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0. Introduction

In a recent paper [4] the present author introduced a class of progressively finite games played
on ranked posets, where each move of the winning strategy is unique and the positions satisfy the
following uniformity criterion: each position of a given rank may be reached from the same number
of positions of a given higher rank in a single move. As a consequence, the kernel positions of a given
rank may be counted by subtracting from the number of all positions the appropriate multiples of the
kernel positions of lower ranks. The main example in [4] is the original Bernoulli game, a truncation
game played on pairs of words of the same length, for which the number of kernel positions of rank
n is a signed factorial multiple of the Bernoulli number of the second kind bn . Similarly to this game,
most examples mentioned in [4] are also truncation games played on words, where the partial order
is defined by taking initial segments and the rank is determined by the length of the words involved.

In this paper we consider a class of strongly Bernoulli type truncation games played on words, for
which we do not require the uniformity condition on the rank to be satisfied. We show that for
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such games, the winning strategy may be found by decomposing each kernel position as a concate-
nation of elementary kernel factors. This decomposition is unique. All truncation games considered
in [4] (including the ones played on pairs or triplets of words) are isomorphic to a strongly Bernoulli
type truncation game. For most of these examples, the elementary kernel factors of a given type
are also easy to enumerate. Thus we may obtain explicit summation formulas and non-alternating
recurrences for numbers which were expressed in [4] as coefficients in a generating function or by al-
ternating recurrences. The explicit summation formulas are obtained by considering the entire unique
decomposition of each kernel position, the non-alternating recurrence is obtained by considering the
removal of the last elementary kernel factor only. Thus we find some new identities for the Bernoulli
polynomials and numbers of the second kind, and shed new light on King’s [6] decomposition of
“indecomposable” permutations.

The paper is structured as follows. After the Preliminaries, the main unique decomposition the-
orem is stated in Section 2. In the subsequent sections we consider games to which this result is
applicable: we show they are isomorphic to strongly Bernoulli type truncation games, we find for-
mulas expressing their elementary kernel factors of a given type, and use these formulas to express
the number of kernel positions as an explicit sum and by a non-alternating recurrence. Most detail
is given for the original Bernoulli game in Section 3, omitted details in other sections are replaced
by references to the appropriate part of this section. As a consequence of our analysis of the original
Bernoulli game, we obtain an explicit summation formula of the Bernoulli numbers of the second
kind, expressing them as a sum of entries of the same sign. We also obtain a non-alternating recur-
rence for their absolute values.

In Section 4 we consider a restriction of the original Bernoulli game to a set of positions, where
the kernel positions are identifiable with the connected or indecomposable permutations forming an
algebra basis of the Malvenuto–Reutenauer Hopf algebra [9]. For these the recurrence obtained by the
removal of the last elementary kernel factor is numerically identical to the recurrence that may be
found in King’s [6] recursive construction of a transposition Gray code for the connected permutations.
We show that this is not a coincidence: there is a bijection on the set of permutations, modulo which
King’s recursive step corresponds to the removal of the last elementary kernel factor in the associated
place-based non-inversion tables (a variant of the usual inversion tables). Our result inspires another
systematic algorithm to list all connected permutations of a given order, and a new combinatorial
model for the numbers of connected permutations of order n, in which this number arises as the
total weight of all permutations of order n − 2, such that the highest weight is associated to the
permutations having the most strong fixed points (being thus the “least connected”).

Section 5 contains the consequences of our main result to Bernoulli polynomials of the second
kind. Here we observe that we obtain the coefficients of these polynomials when we expand them in
the basis {(x+1

n

)
: n � 0}, and obtain a new formula for the Bernoulli numbers of the second kind.

Finally, in Section 6 we consider the flat Bernoulli game, whose kernel positions have the generating
function t/((1 − t)(1 − ln(1 − t))) and conclude the section with an intriguing conjecture that for a
long random initial word a novice player could not decrease the chance of winning below 50% by
simply removing the last letter in the first move.

1. Preliminaries

1.1. Progressively finite games

A progressively finite two-player game is a game whose positions may be represented by the
vertices of a directed graph that contains no directed cycle nor infinite path, the edges represent valid
moves. Thus the game always ends after a finite number of moves. The players take alternate turns
to move along a directed edge to a next position, until one of them reaches a winning position with
no edge going out: the player who moves into this position is declared a winner, the next player is
unable the move.

The winning strategy for a progressively finite game may be found by calculating the Grundy num-
ber (or Sprague–Grundy number) of each position, the method is well known, a sample reference
is [15, Chapter 11]. The positions with Grundy number zero are called kernel positions. A player has
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a winning strategy exactly when he or she is allowed to start from a non-kernel position. All games
considered in this paper are progressively finite.

1.2. The original Bernoulli game and its generalizations

In [4] the present author introduced the original Bernoulli game as the following progressively finite
two-player game. The positions of rank n > 0 in the game are all pairs of words (u1 · · · un, v1 · · · vn)

such that

(i) the letters u1, . . . , un and v1, . . . , vn are positive integers;
(ii) for each i � 1 we have 1 � ui, vi � i.

A valid move consists of replacing the pair (u1 · · · un, v1 · · · vn) with (u1 · · · um, v1 · · · vm) for some
m � 1 satisfying um+1 � v j for j = m + 1, . . . ,n. The name of the game refers to the following fact
[4, Theorem 2.2].

Theorem 1.1. For n � 1, the number κn of kernel positions of rank n in the original Bernoulli game is given by

κn = (−1)n−1(n + 1)!bn,

where bn is the n-th Bernoulli number of the second kind.

Here the Bernoulli number of the second kind bn is obtained by substituting zero into the Bernoulli
polynomial of the second kind bn(x), given by the generating function

∞∑
n=0

bn(x)

n! tn = t(1 + t)x

ln(1 + t)
, (1)

see Roman [10, p. 116]. Note that [10, p. 114] Jordan’s [5, p. 279] earlier definition of the Bernoulli
polynomial of the second kind φn(x) is obtained by dividing bn(x) by n!.

The proof of Theorem 1.1 depends on a few simple observations which were generalized in [4] to
a class of Bernoulli type games on posets (see [4, Definition 3.1]). The set of positions P in these games
is a partially ordered set with a unique minimum element 0̂ and a rank function ρ : P → N such that
for each n � 0 the set Pn of positions of rank n have finitely many elements. The valid moves satisfy
the following criteria:

(i) Each valid move is from a position of higher rank to a position of lower rank. The set of positions
reachable from a single position is a chain.

(ii) If y1 and y2 are both reachable from x in a single move and y1 < y2 then y1 is reachable from
y2 in a single move.

(iii) For all m < n there is a number γm,n such that each y of rank m may be reached from exactly
γm,n elements of rank n in a single move.

For such games, it was shown in [4, Proposition 3.3], the numbers κn of kernel positions of rank n
satisfy the recursion formula

|Pn| = κn +
n−1∑
m=0

κm · γm,n. (2)

2. Winning a strongly Bernoulli type truncation game

Let Λ be an alphabet and let us denote by Λ∗ the free monoid generated by Λ, i.e., set

Λ∗ := {
v1 · · · vn: n � 0, ∀i(vi ∈ Λ)

}
.

Note that Λ∗ contains the empty word ε.
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Definition 2.1. Given a subset M ⊆ Λ∗ \ {ε}, we define the truncation game induced by M as the
game whose positions are the elements of Λ∗ , and whose valid moves consist of all truncations
v1 · · · vn → v1 · · · vi such that vi+1 · · · vn ∈ M .

