
INFORMATION AND CONTROL 3, 211-230 (1960)

The Automatic Construction oF a Glossary

ANDREW J. T. COLIN

Department of Numerical Automation, Birkbeck College, London

In this paper the term "glossary" refers to a list, in alphabetical
order, of all the different words used in any text, together with a
statement of how many times each word occurs in the text.

The manual construction of a glossary is usually made wi~h the aid
of a card index, where one card is used to note the occurrences of each
different word in the text. The procedure consists of attempts to look
up each consecutive word of the text in the card index; if the word is
found, its present occurrence is noted on the card; but if it is not
found, a new card is made out and inserted into the index.

The automatic construction of a glossary is similar in principle,
but the logical rules by which the construction is made are more com-
plicated because the store of an electronic computer, unlike a card in-
dex, is limited in size and, in general, is not large enough to contain
the entire glossary of a text of average length. There are many ways of
overcoming this difficulty and two of the more reasonable ones are
discussed below.

I. THE PARTIAL GLOSSARY METHOD

I t is possible to overcome the p rob l em of the l im i t a t i on of s to rage
c a p a c i t y b y d iv id ing the different words in t he t ex t in to a n u m b e r of
classes, or groups , each of which is k n o w n to be smal l enough to fit en-
t i r e ly in to t he c o m p u t e r s tore, and b y m a k i n g a s epa ra t e pa r t i a l glos-
s a ry for each class of words. The p a r t i a l glossaries can then be combined
to p roduce the ent i re g lossary for the t ex t be ing ana lyzed . The cons t ruc-
t ion of one p a r t i a l g lossary is cal led a "cyc le , " a n d the bas ic cycle p a t -
t e rn is shown in Fig. 1, which is se l f -exp lana tory .

II. THE "OVERFLOW" METHOD

A n o t h e r m e t h o d of ove rcoming the s torage space diff icul ty is to use
t he o u t p u t m e d i u m of the c o m p u t e r as an aux i l i a ry store. Thus , a n y
in fo rma t ion o b t a i n e d f rom the t ex t be ing a n a l y z e d for which the re is no
room in the ma in s tore of the c o m p u t e r is punc he d on an "over f low"
tape . W h e n the first " s to re fu l " of i n fo rma t ion has been p r in ted , the in-

211

212 COLIN

Read the next
• word from the
text tape

"~ Ise.roh .st of
ryq.irtd ~ words already

• "j camp,led

::,do'o::n ' ,es

I No

Insert the new J I
word in its correct J J

,< olphabeilcal place J m
and shift all words
below it down by1 p ace

FIG. 1

formation on the overflow tape is collected and sorted by treat ing it as
a new " text ." This process continues until no further overflow tape is
produced. Each stage of the process is called a "cycle," and the outputs
of the different cycles can be combined to produce the entire glossary
for the text.

I1 I Search
IN Read next ~ list of No Yes

= ~ ~J word from I] words already
J textt°ble 1 j compiled

No

Add t to I] in next
< word count < available

storage location

t <

I Punch word J
on overflow

tape J

F~G. 2

AUTOMATIC CONSTRUCTION OF A GLOSSARY 213

Three variants of the Overflow method (called methods 2a, 2b, and
2c) are shown diagrammatically in Figs. 2, 3, and 4.

Method 2a collects the different words in the text in the order in which
they occur, until the store is full; whereas method 2b collects new words

! IN j~,~ Read next
---->- word on

text tape

. . . .

list of J
words already ~-
compi ed t

Add , I Insert word
I in its correct

to word position and
count shift words

below 1 place

FIG. 3

Punch word J
,(on overflow

tape I

IN ~ Read next ~ Search list
word from of words
text tape already

compiled

Add i to
word count

J Punch displaced]
word on J <

overflow tape l
with its word countJ

I Punch word on
< overflow

tope

FIG. 4

I]~neert word in
I J its correct
" I alphabetical posfion

land shift oil words
Ibelow it down by
I J place

I

* i.e., Does the store have any blank locations left? If not, is the alphabetical
position of the text word before that of the last word in the store?

