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Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes
infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with
other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year
programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool.
Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel
drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycy-
cline, is unsuitable for use in mass drug administration (MDA). The anti-Wolbachia (A�WOL) Consortium
aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in
MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human
drug-pharmacopoeia (�2600 drugs) for a potential repurposing. This screening strategy has revealed that
approved drugs from various classes show significant bacterial load reduction equal to or superior to the
gold-standard doxycycline, with 69 orally available hits from different drug categories being identified.
Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides
sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone
and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the
goal of finding a novel treatment against filariasis and could also be a strategy applicable for other
neglected tropical diseases.
� 2014 The Authors. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Lymphatic filariasis (LF) and onchocerciasis (river blindness) are
debilitating diseases caused by filarial nematodes, officially recog-
nised as neglected tropical diseases (NTDs) (WHO, 2007). Although
these nematode infections are currently being effectively managed
using mass drug administration (MDA) of drugs donated by large
pharmaceutical companies (Chu et al., 2010; Coffeng et al., 2013),
elimination is hampered by several challenges including the
incomplete efficacy of available drugs against the long-lived adult
filarial worms (Liu and Weller, 1996; Richard-Lenoble et al., 2003;
Bockarie and Deb, 2010; Mackenzie et al., 2012), problems associ-
ated with adverse events in areas of co-endemicity of Loa loa with
either Wuchereria bancrofti or Onchocerca volvulus (Gardon et al.,
1997; Bockarie and Deb, 2010; Taylor et al., 2010), and the risk that
filarial worms will develop resistance to the drugs currently avail-
able for MDA (reviewed in Smits, 2009; Prichard et al., 2012).

Targeting the bacterial endosymbiont, Wolbachia, of these filar-
ial nematodes offers solutions to these problems as the removal of
Wolbachia, using tetracycline-based antibiotics, results in the slow
death of the adult worm (reviewed in (Taylor et al., 2010) and,
given that L. loa does not harbour these endosymbionts (McGarry
et al., 2003), does not lead to adverse events following treatment
(Wanji et al., 2009; Turner et al., 2010). The use of doxycycline in
field trials has demonstrated that this antibiotic can be used suc-
cessfully to permanently sterilise adult female worms and, if given
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for an appropriate length of time, lead to a macrofilaricidal effect
(reviewed in Johnston and Taylor, 2007; Hoerauf, 2008; Taylor
et al., 2010); an important improvement over current treatments.
The current 4–6 weeks of daily treatment, is the main barrier to
wide-spread scale-up of this treatment regimen into MDA
programmes due to logistical constraints, although community-
directed treatment with doxycycline for six weeks, achieving a
therapeutic coverage of 73.8% and 98% compliance, is feasible
and effective in restricted populations (Wanji et al., 2009;
Tamarozzi et al., 2012). Doxycycline, however, also has limitations
for mass use due to contraindications that make it unsuitable for
treating children under eight and pregnant women (reviewed in
Johnston and Taylor, 2007; Hoerauf, 2008).

The A�WOL Consortium was established to find a new anti-wol-
bachial drug or combination of drugs that is compatible with MDA
with a secondary goal to optimise regimens using the currently
known active antibiotics (doxycycline and rifampicin) (www.a-
wol.com; Johnston et al., 2014; Taylor et al., 2014). Screening large
chemical libraries to identify compounds with macrofilaricidal
activity has been hindered in the past by the lack of efficient
screening assays with available assays being labour intensive
(Townson et al., 2000; Rao et al., 2002; Townson et al., 2006;
Townson et al., 2007). To overcome this limitation the A�WOL Con-
sortium developed a Wolbachia cell-based assay with a quantita-
tive PCR (qPCR) readout which has been optimised as an in vitro
drug screening tool. Here, we briefly describe the validation of this
assay which utilises a Wolbachia pipientis-containing Aedes albopic-
tus cell line (C6/36 (wAlbB)), in a 96-well format, and quantifies the
16S rRNA gene copy number of intracellular Wolbachia bacteria in
the presence or absence of a drug, as well as an ATP–luminescence
based cytotoxicity assay to examine off-target toxic effects of the
drug on the mosquito host cells. The assay can be adapted to auto-
mated high throughput-screening and represents a rapid, sensitive
and efficient assay for screening chemical libraries to identify anti-
Wolbachia compounds. Hits from this primary in vitro cell-based
screening assay are then selected for progression down the screen-
ing pipeline into both in vitro and in vivo nematode screening.

Repurposing or repositioning of drugs provides a less risky route
to drug discovery given that candidates will already have well-
known safety and pharmacokinetic profiles (Ashburn and Thor,
2004; Tobinick, 2009; Mucke, 2010; Grimberg and Mehlotra,
2011). Here, we describe screening efforts against Wolbachia using
the A�WOL assay to screen a compound library of 2664 approved
drugs, bioactive compounds and natural products (CRX; Combina-
toRx Singapore). This strategy identified 121 hits that had anti-
Wolbachia activity, of which 69 were orally available hits from
different drug categories, and several drugs were progressed
further down the screening pipeline into in vitro nematode screening
assays and the primary in vivo screening model (Litomosoides
sigmodontis mouse model). This approach has identified several
classes of registered drugs with anti-Wolbachia activity, which has
expanded the options for improving macrofilaricidal therapeutic
regimes against onchcocerciasis and lymphatic filariasis.
2. Materials and methods