Note that ε /∈ M guarantees that the truncation game induced by M is progressively finite, we may
define the rank of each position as the length of each word. This rank decreases after each valid move.

Definition 2.2. Given M ⊂ Λ∗ \{ε}, and P ⊆ Λ∗ , we say that P is M-closed if for all v1 · · · vn ∈ Λ∗ \{ε},
v1 · · · vn ∈ P and vi+1 · · · vn ∈ M imply v1 · · · vi ∈ P . For an M-closed P , the restriction of the truncation
game induced by M to P is the game whose positions are the elements of P and whose valid moves
consist of all truncations v1 · · · vn → v1 · · · vi such that vi+1 · · · vn ∈ M and v1 · · · vn ∈ P . We denote
this game by (P , M), and call it the truncation game induced by M on P .

Clearly the definition of being M-closed is equivalent to saying that the set P is closed under
making valid moves.

Definition 2.3. We say that M ⊂ Λ∗ \ {ε} induces a Bernoulli type truncation game if for all pairs of
words u, v ∈ Λ∗ \ {ε}, uv ∈ M and v ∈ M imply u ∈ M . If M is also closed under taking nonempty
initial segments, i.e., v1 · · · vn ∈ M implies v1 · · · vm ∈ M for all m ∈ {1, . . . ,n} then we say that M
induces a strongly Bernoulli type truncation game. If M induces a (strongly) Bernoulli type truncation
game, we call also (P , M) a (strongly) Bernoulli type truncation game for each M-closed P ⊆ Λ∗ .

Every strongly Bernoulli type truncation game is also a Bernoulli type truncation game. The con-
verse is not true: consider for example the set M of all words of positive even length. It is easy to see
that the truncation game induced by M is Bernoulli type, but it is not strongly Bernoulli type since
M is not closed under taking initial segments of odd length.

Remark 2.4. The definition of a Bernoulli type truncation game is almost a special case of the Bernoulli
type games on posets defined in [4, Definition 3.1]. Each M-closed P ⊆ Λ∗ is partially ordered by the
relation v1 · · · vm < v1 · · · vn for all m < n, the unique minimum element of this poset is ε, and the
length function is a rank function for this partial order. For this poset and rank function, the set
of valid moves satisfies conditions (i) and (ii) listed in Subsection 1.2. Only the “uniformity” condi-
tion (iii) and the finiteness of |Pn| do not need to be satisfied. These conditions were used in [4] to
prove Eq. (2) and count the kernel positions of rank n “externally”. In this section we will show that
the kernel positions of a strongly Bernoulli type truncation game on words may be described “inter-
nally” in a manner that will allow their enumeration when each |Pn| is finite. The question whether
the results presented in this section may be generalized to all Bernoulli type truncation games re-
mains open. All examples of Bernoulli games played on words in [4] are isomorphic to strongly
Bernoulli type truncation games, we will prove this for most of them in this paper, the remaining
examples are left to the reader. Together with the results in [4], we thus obtain two independent
ways to count the same kernel positions in these games. Comparing the results in [4] with the results
in the present paper yields explicit formulas for the coefficients in the Taylor expansion of certain
functions.

In the rest of the section we set P = Λ∗ and just find the winning strategy for the truncation game
induced by M . Only the formulas counting the kernel positions will change when we change the set
P in the subsequent sections, the decomposition of the kernel positions will not. First we define some
elementary kernel positions in which the second player may win after at most one move by the first
player.

Definition 2.5. The word v1 · · · vn ∈ Λ∗ \ {ε} is an elementary kernel position if it satisfies v1 · · · vn /∈ M ,
but for all m < n we have v1 · · · vm ∈ M .
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In particular, for n = 1, v1 is an elementary kernel position if and only if v1 /∈ M . Our terminology
is justified by the following two statements.

Remark 2.6. A position v1 is a winning position, if and only if it is an elementary kernel position.
Otherwise it is not a kernel position at all.

Lemma 2.7. For n > 1, starting from an elementary kernel position v1 · · · vn, the first player is either unable
to move, or is able to move only to a position where the second player may win in a single move.

Proof. There is nothing to prove if the first player is unable to move. Otherwise, by v1 · · · vn /∈ M , the
first player is unable to move to the empty word. Thus, after his or her move, we arrive in a v1 · · · vm
where 1 � m � n − 1. Thus v1 · · · vm ∈ M holds, the second player may now move to the empty word
right away. �

Next we show that the set of kernel positions in a strongly Bernoulli type truncation game on Λ∗
is closed under the concatenation operation.

Proposition 2.8. Let u := u1 · · · um be a kernel position of length m � 1 in a strongly Bernoulli truncation
game induced by M. Then an arbitrary position v := v1 · · · vn of length n � 1 is a kernel position if and only if
the concatenation uv is also a kernel position.

Proof. Assume first that v is a kernel position. We instruct the second player to play the winning
strategy that exists for v as long as the length of the word truncated from uv at the beginning of his
or her move is greater than m. For pairs of words longer than m, the validity of a move is determined
without regard to the letters in the first m positions. By playing the winning strategy for v as long
as possible, the second player is able to force the first player into a position where the first player is
either unable to move, or will be the first to move to a word of length less than m, say u1 · · · uk . The
validity of this move implies uk+1 · · · um v1 · · · vi ∈ M for some i � 0. By the strong Bernoulli property
we obtain uk+1 · · · um ∈ M and moving from u1 · · · um to u1 · · · uk is also a valid move. We may thus
pretend that the first player just made the first move from u1 · · · um and the second player may win
by following the winning strategy that exists for u.

For the converse, assume that v is not a kernel position. In this case we may instruct the first
player to play the strategy associated to v as long as possible, forcing the second player into a position
where he or she is either unable to move, or ends up making a move equivalent to a first move
starting from u. Now the original first player becomes the second player in this subsequent game,
and is able to win. Therefore, in this case the concatenation uv is not a kernel position either. �

Using all results in this section we obtain the following structure theorem.

Theorem 2.9. A word v ∈ Λ∗ \ {ε} is a kernel position in a strongly Bernoulli type truncation game, if and only
if it may be obtained by the concatenation of one or several elementary kernel positions. Such a decomposition,
if it exists, is unique.

Proof. The elementary kernel positions are kernel positions by Remark 2.6 and Lemma 2.7. Repeated
use of Proposition 2.8 yields that a pair of words obtained by concatenating several elementary kernel
positions is also a kernel position.

For the converse assume that v := v1 · · · vn is a kernel position. We prove by induction on n that
this position is either an elementary kernel position or may be obtained by concatenating several
elementary kernel positions. Let m be the least index for which v1 · · · vm /∈ M holds, such an m ex-
ists, otherwise the first player is able to move to ε and win in the first move. It follows from the
definition that the v1 · · · vm is an elementary kernel position. If m = n then we are done, otherwise
applying Proposition 2.8 to v1 · · · vn = (v1 · · · vm) · (vm+1 · · · vn) yields that vm+1 · · · vn must be a ker-
nel position. We may apply the induction hypothesis to vm+1 · · · vn .
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The uniqueness of the decomposition may also be shown by induction on n. Assume that v1 · · · vn

is a kernel position and thus arises as a concatenation of one or several elementary kernel positions.
Let v1 · · · vm be the leftmost factor in this concatenation. By Definition 2.5, m is the least index
such v1 · · · vm /∈ M is satisfied. This determines the leftmost factor uniquely. Now we may apply our
induction hypothesis to vm+1 · · · vn . �
3. The original Bernoulli game

When we want to apply Theorem 2.9 to the original Bernoulli game, we encounter two minor
obstacles. The first obstacle is that the rule defining a valid move from (u1 · · · un, v1 · · · vn) makes
an exception for the letters u1 = v1 = 1, and does not allow their removal. The second obstacle is
that the game is defined on pairs of words. Both problems may be easily remedied by changing the
alphabet to Λ = P × P × P = P

3 where P is the set of positive integers.