214 COLIN

and stores them in their correct alphabetical order, until the store is
full. Both methods 2a and 2b ignore all new words which occur in the
text after the store is full, so tha t their results are not in true alpha-
betical order; if method 2b is used, although the words collected in each
cycle are in alphabetical order, the alphabetical position of the words
obtained by the different cycles overlap, so that to obtain a true alpha-
betical order for the whole glossary, the partial glossaries have to be
meshed.

However, method 2c ignores no new word in the text whose correct
alphabetical position is between two of the words stored, so that , although
the insertion of a new word into the store when it is already full will
cause the last word in the store and its word count to be displaced from
it and therefore necessitate its punching out on the overflow tape to-
gether with its word count, the final results produced by method 2c will
be in true alphabetical order. For this reason, method 2c is the only
variant of the overflow method which is considered any further.

Since methods 1 and 2c will eventually produce identical results, the
preferred method will be the one which takes the least time to do so.
If certain crude assumptions are made, it is possible to derive approxi-
mate analytical expressions for the times taken by the two methods.

In the Mercury, the times required for dictionary searching and or-
ganization of the process are very small compared with the times needed
for the operations defined above. Theoretically an allowance should be

TABLE I

DEFINITIONS OF SYMBOLS USED IN THE ANALYSIS

Symbol Meaning Value in Mercury

T
W

z

i

Total number of words in text
Number of different words in text
Zipf's constant for the text a
Average time required to read in one word 40 msec

of the text
Average time required to shift a word in the i. 5 msec

store down by one place
Average time required to punch one word 300 msec
Maximum capacity of store (words) 8160

Defined as value of (rank) X (frequency), see "Mechanical Resolution of
Linguistic Problems," by Booth, A. D., Brandwood, L., and Cleave, J. P. But-
terworths, 1958.

AUTOMATIC CONSTRUCTION OF A GLOSSARY 215

made in the analysis for the time for which the machine is idle while
new tapes are being inserted into the tape reader and similar operations
are being carried out; but in practice it is found that the rewinding of
overflow tapes, and selection of new text tapes can be done by the opera-
tor while the machine is running, so that the actual time taken to change
tapes is very small: it is never more than 10 sec, and with some dexterity
on the part of the operator, it can be as low as 3 sec. Any glossary pro-
gram is unlikely to require the changing of more than, say, 100 tapes.
Allowing 6 sec for each change, the total idle time will be about 10 min,
which is very small compared with the total running time of the pro-
gram.

METHOD 1

Let q be the average number of different words in each class. The
number of cycles is w/q; the input time for each cycle is iT msec; the
average number of words which need to be shifted for the jth new word
to be fitted into the store is j/2. Therefore, the total number of shifts
required per cycle is

j q2

Therefore the total shifting time per cycle ~-- sq~/4 msee. The punching
time for output is pq msee. Therefore the approximate total time t is
given by

t =W(iT-~-sq~pq) . (1)

The only parameter in Eq. (1) which may be adjusted by the pro-
grammer is q, the number of words in each class. To find the value of
q which leads to the shortest time for the program, put

Therefore,

~q w -- = 0 .

This gives rise to the unexpected result that a value of q which is as
near as possible to n does not necessarily give the fastest results.

216 COLIN

METHOD 2

Consider the first cycle of a program using this method. The total
reading-in time is iT msec.

The rest of the analysis must be considered in two parts, the first part
corresponding to the state of the program when the store is not yet full,
and the second to the state when the store is full.
Part 1 (store not yet full)

The total shifting time is n2/4 (by analogy with the analysis of method 1).
The overflow punching time is nil. Assume that Zipf's law holds
good for the text. Then, the probability that any word in the text is
the word of rank a is z/Ta. Therefore, the probability of k consecutive
words not being the word of rank a is

when z/Ta is small. Therefore the expected position in the text of the
word of rank a can be evaluated if we put

1

This gives

lc = (Ta/2z).