2.1. In vitro Wolbachia cell-based screening assay

An A. albopictus cell line C6/36 (ATCC number CRL-1660) stably
infected with W. pipientis wAlbB (C6/36 (wAlbB)) was routinely
cultured in L15 Leibovitz medium containing 2 mM L-glutamine,
1% non-essential amino acids, 2% tryptose phosphate broth
(Sigma-Aldrich, UK), and 5% heat-inactivated FCS (Cambrex Bio Sci-
ence, Walkersville, MD) at 26 �C (Turner et al., 2006). A C6/36
(wAlbB) cell-based assay developed to screen drugs/compounds
active against Wolbachia in vitro was used as previously described
(Johnston et al., 2010). C6/36 (wAlbB) cells, sub-cultured 24 h pre-
viously, were seeded at 10,000 cells per well in 96-well flat bottom
culture plates. Test compounds were dissolved in DMSO (Sigma)
and diluted to appropriate concentration (lM) in culture medium,
added to test wells and cells cultured in a total volume of 200 ll at
26 �C for 9 days. Medium alone and vehicle-treated (DMSO) med-
ium were used as negative controls. Compounds and controls were
added in triplicate and medium/drug was replaced on day 4. At the
end of the screening assay, samples were collected by washing
adherent cells once in sterile Dulbecco’s PBS (Sigma) and adding
150 ll Wizard� SV Lysis Buffer (Promega, UK) for genomic DNA
(gDNA) extraction.

In total, 2664 compounds from the CRX library, plated onto 37
master plates (72 compounds per plate), were screened at 10 lM
in comparison to the gold standard doxycycline (7 lM) (Sigma).
Cytotoxicity was measured in parallel using the CellTiter-Glo�

Luminescent Cell Viability Assay (Promega), according to the
manufacturer’s instructions. The level of cytotoxicity for each com-
pound was determined by comparing the CellTiterGlo� lumines-
cence readout against the vehicle-treated control wells, with
compounds that reduced the % luminescence by 30% or greater
being classed as cytotoxic. Screening was executed with a ‘‘front
loading’’ of the library wherein approximately 200 anti-infectives
were used in the first three master plates to maximise the number
of hits in the first phase of screening. A pre-production run was
done to evaluate assay performance and dynamic range with Z0 fac-
tor being used as a primary quality control tool for data generation/
analysis. With acceptable Z0 factors achieved (greater than 80% of
the plates showed Z0 factors of 0.4 and above), the assay was vali-
dated for use.

Hits were cherry-picked from master plates and examined in a
titration series (6 doses from 10 to 0.3 lM) for dose response effects
set up in quadruplicates (inter and intra plate duplicates) and were
also tested in parallel for cytotoxicity. Hits were also validated using
compounds sourced externally, where available. Prioritisation of hit
compounds for further screening was based on the following crite-
ria: (1) suitability/approval status, (2) potency in screening assay,
(3) repeat validation (both library and sourced compounds), (4)
paediatric use, and (5) pregnancy category (US–FDA categories,
www.fda.gov).

2.2. In vitro Onchocerca gutturosa screening assay

Adult male O. gutturosa were dissected from the nuchal ligament
connective tissues obtained from naturally infected cattle in The
Gambia, as previously described (Townson et al., 2006). Worms were
maintained individually in the wells of a 24-well plate in 2 ml of Min-
imum Essential Medium containing 10% heat-inactivated FCS, 200 U/
ml penicillin, 200 lg/ml streptomycin and 50 lg/ml amphotericin B
(Sigma), at 36.5 �C with 5% CO2 for 24 h until the addition of drugs.
Compounds, dissolved in 99% DMSO, were prepared as previously
described (Townson et al., 2006) in medium and each compound
was tested against ten individual worms for 5 days. Daily micro-
scopic observations were carried out to determine worm motility
using a scale of 0 (immobile) to 10 (maximum motility) and the
mean % motility reduction was derived by the comparison to
untreated controls. At assay termination, each group of 10 worms
(per compound) were transferred to RNAlater (Ambion, Applied
Biosystems, UK) for 24 h at 4 �C and stored at �20 �C for gDNA
extraction from individual worms at a later date.

2.3. In vivo L. sigmodontis screening assay

Treatment groups of BALB/c female mice (6–8 week old)
received intraperitoneal (IP) injections with the test compounds,
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in comparison to doxycycline, at appropriate concentrations (MKD,
mg/kg/day) for 14 days beginning the day after natural mite
(Ornithonyssus bacoti) infection with L. sigmodontis. Compounds
were formulated in appropriate delivery vehicles (eg. methacycline
was formulated in 0.5% hydroxypropyl methylcellulose, HPMC)
and doses calculated based on the recommended human dosage
and in a volume of 10 ml/kg based on body weight. At 35 days
post-infection, worms were recovered from the pleural cavity,
counted, staged for development and measured for length (mm).
Worms were frozen at �80 �C for gDNA extraction. All animal
experiments were performed according to the European Union ani-
mal welfare guidelines. All protocols were approved by the Lande-
samt für Natur, Umwelt und Verbraucherschutz, Cologne, Germany
(AZ.: 8.87-50.10.35.08.024).