Lemma 3.1. The original Bernoulli game is isomorphic to the strongly Bernoulli type truncation game induced
by

M = {
(p1, u1, v1) · · · (pn, un, vn): p1 	= 1, u1 � v1, . . . , vn

}
,

on the set of positions

P = {
(1, u1, v1) · · · (n, un, vn): 1 � ui, vi � i

} ⊂ (
P

3)∗
.

The isomorphism is given by sending each pair of words (u1 · · · un, v1 · · · vn) ∈ (P2)∗ into the word
(1, u1, v1)(2, u2, v2) · · · (n, un, vn) ∈ (P3)∗ .

Theorem 2.9 provides a new way of counting the kernel positions of rank n in the game (P , M)

defined in Lemma 3.1. Each kernel position (1, u1, v1) · · · (n, un, vn) may be uniquely written as a con-
catenation of elementary kernel positions. Note that these elementary kernel positions do not need
to belong to the set of valid positions P . However, we are able to independently describe and count
all elementary kernel positions that may appear in a concatenation factorization of a valid kernel po-
sition (1, u1, v1) · · · (n, un, vn) and contribute the segment (i, ui, vi) · · · ( j, u j, v j) to it. We call such
a pair an elementary kernel factor of type (i, j) and denote the number of such factors by κ(i, j). Note
that for i = 1 we must have j = 1 and (1,1,1) is the only elementary kernel factor of type (1,1).
Thus we have κ(1,1) = 1.

Lemma 3.2. For 2 � i � j, a word (i, ui, vi) · · · ( j, u j, v j) ∈ (P3)∗ is an elementary kernel factor of type (i, j)
if and only if it satisfies the following criteria:

(i) for each k ∈ {i, i + 1, . . . , j} we have 1 � uk, vk � k;
(ii) we have ui > v j ;

(iii) for all k ∈ {i, i + 1, . . . , j − 1} we have ui � vk.

In fact, condition (i) states the requirement for a valid position for the letters at the positions
i, . . . , j, whereas conditions (ii) and (iii) reiterate the appropriately shifted variant of the defini-
tion of an elementary kernel position. A word (1, u1, v1) · · · (n, un, vn) that arises by concatenat-
ing (1, u1, v1) · · · (i1, ui1 , vi1 ), (i1 + 1, ui1+1, vi1+1) · · · (i2, ui2 , vi2 ), and so on, (ik+1,uik+1, vik+1) · · ·
(n, un, vn) belongs to P if and only if each factor (is + 1, uis+1, vis+1) · · · (is+1, uis+1 , vis+1 ) (where
0 � s � k, i0 = 0 and ik+1 = n) satisfies conditions (i) and (ii) in Lemma 3.2 with i = is +1 and j = is+1.
We obtain the unique factorization as a concatenation of elementary kernel positions if and only if
each factor (uis+1, vis+1) · · · (uis+1 , vis+1 ) also satisfies condition (iii) in Lemma 3.2 with i = is + 1 and
j = is+1. Using the description given in Lemma 3.2 it is easy to calculate the numbers κ(i, j).
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Lemma 3.3. For 2 � i � j, the number of elementary kernel factors of type (i, j) is

κ(i, j) = ( j − i)!2
(

j

i

)(
j

i − 2

)
.

Proof. There is no other restriction on vi+1, . . . , v j than the inequality given in condition (i) of
Lemma 3.2. These numbers may be chosen in (i + 1)(i + 2) · · · j = j!/i! ways. Let us denote the
value of ui by u, this must satisfy 1 � u � i. However, v j < ui may only be satisfied if u is at
least 2. In that case v j may be selected in (u − 1) ways, and each vk (where i � k � j − 1) may
be selected in (k + 1 − u) ways (since ui � vk � k). Thus the values of vi, . . . v j may be selected in
(u − 1) · (i + 1 − u)(i + 2 − u) · · · ( j − u) = (u − 1) · ( j − u)!/(i − u)! ways. We obtain the formula

κ(i, j) =
i∑

u=2

(u − 1) · j!( j − u)!
i!(i − u)! = ( j − i)!2

(
j

i

) i∑
u=2

(
u − 1

u − 2

)
·
(

j − u

i − u

)
.

Replacing the binomial coefficients with symbols((
n

k

))
:=

(
n + k − 1

k

)
,

counting the k-element multisets on an n-element set, we may rewrite the last sum as

i∑
u=2

((
2

u − 2

))
·
((

j − i + 1

i − u

))
=

((
j − i + 3

i − 2

))
.

Thus we obtain

κ(i, j) = ( j − i)!2
(

j

i

)((
j − i + 3

i − 2

))
,

which is obviously equivalent to the stated equation. �
Once we have selected the length of the elementary kernel factors in the unique decomposition of

a kernel position, we may select each kernel factor of a given type independently. Thus we obtain the
following result.

Theorem 3.4. For n � 1, the number κn of kernel positions of rank n in the original Bernoulli game is given by

κn =
n−2∑
k=0

∑
1=i0<i1<···<ik+1=n

k∏
j=0

(i j+1 − i j − 1)!2
(

i j+1

i j + 1

)(
i j+1

i j − 1

)
.

Proof. Consider the isomorphic game (P , M) given in Lemma 3.1. Assuming that the elementary ker-
nel factors cover the positions 1 through 1, 2 = i0 + 1 through i1, i1 + 1 through i2, and so on, ik + 1
through ik+1 = n, we obtain the formula

κn = κ(1,1)

n−1∑
k=0

∑
1=i0<i1<···<ik+1=n

k∏
j=0

κ(i j + 1, i j+1),

from which the statement follows by κ(1,1) = 1 and Lemma 3.3. �
Comparing Theorem 3.4 with Theorem 1.1 we obtain the following formula for the Bernoulli num-

bers of the second kind.
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Corollary 3.5. For n � 2 the Bernoulli numbers of the second kind are given by

bn = (−1)n−1 1

(n + 1)!
n−2∑
k=0

∑
1=i0<i1<···<ik+1=n

k∏
j=0

(i j+1 − i j − 1)!2
(

i j+1

i j + 1

)(
i j+1

i j − 1

)
. (3)

Example 3.6. For n = 4, Eq. (3) yields

b4 = −1

5!
(

(3 − 1)!2
(

4

2

)(
4

0

)
+ (1 − 1)!2

(
2

2

)(
2

0

)
(3 − 2)!2

(
4

3

)(
4

1

)

+ (2 − 1)!2
(

3

2

)(
3

0

)
(3 − 3)!2

(
4

4

)(
4

2

)

+ (1 − 1)!2
(

2

2

)(
2

0

)
(2 − 2)!2

(
3

3

)(
3

1

)
(3 − 3)!2

(
4

4

)(
4

2

))
= −19

30
.

Thus b4/4! = −19/720, which agrees with the number tabulated by Jordan [5, p. 266].

As n increases, the number of terms in (3) increases exponentially. However, we are unaware of
any other explicit formula expressing the Bernoulli numbers of the second kind as a sum of terms of
the same sign.

Lemma 3.3 may also be used to obtain a recursion formula for the number of kernel positions of
rank n in the original Bernoulli game.

Proposition 3.7. For n � 2, the number κn of kernel positions of rank n in the original Bernoulli game satisfies
the recursion formula

κn =
n−1∑
i=1

κi(n − i − 1)!2
(

n

i + 1

)(
n

i − 1

)
.