Very approximately, the new words will be collected in the order of their
ranks, so that the last word to be fitted into the store without displac-
ing another word will be approximately of rank n. Therefore the total
number of words processed during the first state is Tn/2z. Therefore,
the total number of words not yet processed is

The number of new words not yet processed is (w - n). Therefore, the
number of "not new" words still left is

Part 2 (store fuU)
When the second state begins, the words stored range uniformly

through the alphabet, so the probability of any word in the text being

AUTOMATIC CONSTRUCTION OF A GLOSSARY 217

within the range of the store is 1. But, at the end of the second state,
the store contains the first n different words in the text, so the probabil-
ity o~ any words in the text being in the range of the store is n/w. There-
fore, the average probability for this during the second state is

Therefore, the average probability for a word not being in the range
of the store is

Consider first the (x - n) new words left on the tape. The number
of new words which will be in the range of the store is

The average position of these words in the store is 1/~nth location. There-
fore, the amount of shifting required is

4 (1 - 5 ~) (w - n) shifts,

and the time required is

s--n(1 4 -5 n) (w - n) msec.

Each new word encountered in the second state will either be punched
itself, or displace another word, so that the total punching time required
is p(x - n) msec.

Now, the number of "not new" words which will not be within the
range of the store is

and the punching time required for these is

218 COLIN

Finally, the time required for punching out the n new words found is
pn msec. The total time t required for the first cycle is, therefore,

t = i T + - ~ + T

* P X - ' F P (1 - n) [T (i - ~) - (w - n) J •

As Zipf's law no longer holds for the words now left on the overflow
tape, the calculation of the time required for subsequent cycles is almost
impossible to determine analytically, but a reasonable assumption is
tha t each cycle will take roughly half the time of the previous one, so
that , extremely approximately, the total time for the entire program
t2 is t2 = 2t.

Table I I gives a numerical comparison of the two methods discussed,
using Joyce's "Ulysses" as a sample text. For this text T = 260,000,
w = 30,000 and z = 26,000.

Although the assumptions made in the foregoing analysis are so crude
that the resulting figures for the necessary t im e can only be assumed to
be correct to within an order of magnitude, one conclusion emerges
clearly, namely, tha t although method 2c, if used exactly in the form
described above, is inferior to method 1, it would be very much superior
if it were possible to eliminate the shifting time. The shifting time in
both methods is roughly proportional to n2; so that if we can artificially
reduce the apparent size of the store by a factor k, without actually
changing the number of words stored in it, we shall reduce the shifting
time by a factor of k 2.

This artificial reduction can be made by subdividing the store of the
computer into a large number of small self-contained stores, each of
which is used for one small class of words. If the rms size of the small
stores is p, then k = n/p.

If we take a typical value of p = 48, we find that the shifting time

TABLE II

Method q Input Shifting Punching Total
optimum time (hr) time (hr) time (hr) (hr)

1 5247 17 t7 3 37
2c -- 5 61 17 84

AUTOMATIC CONSTRUCTION OF A GLOSSARY 219

required in method 2b falls from 61 hr to practically zero, making a
great reduction in the total time required.

This method of reducing shifting time could, in principle, be applied
to method 1 as well, but this would not be practicable as the programmer
would have not only to divide the words in the text to be analyzed into
classes, but he would have to divide each class into many subclasses,
with the certainty that the size of each of the subclasses would not ex-
ceed the space allotted to it.

From this discussion it is evident that one of the best methods of
constructing a glossary is method 2c, with the modification described.
The next section of this paper discusses the details of a program using
this method.

III. THE PROGRAM

This program was written to make a glossary of King Alfred's trans-
lation of "Orosius," a work in Anglo-Saxon about 45,000 words long,
but it could easily be adapted for use with a n y text in Roman characters.

The text is typed on a teleprinter using the method of coding described
in the companion paper, the line and page arrangements being kept the
same as they are in the source text. As the text is, in general, too long
for one physical tape, it is punched on several tapes, each of which ends
with the s y m b o l / . As the standard word length in the machine is fixed
at I6 letters, no word in the teleprinted text must exceed this length.
Since longer words are very rare, this requirement is not objectionable.

