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Abstract

Blind source extraction (BSE) has become one of the promising methods in the field of signal processing and analysis, which
only desires to extract “interesting” source signals with specific stochastic property or features so as to save lots of computing time
and resources. This paper addresses BSE problem, in which desired source signals have some available reference signals. Based on
this prior information, we develop an objective function for extraction of temporally correlated sources. Maximizing this objective
function, a semi-blind source extraction fixed-point algorithm is proposed. Simulations on artificial electrocardiograph (ECG)
signals and the real-world ECG data demonstrate the better performance of the new algorithm. Moreover, comparisons with existing
algorithms further indicate the validity of our new algorithm, and also show its robustness to the estimated error of time delay.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past decades the problem of blind source separation (BSS) [8,9,11,18] has received much research
attention because of its potential applicability to a wide range of problems, such as communications signals and
biomedical signals analysis and processing, geophysical data processing, data mining, speech analysis, image
recognition, texture modelling and so on [1,2,4,5,7,12,15,16]. In BSS problems, the multidimensional observations
must be processed to recover the original sources without the benefit of any a priori knowledge about the mixing
operation or the sources themselves. Generally, classical BSS methods consider the simultaneous recovery of all
the independent components from their linear mixtures. However, in practice, extracting all the source signals from
a large number of observed sensor signals, for example, a magnetoencephalographic (MEG) measurement which
may output hundreds of recordings, could take a long time and in these signals only a very few are desired with
given characteristics. In this case it is more practical to recover a subset of the source only. This is known as blind
source extraction (BSE). When combined with a deflation procedure, BSE algorithms can be viewed as the methods
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of sequential extraction of all the independent sources [10]. BSE may have several advantages over simultaneous
BSS [8]. For example, only “interesting” source signals need to be extracted; signals can be extracted in a specific
order according to some features of source signals; lots of computing time and resources can be saved. Therefore,
it has become a promising method in various fields such as biomedical signal processing and analysis, data mining,
speech and image processing, and so on [3,8,11,18].

Nowadays, many source extraction algorithms have been developed through optimization of different cost
functions, generally based on high-order statistics [1,6,8,13,18] to extract a source signal. And these methods have
been used successfully in many fields. However, it is computationally expensive to exploit high-order statistics.
Thus the trend is to develop second-order statistics based extraction algorithms using the priori knowledge about
source signals, such as sparseness [29], high-order statistics [27], smoothness or linear predictability [3,8], or time
structure [3,7,14,26]. Recently, Lu et al. [20-22] proposed a good candidate, that is ICA with reference (ICA-R),
for extracting several source signals from a large number of observed signals. It was formed by minimizing the less-
complete ICA objective function and makes the best of the traces of the interesting sources referred to reference signals
which carry some prior information to distinguish the desired components but are not identical to the corresponding
sources. This method has become an efficient approach utilizing prior information and it has been successfully used
for fMRI data analysis etc.

Moreover, in many applications, such as ECG extraction, the desired source signal is periodic or quasi-periodic.
So the period property can be used as prior information to extract the desired source signal. Barros and Cichocki [3]
provided a simple batch learning algorithm (simplified “BCBSE algorithm™) for semi-blind extraction of the desired
source signal, which can extract the desired source as long as they are decorrelated and show a temporal structure.
However, this method is only carried out the constrained minimization of the mean squared error, which can not
accurately describe the probability distribution of the innovation of the signals. It is a possible reason why this
algorithm is very sensitive to the estimation error of the time delay and cannot reliably cancel noise contamination in
the recovered signals [24]. Recently, Shi and Zhang [24] developed a semi-blind source extraction method (simplified
“SemiBSE algorithm”), which based on the non-Gaussianity and the autocorrelations of the desired source signal. This
method has been successfully used for fetal electrocardiogram (FECG) extraction, and its advantage in its tolerance
to large estimate errors of the period has been pointed in [24]. However, its performance was not entirely satisfactory
because the recovered signals often included noise contamination. In [25], authors addressed the semi-blind source
extraction problem when the desired source signals have linear or nonlinear autocorrelations. Based on the generalized
autocorrelations of the primary sources, a BSE algorithm (called “GABSE algorithm”) was proposed. It has been
shown that the GABSE algorithm has good stability and convergence, moreover it possesses a higher accuracy of
extraction. However, this algorithm is not very robust to the estimation error of the time delay. The width of estimate
errors of the period is limited to only about ten time delays, which is smaller than that of SemiBSE algorithm in [24].