Proof. Consider again the isomorphic game (P , M) given in Lemma 3.1. Assume the last elementary
kernel factor is (i + 1, ui+1, vi+1) · · · (n, un, vn) where i � 1. Removing it we obtain a kernel position
of rank i. Conversely, concatenating an elementary kernel factor (i + 1, ui+1, vi+1) · · · (n, un, vn) to
a kernel position of rank i yields a kernel position of rank n. Thus we have

κn =
n−1∑
i=0

κi · κ(i + 1,n), (4)

and the statement follows by Lemma 3.3. �
Comparing Proposition 3.7 with Theorem 1.1 we obtain the following recursion formula for abso-

lute values of the Bernoulli numbers of the second kind.

|bn| = 1

n + 1

n−1∑
i=1

|bi|(n − i − 1)!
(

n

i − 1

)
holds for n � 2. (5)

Equivalently, Jordan’s [5] Bernoulli numbers of the second kind bn/n! satisfy

∣∣∣∣bn

n!
∣∣∣∣ =

n−1∑
i=1

∣∣∣∣bi

i!
∣∣∣∣ i

(n + 1)(n − i + 1)(n − i)
for n � 2. (6)
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Remark 3.8. Since the sign of bn for n � 1 is (−1)n−1, and substituting x = 0 in (1) gives∑
n�0

bn

n! tn = t

ln(1 − t)
,

it is easy to verify that (6) could also be derived from the following equation, satisfied by the gener-
ating function of the numbers bn:

d

dt

(
t · t

ln(1 − t)

)
+ 1 − t = d

dt

(
t

ln(1 − t)

)
· ((1 − t) ln(1 − t) + t

)
.

However, it seems hard to guess that this equation will yield a nice recursion formula.

4. Decomposing the indecomposable permutations

Definition 4.1. The instant Bernoulli game is the restriction of the original Bernoulli game to the set of
positions {(12 · · ·n, v1 · · · vn): n � 1}.

Lemma 4.2. Equivalently, we may define the set of positions of the instant Bernoulli game as the set of words
v1 · · · vn satisfying n � 1 and 1 � vi � i for all i. A valid move consists of replacing v1 · · · vn with v1 · · · vm
for some m � 1 such that m + 1 � vm+1, vm+2, . . . , vn holds.

Lemma 4.2 offers the simplest possible way to visualize the instant Bernoulli game, even if this is
not a form in which the applicability of Theorem 2.9 could be directly seen. For that purpose we need
to note that the isomorphism of games stated in Lemma 3.1 may be restricted to the set of positions
of the instant Bernoulli game, and we obtain the following representation.

Lemma 4.3. The instant Bernoulli game is isomorphic to the strongly Bernoulli type truncation game induced
by

M = {
(p1, u1, v1) · · · (pn, un, vn): p1 	= 1, u1 � v1, . . . , vn

}
,

on the set of positions

P = {
(1,1, v1) · · · (n,n, vn): 1 � ui, vi � i

} ⊂ (
P

3)∗
.

Unless otherwise noted, we will use the simplified representation stated in Lemma 4.2. The kernel
positions of the instant Bernoulli game are identifiable with the primitive elements of the Malvenuto–
Reutenauer Hopf algebra, as it was mentioned in the concluding remarks of [4]. We call this game the
instant Bernoulli game because this is a game in which one of the players wins instantly: either there
is no valid move and the second player wins instantly, or the first player may select the least m � 1
satisfying m + 1 � vm+1, vm+2, . . . , vn and move to v1 · · · vm , thus winning instantly. The kernel posi-
tions are identical to the winning positions in this game. The recursion formula (2) may be rewritten
as

n! = κn +
n−1∑
m=1

κm(n − m)!

(we start the summation with κ1 since the first letter cannot be removed), and the generating func-
tion of the numbers κn is easily seen to be

∞∑
n=1

κntn = 1 − 1∑∞
n=0 n!tn

. (7)

The numbers {κn}n�0 are listed as sequence A003319 in the On-Line Encyclopedia of Integer Se-
quences [11], and count the number of connected or indecomposable permutations of {1,2, . . . ,n}.
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A permutation π ∈ Sn is connected if there is no m < n such that π takes the set {1, . . . ,m} into
itself. The kernel positions of the instant Bernoulli game are directly identifiable with the connected
permutations in more than one ways. One way is mentioned at the end of [4], we may formalize that
bijection using two variants of the well-known inversion tables (see, for example [7, Section 5.1.1] or
[13, Section 1.3]).

Definition 4.4. Given a permutation π ∈ Sn we define its letter-based non-inversion table as the word
v1 · · · vn where v j = 1 + |{i < j: π−1(i) < π−1( j)}|.

For example, for π = 693714825 the letter-based non-inversion table is 121351362. This is ob-
tained by adding 1 to all entries in the usual definition of an inversion table [13, Section 1.3] of the
permutation π̃ = 417396285, defined by π̃ (i) = n + 1 − π(i) and taking the reverse of the resulting
word. In particular, for π̃ = 417396285 we find the inversion table (1,5,2,0,4,2,0,1,0) in [13, Sec-
tion 1.3]. Our term letter-based refers to the fact that here we associate the letter j to v j and not the
place j.

A variant of the notion of letter-based non-inversion table is the place-based non-inversion table.

Definition 4.5. Given a permutation π ∈ Sn we define its place-based non-inversion table (PNT) as the
word v1 · · · vn where v j = 1 + |{i < j: π(i) < π( j)}|.

Obviously the PNT of a permutation π equals the letter-based non-inversion table of π−1. For
example, for π = 583691472 the PNT is 121351362. We have v7 = 3 = 1 + 2 because π(7) = 4 is
preceded by two letters π(i) such that (π(i),π(7)) is not an inversion. Any PNT v1 · · · vn is a word
satisfying 1 � i � vi .

Lemma 4.6. A position v1 · · · vn in the instant Bernoulli game is a kernel position if and only if it is the place-
based (letter-based) non-inversion table of a connected permutation.

Proof. We prove the place-based variant of the lemma, the letter-based version follows immediately
since the set of connected permutations is closed under taking inverses. It is easy to verify that the
place-based non-inversion table v1 · · · vn of a permutation π satisfies m + 1 � vm+1, . . . , vn if and
only if π takes the set {1, . . . ,m} into itself. Thus the first player has no valid move if and only if π
is connected. �

The study of connected permutations goes back to the work of Comtet [2,3], for a reasonably
complete list of references we refer to the entry A003319 in the On-Line Encyclopedia of Inte-
ger Sequences [11]. It was shown by Poirier and Reutenauer [12] that the connected permutations
form a free algebra basis of the Malvenuto–Reutenauer Hopf-algebra, introduced by Malvenuto and
Reutenauer [9]. The same statement appears in dual form in the work of Aguiar and Sottile [1].

Although the instant Bernoulli game is very simple, Theorem 2.9 offers a nontrivial analysis of its
kernel positions, allowing to identify a unique structure on each connected permutation. We begin
with stating the following analogue of Theorem 3.4.

Theorem 4.7. The number κn of connected permutations of rank n is given by

κn =
n−1∑
k=1

∑
1�i1<i2<···<ik+1=n

k∏
j=1

(i j+1 − i j − 1)! · i j.