I t may be that certain groups of words are not required in the glos-
sary, although they may need special t reatment later in the linguistic
analysis of the text; all the words in these groups are prefixed by certain
letters (or other symbols) which never occur initially in the rest of the
text. The groups of words so labeled in the present analysis are shown
in Table I I I .

All the words required in the glossary are divided into classes , where

TABLE III

Preposition J
Adverbs K
Proper nouns Q
Conjunctions X
Demonstrative pronouns V
Personal pronouns Z

220 COLIN

each class consists of all the words which have a certain initial letter pair.
Each class is stored in a subdivision of the store called a "leaf." Each
leaf is conveniently made into a whole number of sectors, and is "la-
beled" by the particular letter pair of its class.

I t is clearly uneconomical to allot the same number of sectors to each
leaf, as words in certain classes occur much more frequently than words
in other classes.

To decide on the number of sectors to be allotted to each leaf, an esti-
mate is made of the relative number of different words in each class,
putting 1 for small classes. These numbers are then adiusted so that
their sum is equal to the total number of sectors available. Each one
will then indicate the number of sectors required for the leaf.

The letter pair labels of the various leaves, together with the proposed
leaf sizes, are punched on a "leaf directory" tape. Part of a leaf directory
print-out is shown in Fig. 5. During the execution of the program, the
address and size of each leaf is stored in a "leaf directive."

Before the main program is entered, the leaf directives are constructed
from the leaf directory tape; each one consists of two integers, which
indicate the location of the first sector of the leaf and the number of
sectors in the leaf. Each leaf directive is kept in a location in the second
half of the computing store, whose address is numerically equal to a
simple transformation of the letter pair label of the leaf to which the
directive refers. All the locations which do not contain leaf directives
are filled with the code 0-0.

When the leaf directives have been assembled, one of the text tapes
is placed in the reader, and the main part of the program started. A
flow diagram of this part of the program is shown in Fig. 2.

AB1.AC2.AD2.AE6.AF2.AG2.AH1. AI4.AJ1.AL2.AM5...
BA2.BES.BI1.BO1.BU2.BY1.
CA1.CE1. CH4.CI2.C01. CU2.CY1.
DA1. CE1. DH2.DI1. DO1...

. . °

, ° .

ZI2. ZO1. ZU1. ZY1./

FIG. 5

AUTOMATIC CONSTRUCTION OF A GLOSSARY 2 2 1

< I Yes I .odo-,l t ...otoo01
IN I text word k . ~ / - No.o_'r~/~= "= ' t ; : : ,~ j

~ iiwt~fro ~ 1~ \ ,~> , ,%=/~ : ,3~ . ; ; /~1 brin~dow. I->%=o~o.2-~
I t - ' t ° ° " I ~ ~y ; ' l ' ° ° ' J 'T i_~ ' l ~ / l ~

f Bring down I | ~ I Add t t°] , ,< WIis J

, , , , too. Lo~orithm,~ i . ~ / ~ .

Wc I I ~*'1 I "~ I I I Insert word Motch
• ~ ~ W t with ~ - ~ - A I w,,hoouo,, °o,~odo IW.',/.:'~:'" "

J ~ ' ~ o s t word on / J a ~, 'es{ ,LNo / R e a l \ i t ond shift

y ~N,,. -/w°rdCWcl inn N I t"°"s°r'w°~ ~ , I x I

(~NoI< Icurrentsect°rl < Yes

FIG. 6

As mentioned previously, the standard word length in the machine is
16 letters, or 8 letter pairs; but since each leaf is used to store words
starting with a given letter pair, this letter pair can be deduced from
the leaf and need not be stored in the leaf. The resulting spare location
is used to count the number of times the word has occurred in the text
(the so-called "word count").

A detailed flow diagram of the main part of the program is shown in
Fig. 6.

The main program begins with a routine which reads in the next word
from the text tape (the "text word") and assembles it, in machine form,
in a convenient location. The routine ignores all symbols which are not
parts of words (e.g. ? or CR LF) except for two; these are:

1. The symbol --+ following a word. If this symbol is encountered, the
machine reads and stores the number immediately following it. (The
reason for this will be evident later.)

