be discovered with the couplings between an on-shell scalar, one off-shell gauge and two
on-shell fermions such that they have to carry three momenta, (for more explanations see the
previous section). Consider the following couplings:

Tp(2πα′)3

4

[
Ψ̄ γ iDbΨ DaφiFab + Ψ̄ γ iDbΨ FabD

aφi

]
. (59)

In order to have general covariance in (59), one has to consider the multiplications of the ki-
netic term of the fermions, the field strength of gauge field and the covariant derivative of the
scalar field. Notice that the connections (commutator terms) in the definitions of the covariant
derivative of fermion field and scalar field must be overlooked. Let us work out (59). Unlike the
previous section, the only possible orderings for the first and second term of (59) accordingly
are Tr(λ2λ3λ1λβ), Tr(λ2λ3λβλ1) where λβ is related to Abelian gauge field in the propagator.
To obtain the vertex of two on-shell fermions–one off-shell gauge and one on-shell scalar field,
one has to extract couplings (59), apply momentum conservation along the world volume of
brane and make use of the equations of motion for fermion fields, such that

V b
β (A, Ψ̄ ,Ψ,φ1) = i

Tp(2πα′)3

ūA
(
γ j

)
AB

uBξ1j

(
k1b

t
)

Tr(λ1λ2λ3λβ). (60)

2 2
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Now if we replace (60) into (57) and consider the first term of the expansion of L3 (which
appeared in (45)) inside (55) then we are able to exactly produce the first (t + s + u)-channel
gauge pole of (55).

It is clear from (45) that the string amplitude (55) has infinite massless (t + s + u)-channel
gauge poles. Keeping in mind that V a

α (Cp−1,A) and the simple gauge propagator do not require
any corrections, one expects that all infinite gauge poles are related to higher derivative correc-
tions of two fermions, one scalar and one gauge field of IIB superstring theory. In the previous
section we introduced how to look for higher derivative corrections. Given the leading couplings
in (59), one needs to apply the higher derivative operators Dnm, D′

nm to (59) to be able to discover
their all order corrections as follows

Ln,m = π3α′ n+m+3

× Tp

(
an,m Tr

[
Dnm

(
Ψ̄ γ iDbΨ DaφiFab

) +Dnm

(
Ψ̄ γ iDbΨ FabD

aφi
) + h.c.

]
+ ibn,m Tr

[
D′

nm

(
Ψ̄ γ iDbΨ DaφiFab

) +D′
nm

(
Ψ̄ γ iDbΨ FabD

aφi
) + h.c.

])
. (61)

Now we need to extract the terms carrying the coefficients an,m in (61) to be able to derive the
following vertex

V b
β (A, Ψ̄ ,Ψ,φ)

= i
Tp(2πα′)3

4
ūA

(
γ j

)
AB

uBξ1j

(
k1b

t

2

)(
tnsm + sntm

)
an,m Tr(λ1λ2λ3λβ). (62)

Replacing (62) (instead of (60)) inside (57) and also substituting the second term of the expan-
sion of L3 which appeared in (17) inside (55) we might produce all infinite gauge poles of the
amplitude. It is of high importance to mention the following remark as well. In order to consider
bn,m coefficients, one needs to apply on-shell condition (t + s + u = 0) at each order of α′ to the
field theory vertices to obtain the desired terms in field theory amplitude.

6. Conclusions

In this paper we applied conformal field theory techniques and we found the complete form of
the 〈VCVψ̄VψVφ〉 amplitude in IIB superstring theory. All infinite scalar/gauge (for p + 2 = n,
p = n cases) and fermion poles have been explored. We observed that the vertices of
V α

i (Cp+1, φ), V α
a (Cp−1,A) do not require any corrections, hence, all infinite (t +s +u)-channel

scalar (gauge) poles have provided worth information to determine infinite higher derivative cor-
rections (to all orders in α′) to two fermion–two scalar (two fermions–one scalar–one gauge)
couplings which we have discovered them and particularly their coefficients are exactly fixed.

We also clarified that the same universal conjecture for all higher derivative corrections that
appeared in [23] holds for two fermion–two scalar couplings of IIB superstring theory.

It is worth pointing out that in RR vertex operator there are no winding modes so applying
T-duality to the known results is not effective. In particular in order not to miss any terms in
superstring amplitudes and to be able to obtain all higher derivative corrections with their exact
coefficients, one has to apply direct computations. Basically we proposed some patterns in this
paper. Let us talk about a subtle issue regarding the relation of open/closed string vertices in type
II superstring theory. For our amplitude which involves mixture open/closed strings, our calcu-
lations make sense of using path integral formalism such that propagators (Green functions) are
found by conformal field theory methods while the closed string has (αn, α̃n) oscillators. It is
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not obvious how to do calculations with oscillators, namely in the first quantization of strings it
is subtle how to deal with α̃n. Some comments have been suggested in (3.4) of [39] such that
both oscillators for closed string would be determined with open string’s ones. In the other words
some analytic continuation is needed and this kind of realization implies that the state for closed
string should be considered as a composite state of the open strings. The interpretation in field
theory might be useful mentioning. It reveals that all background fields in DBI action should be
some functions of super Yang–Mills fields. In the other words background fields must become
composite and these functions would be examined once we employ the complete open string
formalism. Note also that supergravity background fields must include Taylor expansion as was
argued in [8].
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