Proof. By Lemma 4.6, κn is the number of kernel positions of rank n in the instant Bernoulli game.
The fact that this number is equal to the expression on the right-hand side may be shown similarly to
the proof of Theorem 3.4. Consider the equivalent representation of the instant Bernoulli game given
in Lemma 4.2. Note that this is obtained from the representation given in Lemma 4.3 by deleting the
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“redundant coordinates” i, i from each letter (i, i, vi). Given an arbitrary kernel position v1 · · · vn , the
first letter v1 = 1 corresponds to an elementary kernel factor of type (1,1) and we have κ(1,1) = 1.
For 2 � i � j, by abuse of terminology, let us call vi · · · v j an elementary kernel factor of type (i, j) if
it corresponds to an elementary kernel factor in the equivalent representation in Lemma 4.3. The el-
ementary kernel factors of type (i, j) are then exactly those words vi · · · v j for which i � vi, . . . , v j−1
and v j < i hold. Thus their number is

κ(i, j) = ( j − i)! · (i − 1). (8)

The statement now follows from the obvious formula

κn = κ(1,1) ·
n−1∑
k=1

∑
1=i0<i1<···<ik+1=n

k∏
j=1

κ(i j + 1, i j+1). �

In analogy to Proposition 3.7, we may also use (8) to obtain a recursion formula for the number of
connected permutations. We end up with a formula that was first discovered by King [6, Theorem 4].

Proposition 4.8 (King). For n � 2, the number κn of connected permutations of rank n satisfies the recursion
formula

κn =
n−1∑
i=1

κi(n − i − 1)!i.

The proof may be presented the same way as for Proposition 3.7, by removing the last elementary
kernel factor of type (i,n), using informal notion of an elementary kernel factor as in the proof of
Theorem 4.7. King’s proof is worded differently, but may be shown to yield a bijectively equivalent
decomposition.

Lemma 4.9. The induction step presented in King’s proof of Proposition 4.8 is equivalent to the removal of
the last elementary kernel factor in the place-based non-inversion table of σ̃ (1)σ̃ (2) · · · σ̃ (n). Here σ̃ (i) =
n + 1 − σ(n + 1 − i).

Proof. Let σ(1) · · ·σ(n) be the connected permutation considered in King’s proof, and let v1 · · · vn

be the PNT of σ̃ (1)σ̃ (2) · · · σ̃ (n). King’s proof first identifies σ(1) = r. This is equivalent to setting
vn = n + 1 − r. King then defines π(1) · · ·π(n − 1) as the permutation obtained by deleting σ(1)

and subtracting 1 from all letters greater than r. Introducing π̃ (i) = n − π(n − i), the permutation
π̃ (1) · · · π̃ (n − 1) is obtained from σ̃ (1)σ̃ (2) · · · σ̃ (n) by deleting the last letter n + 1 − r and by de-
creasing all letters greater than n + 1 − r by one. The PNT of π̃ (1) · · · π̃ (n − 1) is thus v1 · · · vn−1. King
then defines j as the largest j such that π({1, . . . , j}) = {1, . . . , j}. This is equivalent to finding the
least n − j such that π̃ ({n − j,n − j + 1, . . . ,n − 1}) = {n − j,n − j + 1, . . . ,n − 1}. Using the proof of
Lemma 4.6, this is easily seen to be equivalent to finding the smallest n − j such that vn− j = n − j
and for all n − j � k � n − 1 we have vk � n − j. King defines β(π) as the permutation obtained
from π by removing π(1) · · ·π( j) and then subtracting j from each element. Correspondingly, we
may define β̃(π̃ ) as the permutation obtained from π̃ by removing π̃ (n − j) · · · π̃ (n − 1). The PNT
of β̃(π̃ ) is then v1 · · · vn− j−1, representing a kernel position in the instant Bernoulli game. This is
the kernel position of the least rank that is reachable from v1 · · · vn−1. In terms of elementary kernel
factors, the removal of vn makes the first player able to remove the rest of the last elementary kernel
factor in a single valid move, we only need to show that the fist player cannot move to a position
v1 · · · vk where r � k � s for some elementary kernel factor vr · · · vs . Assume by way of contradiction
that such a move is possible. By definition of a valid move, we then have k � vs , implying r � vs , in
contradiction with the definition of the elementary kernel factor vr · · · vs . Therefore v1 · · · vn− j−1 is
obtained from v1 · · · vn by removing exactly the last elementary kernel factor. �
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King [6] uses the removal of the last elementary kernel factor to recursively define a transposition
Gray code of all connected permutations of a given rank. A transposition Gray code is a list of per-
mutations such that subsequent elements differ by a transposition. Using place-based non-inversion
tables, not only the last elementary kernel factor is easily identifiable, but the entire unique decom-
position into elementary kernel factors is transparent. This gives rise to a new way to systematically
list all connected permutations. The resulting list is not a transposition Gray code, but it is fairly easy
to generate.

To explain the construction, consider the connected permutation π = 251376948. Its letter-based
non-inversion table is v1 · · · v8 = 121355748 whose decomposition into elementary kernel factors is
1 · 21 · 3 · 5574 · 8. For i < j, each elementary kernel factor of type (i, j) begins with i, all entries in the
factor are at least i, except for the last letter which is less than i. For i = 1, 1 is a special elementary
kernel factor, for i > 1 a kernel factor of type (i, i) is a positive integer less than i.

Definition 4.10. Given a connected permutation π , we define its elevation E(π) as the permutation
whose PNT is obtained from the PNT of π as follows: for each elementary kernel factor of type (i, j),
increase the last letter in the factor to j.

For example, the PNT of the elevation of 251376948 is 1 · 23 · 4 · 5578 · 9, thus E(π) is 123465789.
The PNT of E(π) is written as a product of factors, such that each factor ui · · · u j ends with j, and all
letters after u j are more than j. We may use this observation to prove that each factor ui · · · u j ends
with a j that is a strong fixed point j.

Definition 4.11. A number i ∈ {1, . . . ,n} is a strong fixed point of a permutation σ of {1, . . . ,n} if
σ(i) = i and σ({1, . . . , i}) = {1, . . . , i}. We denote the set of strong fixed points of σ by SF(σ ).

Remark 4.12. The definition of a strong fixed point may be found in Stanley’s book [13, Chapter 1,
Exercise 32b], where it is stated that the number g(n) of permutations of rank n with no strong fixed
points has the generating function

∑
n�0

g(n)tn =
∑

n�0 n!tn

1 + t
∑

n�0 n!tn
.

Lemma 4.13. Let v1 · · · vn be the PNT of a permutation σ . Then j is a strong fixed point of σ if and only if
v j = j and for all k > j we have vk > j.

In fact, the condition ∀ j (k > j 
⇒ vk > j) is easily seen to be equivalent to σ({1, . . . , j}) =
{1, . . . , j}. Assuming this is satisfied, j is a fixed point of σ if and only if v j = j. As a consequence
of Lemma 4.13 the last letters of the elementary kernel factors of the PNT of π mark strong fixed
points of E(π). The converse is not necessarily true: in our example 7 is a strong fixed point of E(π);
however, no elementary kernel factor of the PNT of π ends with v7. On the other hand, v1 is always
a special elementary kernel factor by itself and the last elementary kernel factor must end at vn , thus
1 and n must always be strong fixed points of E(π). The numbers 1 and n are also special in the
sense that i ∈ {1,n} is a strong fixed point if and only if it is a fixed point.

Theorem 4.14. Let σ ∈ Sn be a permutation satisfying σ(1) = 1 and σ(n) = n and let the strong fixed points
of σ be 1 = i0 < i1 < · · · < ik+1 = n. Then there are exactly (i1 + 1) · · · (ik + 1) connected permutations π
whose elevation is σ .