2. The symbol/ . This symbol signifies "end of text tape," and makes
the machine stop, so that either the next text tape may be placed in the
reader or the output routine (q.v.) started.

As any text word is being read in, the letters are counted; should they
exceed the permissible total of 16, the machine is made to hoot and stop,

222 COLIN

so that the offending word may be noted, and the text tape moved on
to the next word.

When the reading operation has finished, the initial letter of the text
word is examined; should it prove to be one labeling a special group, the
word is ignored, and the next word read in.

Otherwise, the word is one required in the glossary, and the search in
the dictionary of words which have already been compiled is begun.
The search takes place in three stages, which are respectively direct,
linear, and logarithmic.

The initial stage consists of finding the leaf to which the text word
belongs. This is done by suitably transforming the initial letter pair of
the text word, and using the result to B-modify an order which brings
down the directives from the second half of the computing store. If the
leaf directive brought down is 0-0, there is no leaf for the word; in this
ease the word is unacceptable to the machine, and is punched on the
overflow tape.

Otherwise, the leaf directive is used to form two numbers, namely c,
the current sector, which is initially the number of the first sector of the
leaf, and d, which is the last sector of the leaf.

Then, the second or linear part of the search is concerned with finding
which sector of the leaf the text word should be on. The current sector
is brought into the computing store, and the text word is matched against
the last word on this sector. This match may indicate one of three things:

1. The text word is greater than the last word on the sector.
2. The text word is less than the last word on the sector.
3. The text word is exactly equal to the last word on the sector.
Case 1 implies that the search for the correct position of the text word

must take place further on in the leaf, so if the current sector is not the
last one in the leaf, the sector number is increased by one and the match-
ing process repeated. If, however, the current sector is the last one, this
fact implies that the leaf is full and that the text word is outside its
range. In this case, the text word is punched on the overflow tape.

Cases 2 and 3 indicate that the correct position of the text word is on
the current sector. Case 2 leads to the third part of the dictionary search,
which is a logarithmic one within the current sector. The routine which
carries out the search indicates the correct position of the text word in
the sector and also whether the text word has been exactly matched with
a word on the sector Or not.

If an exact match has been made, either by the logarithmic search

AUTOMATIC CONSTRUCTION OF A GLOSSARY 223

routine or by the previous stage of the search (case 3), 1 is usually added
to the word count, and the current sector restored to the drum. However,
it is necessary to insert a safety device here, for counting in the word
count registers is carried out modulo 1024, and should any word occur
more than this number of times hi the text it would give rise to an in-
correct count. Therefore, before 1 is added, the word count is examined
and if it is 1023, 1 is not added, but the word is punched on the overflow
tape.

If, however, an exact match is not made the word is inserted in its
correct position in the sector, and all the words below it moved down by
one place. The word count associated with the word is set to the number
which followed the word on the text tape; or, if there was no number,
the count is set to 1. The "word" which is displaced from the end of the
sector is placed in a "carry store." The current sector is restored to the
drum and the "word" in the carry store examined. If this "word" con-
sists entirely of ones, it signifies a "blank location," and the shifting
process may stop, but if there is a real word h~ the carry store, and the
current sector is not the last of the leaf, shifting must continue. There-
fore the next sector of the leaf is brought down from the drum, and the
shifting and examination process repeated. However, if the sector which
has been shifted by one place is the last one in the leaf, the word in the
carry store, if it is a real word, is one for which there is no room in the
leaf, so this word, followed by the sign --~ and its present word count, is
punched on the overflow tape. I t is necessary to punch the word count
because the word may have occurred several times in the text while it
was still in the store, and this is the only way not to lose this information.
The word count will then be read in by the input routine when the over-
flow tape is processed.

When the entire text has been Processed the output routine is entered.
This routine is trivial in comparison to the main part of the program
and merely punches out all the words in the store, together with their
word counts.