2.4. DNA isolation and quantitative real-time PCR (qPCR)

Genomic DNA was extracted from C6/36 (wAlbB) cell lysates
using the Wizard� SV 96 Genomic DNA Purification System (Pro-
mega) according to the manufacturer’s instructions and eluted in
100 ll water. Quantification of the ribosomal genes; W. pipientis
16S and A. albopictus 18S, was performed as described previously
(Makepeace et al., 2006) with modifications. Briefly, qPCR was car-
ried out on a DNA Engine PTC-200 thermocycler (MJ Research, GRI,
UK) with Chromo4 real-time PCR detection system (Bio-Rad Labo-
ratories Ltd, UK) under the following conditions: 95 �C for 15 min,
40 cycles of 95 �C for 15 s, 55 �C for 30 s, and 72 �C for 15 s; and
melting curve analysis between 50 and 95 �C to confirm the spec-
ificity of the amplification products. qPCR reactions were per-
formed in 20 ll Quantitect SYBR Green (Qiagen, UK) reactions
containing 1 ll gDNA for 18S or 2 ll gDNA for 16S, 0.2 lM of each
primer (Supplementary Table S1) in 1� SYBR Green PCR reaction
mix. Quantification was calculated by reference to a linear
standard curve of log 10 diluted (5 � 106–5 � 100) full-length
amplicons synthesised as single-stranded oligonucleotides
(Sigma–Genosys, UK).

Following in vitro culture, gDNA was extracted from individual
adult male O. gutturosa using the Wizard� SV 96 Genomic DNA
Purification plate (Promega) and QiaAmp DNA mini-kit reagents
(Qiagen) and eluted in 100 ll water. Quantification of the Wolbachia
surface protein (wsp) and nematode glutathione S-transferase
(Ov-gst) gene copy numbers was performed by qPCR carried out
on a DNA Engine PTC-200 thermocycler (MJ Research) with
Chromo4 real-time PCR detection system (Bio-Rad) under the
following conditions: 95 �C for 15 min, 40 cycles of 95 �C for 15 s,
57 �C (gst) or 60 �C (wsp) for 30 s, and 72 �C for 15 s; and melting
curve analysis between 60 and 97 �C. qPCR reactions were per-
formed in 20 ll Quantitect SYBR Green (Qiagen) reactions containing
1 ll gDNA, 3 mM MgCl2 and 0.3 lM of each primer (Supplementary
Table S1 for gst or 2 ll gDNA, 3.5 mM MgCl2 and 0.35 lM of each
primer (Supplementary Table S1) for wsp, in 1� SYBR Green PCR
reaction mix. The gene copy number was determined using a gene
specific standard curve of plasmid DNA.

At 35 days post-infection, L. sigmodontis worms were recovered
from the pleural cavity and gDNA extracted using the QiaAmp DNA
mini-kit (Qiagen) according to the manufacturer’s instructions and
eluted in 50 ll water. Quantification of the Wolbachia ftsZ (wLs-
ftsZ) and L. sigmodontis b-actin (Ls-act) gene copy numbers was
performed by qPCR (Arumugam et al., 2008; Strübing et al.,
2010) carried out on a RotorGene 3000 (Corbett Research, Sydney,
Australia). The following cycling conditions were used: 95 �C for
15 min, 45 cycles of 95 �C for 15 s, 58 �C for 45 s, and 72 �C for
15 s; and melting curve analysis between 62 and 99 �C. qPCR
reactions were performed in 10 ll reactions volumes using the fol-
lowing conditions: 1xPCR buffer (Qiagen), 0.2 mM dNTPs, 3 mM
MgCl2, 0.1 ll SYBR Green (1:1000 dilution of stock in DMSO; Roche,
Mannheim, Germany), 0.25 U HotStar Taq polymerase (Qiagen)
and 2 ll DNA. The gene copy number (copy numbers/ll) was
determined using a gene specific standard curve of plasmid DNA.

For all qPCR reactions results were expressed as Wolbachia gen-
e:host gene ratios to normalise the data and obviate differences in
the quality and quantity of DNA. The log drop in the ratio in com-
parison to the control gives a quantitative measure of the effect of
the compound on Wolbachia.

2.5. Statistical analysis

Student t-test was performed for statistical analysis using Prism
(GraphPad Software, LaJolla, CA).

3. Results

3.1. Development of a screening assay which identifies anti-Wolbachia
activity in vitro

In this report, we describe the development, validation and use
of an assay for the in vitro cell-based screening of anti-Wolbachia
compounds. Using doxycycline as a gold-standard, critical features
such as reproducibility, assay duration and dynamic range were
evaluated. Initial experiments were conducted over 21 days in
order to assess the dynamic range of the doxycycline response over
time (Fig. 1). Assay quality and robustness were determined during
the optimisation as well as during the screening process by calcula-
tion of the statistical parameters Z (and Z0) (Zhang et al., 1999), and
having achieved acceptable Z0 factors the assay was validated for
use (Supplementary Tables S2 and S3). Acceptable Z0 factors were
achieved at day 9 but not at day 5 (Supplementary Table S2),
demonstrating that the optimal duration of the assay was 9 days.
A pre-production run of 8 replicate plates (master plate MS-
250501) was used to calculate the intra-plate variability (Z0 factors)
of the 16S qPCR assay read-out (Supplementary Table S3). Greater
than 80% of the plates showed Z0 factors of 0.4 and above and signal
window of 2 allowing us to be confident that the assay could be
used for screening of the CombinatoRx (CRX) library.