Proof. Assume E(π) = σ and the PNT of π is the product of elementary factors of type (1,1),
( j0 + 1, j1), ( j1 + 1, j2), . . . , ( jl + 1, jl+1), where 1 = j0 < j1 < · · · < jl+1 = n. As we have seen above,
{ j1, . . . , jl} must be a subset of {i1, . . . , ik}. This condition is also sufficient since we may decompose
the PNT of σ as u1 · (u j0+1 · · · u j1 ) · · · (u jl+1, u jl+1 ), and decrease the value of each u jt = jt (where
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t = 1,2, . . . , l + 1) independently to any number that is at most jt−1. Note that each u jt+1 = jt + 1,
and the required inequalities for all other u js are automatically satisfied as a consequence of having
selected the jt s from among the strong fixed points. Thus we obtain the PNT of a connected permu-
tation, whose kernel factors are of type (1,1), ( j0 + 1, j1), ( j1 + 1, j2), . . . , ( jl + 1, jl+1). Therefore the
number of permutations π satisfying E(π) = σ is

k∑
l=0

∑
{ j1,..., jl}⊆{i1,...,ik}

j1 · · · jl = (i1 + 1) · · · (ik + 1). �

The proof of Theorem 4.14 suggests a straightforward way to list the PNTs of all connected permu-
tations of rank n:

(1) List all words u1 · · · un satisfying u1 = 1, un = n and 1 � ui � i for all i. These are the PNTs of all
permutations of rank n, of which 1 and n are fixed points.

(2) For each u1 · · · un , identify the places of strong fixed points by finding all is such that ui = i and
uk > i for all k > i.

(3) For each u1 · · · un select a subset { j1, . . . , jl} of the set of strong fixed points satisfying 1 < j1 <

· · · < jl < n and decrease the values of each u jt to any number in {1, . . . , jt−1}. Output these as
the PNTs of connected permutations.

Steps and (1) and (3) involve nothing more than listing words using some lexicographic order,
step (2) may be performed after reading each word once.

As a consequence of Theorem 4.14 we obtain the following formula for the number of connected
permutations of rank n � 2:

κn =
∑
σ∈Sn

σ (1)=1, σ (n)=n

∏
i∈SF(σ )\{1,n}

(i + 1).

After removing the redundant letters σ(1) = 1 and σ(n) = n and decreasing all remaining letters by 1,
we obtain that

κn =
∑

σ∈Sn−2

∏
i∈SF(σ )

(i + 2) holds for n � 2. (9)

Eq. (9) offers a new combinatorial model for the numbers counting the connected permutations of
rank n � 2: it is the total weight of all permutations of rank n − 2, using a weighting which assigns
the most value to those permutations which have the most strong fixed points and are thus in a sense
the farthest from being connected.

5. The polynomial Bernoulli game of the second kind, indexed by x

This game is defined in [4] on triplets of words (u1 · · · un, v1 · · · vn, w1 · · · wn) for n � 0
such that 1 � ui � i, 1 � vi � i + 1 and 1 � wi � x hold for i � 1, furthermore we require
wi � wi+1 for all i � n − 1. A valid move consists of replacing (u1 · · · un, v1 · · · vn, w1 · · · wn)

with (u1 · · · um, v1 · · · vm, w1 · · · wm) for some m � 0 satisfying wm+1 = wm+2 = · · · = wn = x and
um+1 < v j for j = m + 1, . . . ,n. Theorem 2.9 is applicable to this game, because of the following
isomorphism.

Lemma 5.1. Let Λ = P × P × {1, . . . , x} where x ∈ P. The polynomial Bernoulli game, indexed by x is isomor-
phic to the strongly Bernoulli type truncation game, induced by

M := {
(u1, v1, x) · · · (un, vn, x): u1 < v1, . . . , vn

}
on the set of positions

P := {
(u1, v1, w1) · · · (un, vn, wn): 1 � ui � i, 1 � vi � i + 1, w1 � · · · � wn

}
.
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This isomorphism is given by sending each triplet (u1 · · · un, v1 · · · vn, w1 · · · wn) ∈ P
∗ ×P

∗ ×{1, . . . , x}∗ into
(u1, v1, w1) · · · (un, vn, wn) ∈ (P × P × {1, . . . , x})∗ .

Theorem 5.2. The number κn of kernel positions of rank n in the polynomial Bernoulli game of the second
kind, indexed by x is

κn =
n−1∑
m=0

(
x + m − 2

m

)
m!(m + 1)!

×
n−m−1∑

k=0

∑
m=i0<i1<···<ik+1=n

k∏
j=0

(i j+1 − i j − 1)!2
(

i j+1

i j + 1

)(
i j+1 + 1

i j

)

+
(

x + n − 2

n

)
n!(n + 1)!.

Proof. Consider the isomorphic game (P , M), given in Lemma 5.1. Since in a valid move all truncated
letters (u j, v j, w j) satisfy w j = x, we have to distinguish two types of elementary kernel factors:
those which contain a letter (ui, vi, wi) with wi < x and those which do not. If the elementary kernel
factor contains a (ui, vi, wi) with wi < x, it must consist of the single letter (ui, vi, wi). We call such
a factor an elementary kernel factor of type (i; wi). Clearly, their number is

κ(i; wi) = i(i + 1), (10)

since ui ∈ {1, . . . , i} and vi ∈ {1, . . . , i + 1} may be selected independently. The elementary kernel
factors containing only x in their w-component of their letters are similar to the ones considered
in Lemma 3.2. We call an elementary kernel factor of type (i, j; x) an elementary kernel factor
(ui, vi, x) · · · (u j, v j, x). A calculation completely analogous to the one in Lemma 3.3 shows that their
number is

κ(i, j; x) =
i∑

u=1

u
( j − u)! j!
(i − u)!i! = ( j − i)!2

(
j

i

)(
j + 1

i − 1

)
. (11)

Because of w1 � · · · � wn , the factors of type (i; wi) must precede the factors of type (i, j; x). Thus
we obtain

κn =
n−1∑
m=0

∑
1�w1�···�wm�x−1

m∏
i=1

κ(i; wi)

n−m−1∑
k=0

∑
m=i0<i1<···<ik+1=n

k∏
j=0

κ(i j + 1, i j+1; x)

+
∑

1�w1�···�wn�x−1

n∏
i=1

κ(i; wi)

The statement now follows from (10), (11), from
∏m

i=1 i(i + 1) = m!(m + 1)!, and from the fact that
the number of words w1 · · · wm satisfying 1 � w1 � · · · � wm � x − 1 is((

x − 1

m

))
=

(
x + m − 2

m

)
. �

We already know [4, Theorem 4.2] that we also have

κn = (−1)n(n + 1)!bn(−x)

for all positive integer x. Since two polynomial functions are equal if their agree for infinitely many
substitutions, we obtain a valid expansion of the polynomial (−1)n(n + 1)!bn(−x). Substituting −x
into x and rearranging yields the expansion of bn(x) in the basis {(x+1

n

)
: n � 0}.
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Corollary 5.3. Introducing cn,n = n! and

cn,m = (−1)n−mm!(m + 1)!
(n + 1)!

n−m−1∑
k=0

∑
m=i0<i1<···<ik+1=n

k∏
j=0

(i j+1 − i j − 1)!2
(

i j+1

i j + 1

)(
i j+1 + 1

i j

)

for 0 � m < n, we have

bn(x) =
n∑

m=0

cn,m

(
x + 1

m

)
.

Example 5.4. For n = 2, Corollary 5.3 gives

b2(x) = 0!1!
3!

(
1!2

(
2

1

)(
3

0

)
+ 0!2

(
1

1

)(
2

0

)
0!2

(
2

2

)(
3

1

))

− 1!2!
3!