When the output routine has finished, the entire program is repeated
using the overflow tape as a new text; and the cycles are repeated until
the overflow tape contains only words unacceptable to the machine.

Table IV shows the times taken for each stage of the process, when
the glossary for King Alfred's "Orosius" was made.

The large number of overflow tapes produced were due almost entirely
to a gross underestimation Of the number of words starting with GE-.

224 COLIN

TABLE IV

Stage of process Time (min)

Initial input of text 90
First output 40
Input of first overflow tape 30
Second output 10
Input of second overflow tape 3
Third output 1
Input of third overflow tape 1
Fourth output 1

Total = 2 hr 56 rain

The number of sectors allowed for this leaf was 15, whereas there are
enough different words in this class to fill about 50 sectors.

In the entire text there were about ten words unacceptable to the
machine. Some were unacceptable because a leaf had not been provided
for them (these were mainly Latin words), and some because they had
been wrongly or badly punched on the text tape.

In addition to the computer t ime taken to make the glossary, about
three weeks were spent in teleprinting the text, and roughly twenty
hours writing and testing the program.

One year was the t ime estimated to be necessary for the manual con-
struction of the glossary.

PART II

The Automatic Construction of a Concordance

A concordance is a list, in alphabetical order, of all the different
words in a text; each word being followed by a number of references,
consisting of page and line numbers.

In the automatic construction of a concordance, the difficulties asso-
ciated with storage are considerably greater than in the construction of
a glossary. The two main problems are:

1. Since a concordance contains a great deal more information than a
glossary of the same text, the store of the computer can, in general, only
contain a small par t of all the information required at any t ime; and

AUTOMATIC CONSTRUCTION OF A GLOSSARY 225

consequently, even if the full capacity of the store is used, a large num-
ber of "cycles" are required to obtain the complete concordance.

2. Efficient use of the store is difficult to achieve because the amount
of storage space required for the references to each word in the text is
initially unknown.

There is clearly no way in which the first difficulty may be overcome
without sacrificing some information, but if a concordance were to be
made directly from a text about which nothing were initially known,
there would be two general methods by which the second problem might
be overcome.

1. The store could be divided into a number of "blocks" and each
different word and its references stored in a different one of them. The
blocks would all have to be of equal size, because the word which each
block would eventually contain would not be initially known; the blocks
could either each be large enough to contain all possible references to
any word in the text, or else they could be made smaller and used in
conjunction with an "overflow" scheme.

2. Alternatively, the information from the text could be stored com-
pactly by inserting each item in its correct place, and shifting all the
items below it down to make room for it. This could be done by a method
similar to one of those described for the construction of a glossary.

Both these methods have very serious drawbacks. Method 1 would
make very inefficient use of the store, and would therefore increase fur-
ther the already large number of cycles required to complete the con-
cordance.

Method 2, on the other hand, although it would make efficient use of
the store, would consume much time merely shifting information from
one place in the store to another, since every reference to every word
would require a shifting process.

There are many possible schemes based on these methods or com-
binations of them, a few of which lead to some increase in the speed of
the program, but no mat ter what method were adopted, the construc-
tion of a concordance from a text about which nothing is initially known
would be an extrenely time-consuming task.

However, if a glossary of the text to be analyzed is available, a pro-
gram can be designed which overcomes the drawbacks of both the meth-
ods mentioned above, but retains their advantages. Using the informa-
tion contained in the glossary, the store can be split up into blocks, each
of which is used to store the references to a known word. Since a word
count is available, the blocks can be made of exactly the right capacity,

226 coLi~

so that the store can be used at its full efficiency. Furthermore, each
reference obtained from the text can be placed directly in the location
prepared for it, so that shifting is completely obviated.

A program designed on these lines is described below.