3.2. Screening of the human pharmacopeia identified drugs with
activity against Wolbachia

The CRX library of 2664 compounds, representing the approved
human drug pharmacopoeia, was screened using the validated
assay. Initial screening was executed with a ‘‘front loading’’ of the
library where 200 anti-infectives were used in the first three master
plates to maximise the number of hits in the first phase of screening
and further validate the assay prior to screening the complete
library. From the 2664 compounds tested, we identified 121 com-
pounds that inhibited Wolbachia by 0.5 logs (70% inhibition at
10 lM); this represents a primary hit rate of 4.54%. We then further
defined hits as those compounds that along with these in vitro hit
criteria (P0.5 logs inhibition of Wolbachia 16S and 630% cytotoxic-
ity) are also available in an oral formulation in order to align our hit
picking strategy to the Target Product Profile (TPP) criteria.

Of the 121 active compounds, 69 compounds (2.59% of the total
screened), over several drug classes (Table 1), satisfied hit criteria
(Table 2). Hits identified in the screening campaign were interest-
ing and diverse (Table 1), and included anti-infective compounds
(35%) such as antibiotics, anti-viral, anti-parasitic and anti-fungal
compounds, as well as non anti-infective compounds (65%) consti-
tuting anti-psychotic compounds, natural products/nutraceuticals,
receptor antagonists, anti-hypertensives, muscle relaxants, non-
steroidal anti-inflammatory drugs and other drug classes, pointing
towards potentially novel mechanisms of countering intra-cellular
Wolbachia bacteria which could be exploited.



Fig. 1. Dynamics of cell and Wolbachia response to doxycycline over 21 days. Wolbachia growth was assessed by qPCR targeting the 16S rRNA gene (A). C6/36 cell growth was
assessed by qPCR targeting the 18S rRNA gene of Aedes albopictus (B). Data was normalised using the ratio of 16S copies to 18S copies (C).

Table 1
Distribution of drug classes across 69 hit anti-Wolbachia compounds. 121 compounds
inhibited intracellular Wolbachia bacteria by 0.5 logs or more. Out of these, 69 belong
to diverse classes of approved drugs and are available in an oral formulation and
hence constitute hits for further analysis.

Drug class Number of hits Percent of hits (%)

Anti-infectives 24 35
Anti-psychotics/anti-convulsants 8 12
Natural products/nutraceuticals 7 10
Receptor antagonists 6 9
Anti-hypertensives 6 9
Muscle relaxants 5 7
Others 5 7
Non-steroidal anti-inflammatories 4 6
Anti-neoplastic agents 4 6
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Encouragingly, we identified hits among classes of antibiotics
(the tetracyclines, rifamycins and fluoroquinolones) previously
shown to reduce Wolbachia (Hoerauf et al., 2000; Townson et al.,
2000; Hermans et al., 2001; Rao et al., 2002; Fenollar et al., 2003;
Volkmann et al., 2003; Townson et al., 2006), thus giving us confi-
dence in the screening outcome. Out of the 69 hits, 24 compounds
inhibited Wolbachia by 1 log or more which corresponds to 90%
inhibition. Moreover, 10 of these 24 compounds showed compara-
ble or better activity than that of doxycycline (P1.6 logs or 95%
inhibition). Compounds which were equivalent to or better than
doxycycline in vitro were: ciprofloxacin hydrochloride, ethosuxi-
mide, indomethacin, kitasamycin, methacycline hydrochloride,
minocycline, paromomycin sulfate, piracetam, rifapentine, and sul-
famethizole (Table 2).
3.3. Validation and prioritisation of hits

To further characterise and validate the hit compounds, dose
response assays were performed with 66 of the hit compounds
to examine the dose-dependent effects. Of the re-tested com-
pounds, 16 compounds failed to show any activity (>50% inhibition
of Wolbachia) in the repeat assays and were termed as drop-outs
(‘‘validated – library compound’’ column, Table 2). The remaining
compounds showed varying degrees of activity from 98% to 50%
inhibition at 10 lM. In the dose response assays, 36 of the hits
showed a dose response in the dose range tested (e.g. paromomy-
cin sulfate and loratadine), while other hits did not show a dose
response. Ten compounds were active at all tested concentrations
to the same extent (e.g. methacycline hydrochloride and sulfagua-
nidine), while four compounds showed activity only at the highest
concentration (10 lM) (e.g. ciprofloxacin hydrochloride and
curcumin). In addition, hit compounds were further validated by
re-screening using, where available, externally sourced
compounds (30/69 compounds) (‘‘validated–sourced compound’’
column, Table 2).

The hit compounds were then ranked based on the following
criteria: (1) suitability/approval status, (2) potency in screening
assay, (3) repeat validation (both library and sourced compounds),
(4) paediatric use, and (5) pregnancy category (US–FDA categories,
www.fda.gov), and then were prioritised for progression through
the A�WOL screening pipeline into in vitro nematode screening
assays and the primary in vivo screening model (L. sigmodontis
mouse model) (Table 2). Seventeen compounds, that were vali-
dated using both library and sourced compounds, were classed
as top priority hits. A further 21 compounds, that were validated
using library compound only, were classed as second priority hits
and ranked using the defined criteria. The remaining 31 hits were
classed as de-prioritised hits for various reasons. For example, cip-
rofloxacin was de-prioritised as it had previously been tested in the
in vivo mouse model (Hoerauf et al., 2000), as well as compounds
that were subsequently found to be inactive, or variably active,
in repeat screening. Furthermore, compounds that had not been
validated using either library compound or sourced compound as
well as hits that were anti-neoplastics, clinical trial compounds
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Table 2
Prioritisation of hit compounds. The 69 hits obtained in single agent screening were first validated using either library or sourced compound, where available, and then prioritised for further screening based on (1) suitability/approval
status, (2) potency in 16S assay, (3) repeat validation (both library and sourced compounds) (4) paediatric use and (5) pregnancy category (US-FDA pregnancy categories). Compounds were classed as top priority, second priority or
deprioritised hits and are listed in the following table in rank order based on activity in the cell-based screen. nd = not determined, ? = evidence unclear.