(
x + 1

1

)
0!2

(
2

2

)(
3

1

)
+

(
x + 1

2

)
2!

= 5

6
− (x + 1) + (x + 1)x = x2 − 1

6
.

Thus b2(x)/2! = x2/2 − 1/12 which agrees with the formula given in [5, §92].

We may also obtain a new formula for the Bernoulli numbers of the second kind by substituting
x = 0 into Corollary 5.3. We obtain bn = cn,0 + cn,1, i.e.,

bn = (−1)n

(n + 1)!
n−1∑
k=0

∑
0=i0<i1<···<ik+1=n

k∏
j=0

(i j+1 − i j − 1)!2
(

i j+1

i j + 1

)(
i j+1 + 1

i j

)

+ (−1)n−1 · 2

(n + 1)!
n−2∑
k=0

∑
1=i0<i1<···<ik+1=n

k∏
j=0

(i j+1 − i j − 1)!2
(

i j+1

i j + 1

)(
i j+1 + 1

i j

)
(12)

for n � 2.

6. The flat Bernoulli game

This game is defined in [4] on words u1 · · · un for n � 0 such that each ui ∈ P satisfies 1 � ui � i.
A valid move consists of replacing u1 · · · un with u1 · · · um if m � 1 and um+1 < u j holds for all j >

m + 1. In analogy to Lemma 3.1, we have the following result.

Lemma 6.1. The flat Bernoulli game is isomorphic to the strongly Bernoulli type truncation game induced by

M = {
(p1, u1) · · · (pn, vn): p1 	= 1, u1 < u2, . . . , un

}
,

on the set of positions

P = {
(1, u1) · · · (n, un): 1 � ui � i

} ⊂ (
P

2)∗
.

The isomorphism is given by sending each word u1 · · · un ∈ P
∗ into the word (1, u1)(2, u2) · · · (n, un) ∈ (P2)∗ .

Theorem 6.2. For n � 2, the number κn of kernel positions of rank n in the flat Bernoulli game is

κn =
�(n−3)/2∑

k=0

∑
1=i0<i1<···<ik+1=n

i j+1−i j�2

k∏
j=0

(i j+1 − i j − 2)!
(

i j+1

i j

)
.
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Proof. Consider isomorphic representation given in Lemma 6.1. Note first that, in any kernel position
(1, u1) · · · (n, un), the letter u1 = (1,1) is an elementary kernel factor of type (1,1) and we have
κ(1,1) = 1. For 2 � i < j, let κ(i, j) be the number of elementary kernel factors (i, ui) · · · ( j, u j) of
type (i, j). A calculation completely analogous to the one in Lemma 3.3 shows

κ(i, j) =
i∑

u=1

u
( j − 1 − u)!
( j − 1 − i)! = ( j − 1 − i)!

(
j

i − 1

)
. (13)

Note that for i � 2 there is no elementary kernel factor of type (i, i) since removing the last letter
only is always a valid move, provided at least one letter is left. The statement now follows from
Eq. (13) and the obvious formula

κn = κ(1,1) ·
�(n−3)/2∑

k=0

∑
1=i0<i1<···<ik+1=n

i j+1−i j�2

k∏
j=0

κ(i j + 1, i j+1). �

Introducing m j := i j − i j−1 −1 for j � 1 and shifting the index k by 1, we may rewrite the equation
in Theorem 6.2 as

κn = n ·
�(n−1)/2∑

k=1

∑
m1+···+mk=n−1

m1,...,mk�2

(
n − 1

m1, . . . ,mk

)
(m1 − 2)! · · · (mk − 2)!. (14)

A more direct proof of this equation follows from Corollary 6.6 below.

Example 6.3. For n = 5, (14) yields

κ5 = 5

((
4

4

)
2! +

(
4

2,2

)
0!0!

)
= 40.

Thus κ5/5! = 1/3 which agrees with the number given in [4, Table 1].

We already know [4, Proposition 7.3] that the exponential generating function of the numbers κn
is

∞∑
n=1

κn

n! tn = t

(1 − t)(1 − ln(1 − t))
. (15)

Just like in Section 4, we may use place-based non-inversion tables to find a permutation enumeration
model for the numbers κn .

Lemma 6.4. Let u1 · · · un be the PNT of a permutation π ∈ Sn. Then, for all i < j, π(i) < π( j) implies ui < u j .
The following partial converse is also true: ui < ui+1, . . . , u j implies π(i) < π(i + 1), . . . ,π( j).

Proof. If π(i) < π( j) then the set {k < i: π(k) < π(i)} is a proper subset of {k < j: π(k) < π( j)} (the
index i belongs only to the second subset). Thus ui < u j . The converse may be shown by induction
on j − i. For j = i + 1, π(i) > π(i + 1) implies that the set {k < i + 1: π(k) < π(i + 1)} is a subset
of {k < i: π(k) < π(i)}, thus ui � ui+1. Therefore ui < ui+1 implies π(i) < π(i + 1). Assume now that
ui � ui+1, . . . , u j holds and that we have already shown π(i) < π(i +1), . . . ,π( j −1). Assume, by way
of contradiction, that π(i) > π( j) holds. Then there is no k satisfying i < k < j and π(k) < π( j) thus
{k < j: π(k) < π( j)} is a subset of {k < i: π(k) < π(i)}, implying ui � u j , a contradiction. Therefore
we obtain π(i) < π( j). �
Corollary 6.5. Let u1 · · · un be the PNT of a permutation π ∈ Sn. Then ui · · · u j satisfies ui < ui+1, . . . , u j−1
and ui � u j if and only if π( j) < π(i) < π(i + 1), . . . ,π( j − 1) holds.
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Corollary 6.6. Let u1 · · · un be the PNT of a permutation π ∈ Sn. Then u1 · · · un is a kernel position in the
flat Bernoulli game, if and only if there exists a set of indices 1 = i0 < i1 < · · · < ik+1 = n such that for each
j ∈ {0, . . . ,k} we have π(i j+1) < π(i j + 1) < π(i j + 2),π(i j + 3), . . . ,π(i j+1 − 1).

Eq. (14) also follows from Corollary 6.6. In fact, there are n ways to select π(1). Then, introducing
m j := i j − i j−1 − 1 for j � 1, we have

( n−1
m1,...,mk

)
ways to select the partitioning

{1, . . . ,n} \ π(1) =
k⊎

j=0

π
({i j + 1, . . . , i j+1}

)
and, for each j there are (i j+1 − i j − 2)! = (m j − 2)! ways to select the partial permutation
π(i j + 1) · · ·π(i j+1). Both Eq. (14) and Corollary 6.6 suggest looking at the numbers

Kn = κn+1/(n + 1) =
�n/2∑
k=1

∑
m1+···+mk=n
m1,...,mk�2

(
n

m1, . . . ,mk

)
(m1 − 2)! · · · (mk − 2)! for n � 0. (16)

It is easy to check the following statement.

Proposition 6.7. Kn is the number of kernel positions of rank n in the exception-free variant of the flat Bernoulli
game, where removing the entire word if u1 < u2, . . . , un is also a valid move, and the empty word is a valid
position.

Corollary 6.6 may be rephrased as follows.

Corollary 6.8. Kn is the number of those permutations π ∈ Sn for which there exists a set of indices
0 = i0 < i1 < · · · < ik+1 = n such that for each j ∈ {0, . . . ,k} we have π(i j+1) < π(i j + 1) < π(i j + 2),

π(i j + 3), . . . ,π(i j+1 − 1).