THE CONCORDANCE PROGRAM

Each cycle of the concordance program has three phases. The first
phase reads in the glossary of the text to be analyzed, and divides the
store into blocks accordingly. Each block contains three items; firstly,
a "label," which consists of the word whose references are being collected
in the block; this word is not stored in its standard machine form of 8
letter pairs, but, to save storage space, in its most compact form, i.e.,
r ~ - - - i

nom o ,vo a The

second item consists of sufficient 10-bit locations to store all the expected
references to the word, and the third item is a marker to indicate that a
new block has started. The marker is placed just before the labeling
word: it is necessary because the blocks are of unequal length, and it
consists of one 10-bit machine word of which the five most significant
bits are set to "11111," and the five least significant bits indicate the
number of letters in the labeling word. The code "11111" is chosen for
the five most significant bits of the marker so that it will not be con-
fused with an alphabetical letter pair. If this form of marker is used,
page or line references higher than 991 (11110,11111 in binary) cannot
be stored because they would be confused with the marker.

For example, suppose that the word GLASS occurs three times in the
text being analyzed. The block for this word will be set up as shown be-
low (in binary notation) :

11111,00101 Marker
00111,01100 GL
00001,10011 AS
10011,00000 S-

Labeling word

00000,00000
00000,00000
00000,00000
00000,00000
00000,00000
00000,00000

Space for expected references

AUTOMATIC CONSTRUCTION OF A GLOSSARY 227

For convenience of access the blocks are arranged into groups of two
sectors each. Each group is called a "sector pair" and no block is allowed
to overflow from the end of one sector pair to the next.

The program reads in the glossary tape, constructs the blocks, and
assembles them into their sector pairs, starting with the first available
sector pair on the drum. Any block which will not fit into a sector pair
is made the beginning of the next sector pair, and the spare locations
on the previous sector pair are filled with the code 11111, 11111. If any
word has so many expected references that it requires more than 1 see-
to t pair to store them, it is split up into a number of different blocks,
each of which is up to one sector pair long. Words in this category are
called "mult ibloek" words.

The first word on each sector pair is stored in standard machine form
in the second half of the computing store, in an address which corre-
sponds to tha t of the sector pair. If the first block of any sector pair is
not the first block for a particular word, the word which is recorded in
the computing store is a fictitious word generated by increasing the real
word by the smallest possible amount. For example, if the word " T H E "
requires many blocks of storage, the words stored would be:

First word stored: T H E
Subsequent words stored: T H EL -A

However, the labeling words stored in the blocks themselves would be
all the same. The reason for this arrangement will become apparent
later.

The process of setting up the blocks continues until either the store is
full, or the glossary tape comes to an end. The first and last words in
the store are placed in an easily accessible place. If the program stops
because the store is full, t h e glossary tape is marked at the place it
stopped, so that it may be inserted at the same place when the nexb
cycle is begun.

PHASE 2

This part of the program collects the references from the next tape,
and places them in the predetermined locations in the store. A flow
diagram of this is shown in Fig. 7.

Phase 2 begins with a routine which reads in the next word of the
text counting the number of letter pairs which it contains, and also keeps
a record of the current page and line references. The current line refer-

228 coLz~

Read in next] A J ~ Find first
Iwordontexttape I if, .~ ~.._~ :_ \Yes ~ sectorpair and
and keep record J . ~ / ~ ~ n ° a r ~ "X~ Reset J_> bring it down I

IN'J~ onces j ~ Jot current page I " ~ " ~ / ~ ~ st;re ?X~ . ,n / / / l swi tch J j ~<______~/

' ' ' / Search for text I I • To phose three T Word not | I I < -" " ~ I word in sector I
Punch text] [-°l~- found "] pair] J Bring down j

I word and rats. I | "'-. ' ~ ' Inext sector I
< on errors - ' - - J tope ['<-J Word~ I uP::~tdc ~e~ [

found| ~ I

Insert refs. IFound < Search for bMnk I < < restore sector
Punch text] M o r k e r / / ~ X pa]r J Jrefs. location

wOrdontopeerrorsand refs. o ~ < End of sectorN°tpairf°und , t

FIG. 7

ence is increased by 1 wherever the "line feed" symbol is encountered
on the text tape, and the page reference is set equal to the last page
number read from the tape. A new page number automatically resets
the current line reference to 1. The routine also contains a device to
stop the machine if the "end of tape" symbol is read, and a safety meas-
ure which makes the machine hoot and stop if a word which contains
more than 16 letters is encountered.