Compound 16S log
drop

Teratogenic/
embryocidal

Pregnancy
categorya

Use in pediatric indications Validated-library
compound

Validated-sourced
compound

Characteristics Comments

Top priority hits
Methacycline hydrochloride 1.8 Yes D Not evaluated in children

under 8 years
Yes Yes Anti-biotic

Indomethacin 1.7 None observed C Not evaluated in children
under 14 years

Yes Yes Non-steroidal anti-inflammatory

Paromomycin sulfate 1.7 Yes D Approved Yes Yes Anti-biotic
Rifapentine 1.7 Yes C Not evaluated in children

under 12 years
Yes Yes Anti-TB

Minocycline 1.6 Yes D Not evaluated in children
under 8 years

Yes Yes Anti-biotic

Naftopidil 1.2 Not evaluated ? Not evaluated Yes Yes Anti-hypertensive Treatment of enlarged
prostrate

Abacavir Sulfate 1 Yes? C Yes Yes Yes Anti-viral
Sparfloxacin 1 Yes C Not evaluated in children

under 18 years
Yes Yes Anti-biotic

Docusate Calcium 0.8 Yes C Not evaluated in children
under 3 years

Yes Yes Laxative

Loratadine 0.8 None observed B Not evaluated in children
under 2 years

Yes Yes Allergy medication

Ethoxzolamide 0.7 ? ? ? Yes Yes Diuretic
Bepridil 0.6 Yes C Not evaluated Yes Yes Ca channel blocker
Furazolidone 0.6 None observed B Contraindicated in infants <

one month
Yes Yes Anti-protozoal

Nefazodone hydrochloride 0.6 Yes C Not evaluated Yes yes Anti-depressant
Curcumin 0.5 None observed ? Yes? Yes Yes Hepatoprotective agent Experimental drug
Diacerein 0.5 Not evaluated ? Not evaluated Yes Yes Osteoarthritis drug
Isoniazid 0.5 Yes C Yes Yes Yes Anti-TB

2nd Priority hits
Ethosuximide 2 Yes C Not evaluated in children

under 3 years
Yes Anti-epileptic

Piracetam 1.6 Not evaluated ? Not evaluated Yes Nootropic
Sulfamethizole 1.6 Yes Not safe Not evaluated Yes Anti-biotic
Nevirapine 1.5 None observed B Approved Yes Anti-viral
Oxycodone hydrochloride 1.4 None observed B Not evaluated Yes Opioid agonist
Sulfaguanidine 1.4 Yes ? Not evaluated Yes Sulfa drug
Valacyclovir hydrochloride 1.3 None observed B Not evaluated in children

under 2 years
Yes Anti-viral

Ibuprofen 1.2 Yes? C Not evaluated Yes Non-steroidal anti-inflammatory
Phenytoin 1 Yes D Yes Yes Anti-eplieptic
Mefexamide hydrochloride 0.9 Not evaluated ? Not evaluated Yes Anti-depressant
Nitrazepam 0.9 Yes D Yes Yes Hypnotic
Benznidazole 0.8 Not evaluated ? Not evaluated Yes Anti-parasitic
Sorbic acid 0.8 None observed B ? Yes Anti-infective, food preservative
Acyclovir 0.7 None observed B Not evaluated in children

under 2 years
Yes Anti-viral

Tolterodine tartrate 0.7 Yes C not evaluated Yes Muscle relaxant
Trifluperidol 0.7 Not evaluated ? Not evaluated in children

under 6 years
Yes Anti-psychotic

Benzydamine hydrochloride 0.6 No contraindications ? ? Yes Non-steroidal anti-inflammatory
Bumetanide 0.6 Yes C Not evaluated in children

under 18 years
Yes Anti-hypertensive
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Table 2 (continued)

Compound 16S log
drop

Teratogenic/
embryocidal

Pregnancy
categorya

Use in pediatric indications Validated-library
compound

Validated-sourced
compound

Characteristics Comments

Riboflavin 0.6 None observed ? ? Yes Micronutrient Micronutrient
Phytonadione 0.5 None observed C Not evaluated in pediatric

populations
Yes Micronutrient

Pyrimethamine 0.5 Yes C Yes Yes Anti-parasitic

Deprioritised
Kitasamycin 2.1 ? ? ? Yes Anti-biotic, macrolide Safe for lifestock
Ciprofloxacin hydrochloride 2 None observed C Approved Yes Yes Anti-biotic Tested previously (Hoerauf

et al., 2000)
Oxfendazole 1.2 Not evaluated ? Not evaluated Yes Anti-helmintic Safe for lifestock
Sodium Caseinate 1.2 None observed A Approved Nd Nutrient
Morantel Tartrate 1.1 Not evaluated ? Not evaluated Yes Anti-helminthic Safe for lifestock
Benactyzine

(Hydrochloride)
1 Not evaluated ? Not evaluated Yes Yes Anti-cholinergic No longer widely used in

medicine due to side effects
Neratinib 1 Not evaluated ? Not evaluated Nd Inhibitor of ErbB1 and