The generating function of the numbers Kn is
∞∑

n=0

Kn

n! tn = 1

(1 − t)(1 − ln(1 − t))
. (17)

This formula may be derived not only from Kn = κn+1/(n + 1) and (15), but also from Corollary 6.8
and the compositional formula for exponential generating functions [14, Theorem 5.5.4]. We only
need to observe that

1

(1 − t)(1 − ln(1 − t))
= 1

1 − t
◦ (

t + (1 − t) ln(1 − t)
)
,

where

1

1 − t
=

∞∑
n=0

n!tn

n!
is the exponential generating function of linear orders, whereas

t + (1 − t) ln(1 − t) = −t ln(1 − t) − (− ln(1 − t − t)
) =

∞∑
n=1

tn+1

n
−

∞∑
n=2

tn

n
=

∞∑
n=2

(n − 2)!tn

n!
is the exponential generating function of linear orders of {1, . . . ,n}, listing 1 last and 2 first.

By taking the antiderivative on both sides of (17) we obtain
∞∑ Kn

(n + 1)! tn+1 =
∫

1

(1 − t)(1 − ln(1 − t))
dt = ln

(
1 − ln(1 − t)

) + K−1.
n=0
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Introducing K−1 := 0, the numbers K−1, K0, K1, . . . are listed as sequence A089064 in the On-Line
Encyclopedia of Integer Sequences [11]. There we may also find the formula

Kn = (−1)n
n+1∑
k=1

s(n + 1,k) · (k − 1)! (18)

expressing them in terms of the Stirling numbers of the first kind. Using the well-known formulas

n∑
k=1

s(n + 1,k)xk = x(x − 1) · · · (x − n) and n! =
∞∫

0

xne−x dx,

Eq. (18) is equivalent to

Kn = (−1)n

∞∫
0

(x − 1) · · · (x − n)e−x dx. (19)

This formula may be directly verified by substituting it into the left-hand side of (17) and obtaining

∞∫
0

e−x
∞∑

n=0

(
x − 1

n

)
(−t)n dx =

∞∫
0

e−x(1 − t)x−1 dx = 1

(1 − t)(1 − ln(1 − t))
.

We conclude this section with an intriguing conjecture. By inspection of (15) and (17) we obtain the
following formula.

Lemma 6.9. For n � 1,

an := (−1)n (κn+1 − (n + 1) · κn)

n + 1
= (−1)n(Kn − n · Kn−1)

is the coefficient of tn/n! in 1/(1 − ln(1 + t)).

The numbers a0,a1, . . . are listed as sequence A006252 in the On-Line Encyclopedia of Integer
Sequences [11]. The first 11 entries are positive, then a12 = −519312 is negative, the subsequent
entries seem to have alternating signs. The conjecture that this alternation continues indefinitely, may
be rephrased as follows.

Conjecture 6.10. For n � 12 we have n · κn−1 > κn. Equivalently, n · Kn−1 > Kn holds for n � 11.

We may call Conjecture 6.10 the novice’s chance. Imagine that the first player asks a novice friend to
replace him or her for just the first move in a flat Bernoulli game starting from a random position of
rank n � 12. If Conjecture 6.10 is correct then novice could simply remove the last letter, because the
number of non-kernel positions in which this is the first move of the first player’s winning strategy
still exceeds the number of all kernel positions. We should note that for the original Bernoulli game
a novice has no such chance. In that game the removal of a single letter at the end of both words
is not always a valid move, but we could advise our novice to remove the last letters at the end of
both words if this is a valid move and make a random valid move otherwise. Our novice would have
a chance if

κn−1 ·
(

n2 −
(

n − 1

2

))
= κn−1 ·

(
n + 1

2

)
� κn

was true for all large n. However, it is known [5, §93] that we have
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n − 2

n

∣∣∣∣ bn−1

(n − 1)!
∣∣∣∣ <

∣∣∣∣bn

n!
∣∣∣∣ <

n − 1

n

∣∣∣∣ bn−1

(n − 1)!
∣∣∣∣, implying

(n − 2)(n + 1)κn−1 < κn < (n − 1)(n + 1)κn−1. (20)

On the page of A006252 in [11] we find that the coefficient of tn/n! in 1/(1 − ln(1 + t)) is

(−1)n(κn+1 − (n + 1) · κn)

n + 1
= (−1)n(Kn − n · Kn−1) =

n∑
k=0

s(n,k)k! (21)

Equivalently,

(−1)n(κn+1 − (n + 1) · κn)

n + 1
= (−1)n(Kn − n · Kn−1) =

∞∫
0

x(x − 1) · · · (x − n + 1)e−x dx. (22)

Eqs. (21) and (22) may be verified the same way as the analogous formulas (18) and (19). Therefore
we may rewrite Conjecture 6.10 as follows:

(−1)n

∞∫
0

x(x − 1) · · · (x − n + 1)e−x dx > 0 holds for n � 11. (23)

This form indicates well the complication that arises, compared to the original Bernoulli game. To
prove (20), Jordan [5, §93] uses the formula

bn

n! =
1∫

0

(
x

n

)
dx

and is able to use the mean value theorem to compare bn/n! with bn+1/(n + 1)!, because the function(x
n

)
does not change sign on the interval (0,1). Proving Eq. (23) is equivalent to a similar estimate of

the change of the integral (−1)n
∫ ∞

0 (x − 1) · · · (x − n)e−x dx as we increase n, however, this integrand
does change the sign several times on the interval (0,∞).

7. Concluding remarks

Conjecture 6.10, if true, would be an intriguing example of a sequence “finding its correct signature
pattern” after a relatively long “exceptional initial segment”. Many such examples seem to exist in
analysis, and it is perhaps time for combinatorialists to start developing a method of proving some of
them.

Some of the most interesting questions arising in connection with this paper seem to be related
to the instant Bernoulli game, presented in Section 4. The fact that our decomposition into elemen-
tary kernel factors is bijectively equivalent to King’s [6] construction raises the suspicion that this
decomposition may also have an algebraic importance beyond the combinatorial one. This suspicion
is underscored by the fact that the correspondence between our decomposition and King’s is via some
modified inversion table, whereas Aguiar and Sottile [1] highlight the importance of the weak order
to the structure of the Malvenuto–Reutenauer Hopf algebra, first pointed out by Loday and Ronco [8].
The weak order is based on comparing the sets of inversions of two permutations. Depending the
way we choose the basis of the self-dual Malvenuto–Reutenauer Hopf algebra, expressing one of the
product and coproduct seems easy in terms of place-based non-inversion tables, whereas the other
seems very difficult. If we choose the representation considered by Poirier and Reutenauer [12] where
connected permutations form the free algebra basis, then the product of two permutations is easily
expressed in terms of PNTs, thus the elementary kernel factor decomposition might indicate the pres-
ence of a larger algebra “looming on the horizon” in which the multiplicative indecomposables of the
Malvenuto–Reutenauer Hopf algebra become decomposable.
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We should also mention that the decomposition that is equivalent to the removal of the last el-
ementary kernel factor is only the first phase in King’s construction [6], a lot of hard work is done
afterwards to find the transposition Gray code, while recursing on these reduction steps. Our pre-
sentation allows to better visualize King’s entire “rough” decomposition “at once” and thus may be
suitable to attack the open question of finding an adjacent transposition Gray code.

Finally, the degenerate Bernoulli game indexed with (p,q) [4, §6] can also be shown to be isomor-
phic to a strongly Bernoulli type truncation game. For this game, the number of kernel positions of
rank n is (−q)n(n + 1)!βn(p/q,0) [4, Theorem 6.2], where βn(p/q) is a degenerate Bernoulli number.
We leave the detailed analysis of this game to a future occasion.
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