When a word has been read in, it is compared with the first and last
words in the store to determine whether it is within the storage range
for the particular cycle of the program. If it is not, it is ignored and the
next word read in. Otherwise, the search for the block to which the word
belongs is started. The search takes place in two stages.

The first stage is a logarithmic one carried out among the words in
the second half of the computing store, and its results indicate either
the sector pair on which a "single block" word is stored, or the sector
pair on which the first block of a "multiblock" is stored. The reason for
the storage of the fictitious words mentioned previously is tha t it is
essential to pick out the first block of a multiblock word. If a logarithmic
search were applied to a dictionary where the required word occurs
several times, the actual occurrence of the word which it would select
would not necessarily be the first one, but would depend on the precise

AUTOM2~TIC CONSTRUCTION OF A GLOSSARY 229

position in the store of the group of words. This difficulty can be over-
come by slightly increasing all the words except the first as indicated.

When the correct sector pair has been selected, it is brought down into
the computing store, and the second stage of the search is entered.

As the blocks in the sector pair are of unequal length, the search for
the correct one must be a linear one, but it is speeded up by only com-
paring the text word with those labeling words which have the same
number of letters as the text word. These words are found by means of
their markers.

When the correct block is found, the current page and line references
are recorded in the first available blank locations and the current sector
pair restored. I t may be, however, that there are no blank locations
left in the block. If the block ends with the marker for the next block
or with the "fill-in" code 11111,11111, this signifies that an error has
occurred and that the block is the wrong size. In this case the text word
and its current references are punched on an "errors" tape. If, however,
the block ends at the end of a sector pair, this usually signifies that a
word is a "multiblock" one. In this case the next sector pair is transferred
to the computing store, a "switch" is set up, and the search begins again.

I t may be that the programmer has erased certain very common words
from the glossary, because their concordances were not required. When
these words are encountered in the text, they will not be found in the
store, although they may be in the storage range.

If a word is not found in the first sector pair within which the search
is made, it is one of the erased words and is simply ignored. If, however,
a word is not found on the second sector pair which is searched, this im-
plies that an error was made in setting up the block for the word, and
that this error happened to make the block end at the end of tile sector
pair. Therefore, when the block to which the word belongs was found
to be full, the program mistakenly assumed that the word was a multi-
block word and the next sector pair was brought down and searched.
To allow for this very unlikely occurrence, the switch which was set up
when the second sector pair was brought down causes the program to
punch the word on the error tape.

Phase 2 of each cycle continues until the entire text has been proc-
essed.

Phase 3 prints out the partial concordance made during phases 1 and
2. Each word is followed by all the page and line references which have
been collected, and, if a blank location is found, the symbol "?" is printed.

230 COLIN

If the glossary program and the concordance program which form
the subjects for this paper are used together, they provide an incom-
plete, but nevertheless useful error detecting and correcting device. By
means of the "?" 's on the output and the error tape all errors except
(a) incorrect punching of text, (b) complete omission of a word in the
glossary, and (c) incorrect recording of ~'eferenees, may be detected and
some of them corrected. If the program should produce an objectionably
large number of detected but uncorrected errors, it is possible to run a
further cycle of the program using as a glossary those words about which
there is some doubt and giving a very large block size to each one.

CONCLUSION

In general, full concordances of texts are of more use for linguistic
analysis than glossaries. Nevertheless, it is the author,s opinion that a
glossary of a text is well worth making, even if it is only used to make
an efficient concordance program. I t is thought that the m e t h o d de-
scribed is probably one of the most efficient ones available if a machine
similar to Mercury is to be used; but this would not be so if a machine
specially designed for linguistic analysis were available. Such a machine
would have two special characteristics:

l. I t would have a very large store, i n which information was very
rapidly accessible.

2. I t would be able to shift all the information from a given point
downwards by a number of locations in one short operation.

]:~ECEIVED: MARC~ 25, 1960.