ErbB2
Phase I compound

Eliprodil 0.9 Not evaluated ? Not evaluated No NMDA receptor antagonist Other NMDA antagonists
are category B

Geftinib 0.9 Yes D Not evaluated Yes Yes Anti-neoplastic In clinical trials
Narasin 0.9 Not evaluated ? Not evaluated Yes Yes Anti-biotic Safe for lifestock
Dichlorophen 0.7 Not evaluated ? Not evaluated Yes Yes Anti-parasitic Safe for lifestock
L-Dopa 0.8 Yes C Not evaluated No Yes Dopamine enhancer
Selenium Powder 0.8 Safe Safe Not evaluated No Yes Nutrient supplement
Nitrofurantoin 0.7 None observed B Contraindicated in infants <

one month
Nd Anti-biotic

Quinidine 0.7 Yes C Yes No Na-antagonist
Ubenimex 0.7 Not evaluated ? Not evaluated No Aminopeptidase inhibitor In clinical trials
Baclofen 0.6 Yes C Not evaluated in children

under 12 years
No Yes Muscle relaxant

Chlorphenesin Carbamate 0.6 None observed ? Not evaluated No Muscle relaxant
Dasatinib 0.6 Yes D Not evaluated in children

under 18 years
No Anti-neoplastic

Nicarbazin 0.6 Not evaluated ? Not evaluated Yes Yes Anti-biotic Safe for lifestock
Sulfanitran 0.6 Not evaluated ? Not evaluated Yes Anti-protozoal Safe for lifestock
Trifluoperazine

hydrochloride
0.6 Yes C Not evaluated in children

under 6 years
No Yes Anti-psychotic Long-term medication

Betazole hydrochloride 0.5 Not evaluated ? Not evaluated No Histamine analogue Diagnostic agent
Carbinoxamine maleate 0.5 Not evaluated C Yes No Anti-histamine
Diflunisal 0.5 Yes C Not evaluated in children

under 12 years
No Yes Non-steroidal anti-inflammatory

Fluoxetine hydrochloride 0.5 Yes C Not evaluated in children
under 7 years

No Yes Anti-depressant

Hydrochlorothiazide 0.5 None observed C Not evaluated in pediatric
populations

No Anti-hypertensive

Isoxsuprine hydrochloride 0.5 Not evaluated ? Not evaluated Yes Vasodilator Safe for lifestock
Nilutamide 0.5 Yes C Not evaluated No Yes Androgen receptor blocker
Scopolamine methylnitrate 0.5 Yes C Not evaluated in pediatric

populations
No Anti-cholinergic

Troleandomycin 0.5 Yes? C Not evaluated in pediatric
populations

Nd Anti-biotic

a Pregnancy categories (US–FDA): A = Adequate and well-controlled studies have failed to demonstrate a risk to the foetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters); B = Animal
reproduction studies have failed to demonstrate a risk to the foetus and there are no adequate and well-controlled studies in pregnant women; C = Animal reproduction studies have shown an adverse effect on the foetus and there
are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks; D = There is positive evidence of human foetal risk based on adverse reaction
data from investigational or marketing experience or studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.
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or compounds currently only used in livestock were also de-
prioritised.

3.4. The effect of a selection of hits on the motility and Wolbachia load
of filarial worms in vitro

Due to the promising results obtained in the in vitro cell-based
assay screen some compounds were assessed more fully using
in vitro nematode assays for proof-of-concept in our screening
strategy. Further examination of active antibiotic classes that
emerged as hits in the in vitro cell-based screening assay was con-
ducted using an O. gutturosa adult nematode screen. A dose
response assay using fourfold dilutions from 12.5 to 0.195 lM
was used. All antibiotics tested showed only marginal or no effect
on motility (data not shown) indicating that there was no direct
toxicity against the nematode. The fluoroquinolones ciprofloxacin
and moxifloxacin as well as the rifamycin rifapentine greatly
reduced the Wolbachia load at all concentrations tested (Table 3).
While doxycycline also reduced the Wolbachia load, the response
across the different concentrations was more variable than the
other compounds. Overall, no dose responses were observed for
any of the compounds tested, suggesting a ceiling effect of the con-
centrations used. Taken together, these in vitro worm experiments
demonstrate good translation of hits from the in vitro insect cell
based assay to nematode Wolbachia within their natural hosts.

3.5. The effect of prioritised hits on the length and Wolbachia load of L.
sigmodontis in vivo

Due to their in vitro activity the prioritised hits were tested in
the L. sigmodontis-mouse model (Hoerauf et al., 1999 , 2000;
Volkmann et al., 2003), using intra-peritoneal dosing. A total of
15 in vitro hit compounds were screened using doses calculated
based on approved human doses and compared to doxycycline
(Table 4). This included ciprofloxacin, which, although had been
deprioritised due to previous work, was retested given its activity
in the in vitro O. gutturosa screen. Dose responses were also per-
formed on a selection of these compounds (Table 4).

Four compounds, methacycline, minocycline, rifapentine and
sparfloxacin, significantly reduced the worm length and the
Wolbachia load at the standard doses tested (P < 0.05) (Table 4).
Methacycline treatment resulted in significant reductions in both
worm length and Wolbachia load at both 50 and 10 MKD doses.
Interestingly, when treated with methacycline at 50 MKD the
Table 3
Comparison of different classes of antibiotic on O gutturosa Wolbachia loads.

Compound Class Concentration
(lM)

Reduction in Wolbachia
(wsp:gst log drop from
vehicle controls)

Doxycycline Tetracycline 12.5 0.80
3.125 0.21
0.781 0.14
0.195 0.77

Ciprofloxacin Fluoroquinolone 12.5 0.67
3.125 0.79
0.781 0.80
0.195 0.39

Moxifloxacin Fluoroquinolone 12.5 0.97
3.125 0.83
0.781 1.00
0.195 1.03

Rifapentine Rifamycin 12.5 1.04
3.125 0.77
0.781 0.78
0.195 0.99
reduction in Wolbachia load was significantly greater than from
worms recovered from mice treated with the same dose of doxycy-
cline (P < 0.05). In contrast, loratadine had no effect on either worm
length or Wolbachia load as measured by Wolbachia ftsZ copies at
any dose tested. Ciprofloxacin also did not reduce worm length
or Wolbachia load (Table 4), confirming a previous report using this
model (Hoerauf et al., 2000), while sparfloxacin did produce a sig-
nificant reduction in both (P < 0.01). Further experiments using
other members of this class have shown that levofloxacin is inac-
tive, while moxifloxacin is active (data not shown), demonstrating
diversity within this class. As part of the drive to reduce the dura-
tion of treatment for anti-Wolbachia therapy, a reduction in doses
and treatment durations have also been investigated using this
model. While the reduced regimen tested for sparfloxacin did not
significantly affect worm length or Wolbachia numbers, a reduced
minocycline dose and treatment duration (25 MKD for 10 days)
significantly reduced the Wolbachia load (P < 0.0001) and this
reduction was also significantly greater than Wolbachia reduction
following the equivalent doxycycline treatment (P < 0.05)
(Table 4).
4. Discussion

Here we describe the development of an in vitro Wolbachia
screening assay and the subsequent use of this assay to screen
the complete human pharmacopoeia, with a view to drug repur-
posing for filariasis. Repurposing or repositioning of drugs provides
a less risky route to drug discovery given that candidates will
already have well-known safety and pharmacokinetic profiles
(Ashburn and Thor, 2004; Tobinick, 2009; Mucke, 2010;
Grimberg and Mehlotra, 2011).

This study identified 121 compounds with in vitro activity
against Wolbachia, 69 of which satisfied our hit criteria. These hits
included, as expected, numerous anti-infective compounds (35%).
These included drugs from classes known to show some efficacy
against Wolbachia, namely the tetracyclines, rifamycins and fluoro-
quinolones (Hoerauf et al., 2000; Townson et al., 2000; Hermans
et al., 2001; Rao et al., 2002; Fenollar et al., 2003; Volkmann
et al., 2003; Townson et al., 2006). Interestingly, many were non
anti-infective compounds (65%) encompassing several different
drug classes, thereby pointing towards potentially novel mecha-
nisms of action. Although mechanisms of action have not been
investigated here, the number of non anti-infective compounds
that demonstrated activity against Wolbachia in vitro offers several
interesting avenues to pursue. As well as the possibility that these
compounds are acting on the bacteria directly, a perturbation of
the complex interplay between the Wolbachia and their host cells
must also be considered. Indeed, interfering with the Wolbachia-
host relationship through chemotherapy may be just as effective
as targeting the bacteria themselves. The involvement of Wolbachia
in the maintenance of host homeostasis has been referred to in
previous studies, especially in relation to oxidative stress regula-
tion (Brennan et al., 2008; Kremer et al., 2012). Antioxidants were
among the compounds active against Wolbachia in this study and
this class is currently being mined further to inform the potential
repurposing and repositioning of these drugs. Autophagy, a
conserved intracellular defence mechanism, has recently been
demonstrated to be play a key role in controlling Wolbachia popu-
lations (Voronin et al., 2012) and therefore components of the
pathways involved in this mechanism may be the targets of some
of non anti-infective compounds that were hits. This aspect of the
screening outcomes is also currently being investigated. Further-
more, the presence of these hits offers the potential for combining
drugs, such as antibiotics and non-antibiotics for synergistic effect
(Ejim et al., 2011).



Table 4
Testing of several prioritised hits in the L. sigmodontis in vivo model. The in vitro cell based Wolbachia reductions and cytotoxicity values are shown for comparison.

Compound Characteristics 16S log drop
in vitro

Cytotoxicity
(%)

in vivo dose(s)
(MKDa)

Ls length reduction
in vivo (%)

wLs ftsz log drop
in vivo

Doxycycline Anti-biotic 1.6 0 25,b 50 78.3, 79.4 2.2, 4.7
Methacycline

hydrochloride
Anti-biotic 1.8 0 10, 50 73.4, 80.5 3.0, 5.7

Minocycline Anti-biotic 1.6 0 25b 81.7 3.78
Paromomycin sulfate Anti-biotic 1.7 0 25 0 1.5
Rifapentine Anti-TB 1.7 20 50 68.3 3.0
Indomethacin Non-steroidal anti-

inflammatory
1.7 0 15 0 1.0

Abacavir sulfate Anti-viral 1 0 200 0 N.D.
Sparfloxacin Anti-biotic 1 0 25,b 130 28.6, 77.4 0.6, 5.7
Ciprofloxacin Anti-biotic 2 0 100 17.56 0.46
Docusate calcium Laxative 0.8 0 200 20.0 1.0
Loratadine Allergy medication 0.8 20.7 0.3, 1, 3 0, 0, 0 0.2, 0, 0.35
Ethoxzolamide Diuretic 0.7 19 200 0 0
Isoniazid Anti-TB 0.5 0.3 25 0 1.0
Curcumin Hepatoprotective agent 0.5 0 100 0 N.D.
Nilutamide Androgen receptor blocker 0.5 0.01 5 12.6 2.3
Diacerein Osteoarthritis drug 0.5 0 100 0 1.3

a MKD = mg/kg/day.
b 25 MKD given for 10 days.
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As expected with any screening strategy, many of the com-
pounds found to be hits in vitro failed at the in vivo model stage.
Minocycline, methacycline, rifapentine and sparfloxacin demon-
strated activity in the L. sigmodontis mouse screening assay. The
drop-outs can be explained in a variety of ways. Firstly there
may be differences in drug susceptibility between insect and nem-
atode Wolbachia, but, more likely, they may also reflect issues of
penetration across the nematode cuticle or bioavailability within
the mouse model. As the compounds within the CRX library were
registered drugs, the in vitro nematode screens described here
were not a key decision-making checkpoint, as they were for the
screening of other focused and diversity libraries containing novel
chemical entities. The prioritised hits progressed directly into the
primary in vivo screen, thus making it impossible to distinguish
between issues of penetration or bioavailability. The lack of activ-
ity of loratadine on both L. sigmodontis length and Wolbachia load
can potentially be explained by the dosage used. Generally, the rec-
ommended human dosages of anti-histamines are very low and,
given that this dose of loratadine was used to calculate doses for
this experiment, this could be a factor in its lack of activity. Alter-
natively, the relatively weaker activity of loratadine in the cell
assay in comparison to the anti-bacterial hits may make it difficult
to translate to the in vivo situation. Certainly, as the A�WOL screen-
ing process has been developed and improved, now utilising a high
content imaging platform (Clare et al., in press), potency has
become a more important driver of in vivo experiments.

Pharmacological factors may also explain the more surprising
differences observed between closely-related drugs within the
same class. The fluoroquinolone antibiotics sparfloxacin and cipro-
floxacin were demonstrated to be active in vitro. Ciprofloxacin has
previously been shown to have either no activity (Hermans et al.,
2001) or modest activity (Fenollar et al., 2003) in other cell-based
Wolbachia assays, and the fact that this activity extended to the
in vitro nematode screen in our screening strategy, suggests that
the optimisation of our cell-based screening assay has increased
the detection of active compounds. Despite this, of the two fluoro-
quinolone antibiotics tested, only sparfloxacin was active in vivo,
thus demonstrating that pharmacological parameters must differ
between members of the class in our screens. Further studies in
the L. sigmodontis model conducted recently have extended this
knowledge of diversity within the fluoroquinolone class by demon-
strating that moxifloxacin is active, thereby confirming our result
in the O. gutturosa in vitro model, yet levofloxacin is inactive (S.
Specht, unpublished observations). The inconsistency in the
activity of ciprofloxacin throughout previous work and the absence
of studies using other fluoroquinolones has meant that this class
has largely been overlooked as a potential source of novel anti-
Wolbachia compounds. DNA gyrase can now be considered as a
valid chemotherapeutic target of Wolbachia. The L. sigmodontis
model demonstrated increased potency of minocycline over doxy-
cycline in vivo, adding weight to a previous observation made using
nematodes in vitro (Townson et al., 2006). Minocycline is consid-
ered to be more lipid-soluble than doxycycline (Barza et al.,
1975) and this may therefore lead to higher concentrations of
the drug reaching the appropriate tissues, such as the nematode
hypodermal cords, in which the Wolbachia reside. Work is cur-
rently ongoing to determine whether any increased potency
observed across the models with the fluoroquinolones and tetracy-
clines translates into reduced treatment duration: a potentially
important improvement when considering implementation of an
anti-Wolbachia treatment for mass drug administration programs.
Further outcomes based on double and triple combinations are also
progressing through the screening strategy.

The development of the 96-well in vitro cell-based assay
described here has, in itself, been a major development in the study
of the biology and chemotherapy of Wolbachia. Wolbachia are obli-
gate intracellular bacteria and previous cell-based screening had
used either flasks (Hermans et al., 2001) or 24-well plates
(Fenollar et al., 2003) therefore deeming large-scale screening
studies unachievable within the five-year project. The robustness
of this assay has already allowed, prior to the publication of this
report, other studies to provide further insights into Wolbachia
biology (Johnston et al., 2010; Schiefer et al., 2012; Voronin et al.,
2012). Furthermore, this screening assay has since been further
optimised and up-scaled (Clare et al., in press) to the extent that
the A�WOL consortium has now screened tens of thousands of
compounds from both focused and diversity compound libraries
for anti-Wolbachia activity, a selection of which are moving down
the screening funnel. The funnel, too, has been further optimised
to streamline the A�WOL screening strategy and thus maximise
hit discovery (Johnston et al., 2014).

These experiments not only provided a proof of concept of our
cell-based assay and screening platform but also identified
potential lead candidates that are better than the gold standard
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doxycycline in reducing Wolbachia load in vivo. A�WOL is currently
testing in clinical trials whether refined regimes of registered
anti-Wolbachia drugs can translate into improved regimes for mac-
rofilaricidal therapy of onchocerciasis and lymphatic filariasis.
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