In order to improve extraction performance and the tolerance to the estimated error of the time delay, we develop
an objective function for extraction of temporally correlated source in this paper, which based on generalized
autocorrelations and reference information of desired signals. Maximizing this objective function, we propose a
semi-blind source extraction fixed-point algorithm. This algorithm incorporates more priori information of the desired
signal, which can be viewed as a refined substitution of the GABSE algorithm. It is able to extract decorrelated periodic
source, which is the closest one, in some sense, to the reference signal when the closeness measure is properly chosen.
The following simulation experiments show that our new algorithm outperforms many existing algorithms, such as
the BCBSE algorithm, SemiBSE algorithm and GABSE algorithm.

This manuscript is organized as follows. In Section 2, we provide a new cost function which is based on the
generalized autocorrelations and reference signals of the desired sources, after which we derive the semi-blind source
extraction fixed-point algorithm. Section 3 demonstrates the present technique with experiments using artificial ECG
signals and real-world ECG data. Conclusions are drawn in the final section.

2. Proposed algorithms

2.1. Objective function
Denote the observed sensor signals x(¢) = (x1(¢), ..., Xy ()T described by matrix equation

x(1) = As(1), )
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where A is an n x n unknown mixing matrix, and s(t) = (s1(¢), ..., s,(t))T is a vector of unknown temporally
correlated sources (zero-mean and unit-variance). We assume that the desired source signal s; (in case of the FECG
extraction, s; is the desired FECG) has specific temporal structures—linear or nonlinear autocorrelations. Because we
want to extract only a desired source signal, for this purpose we design a single neural processing unit described as

y(1) = w'x(),
yit —1)= wa(t - 1), 2)

where y(¢) and y(t — ) are the recovered source signal at time ¢ and (¢ — 7) respectively, w = (wy, ..., wy)T is the
weight vector.

Provided that the measured sensor signals x have already been followed by an n x n whitening filter V such that
the components of X(#) = Vx(¢) are unit variance and uncorrelated. Shi et al. [25] present the following constrained
maximization problem

max Y(w)=E{GH®))GH( —1))}
s.t. wiw= 1,

3)

where (1) = WIX(t), (t — 7) = WX(r — 7) and G is a differentiable function, which measures the autocorrelation
degree of the desired signal. Example of choices are G(u) = u, G(u) = u?, G(u) = u?, or G(u) = log cosh(u). In
Section 3, we will show the characteristics of different functions G.

In many applications, like biomedical applications, some reference signal is explicitly available which corresponds
to stimulus. In such cases, it is usually desired to extract a source signal which is as close as possible to the reference
signal r(¢). For this purpose, we can add to the cost function discussed above an auxiliary penalty term e(y(t), r(z)).
For example, we can use the following constrained optimization problem for extraction of temporally correlated
sources, which is based on the above mentioned generalized autocorrelations and an auxiliary term, i.e.

max  &(w, u) = E{G(y(1)G(( — 1)} + %8(?0), r(t))

S.t. wiw= 1,

“)

where w is a penalty parameter, G is the same as above. Notice that e(y(¢), r(¢)) is applied to measure the
closeness between the recovered signal y and r. Examples of choices are (¥(¢), r(t)) = —E{((t) — r(1))?} or

e(3(), r) = (E{3@)r)H? [17].
2.2. Learning algorithms

According to the gradient ascent learning rule, we can maximize the objective function in (4) and derive a gradient
method. However, in order to derive a more efficient fixed-point iteration, we note that at a stable point of the gradient
algorithm, the gradient must point in the direction of w, that is, the gradient must be equal to w multiplied by some
scalar constant. Only in such a case, adding the gradient to w does not change its direction, and we have convergence,
which means that after normalization to unit norm, the value of w is not changed except perhaps by changing its sign.

The gradient of @(w, u) with respect to w can be computed as

P (w, )

b E{g(W'k(t)G(W'k(t — 1))X(t) + G(W'X(1))g(W'k(t — 7))X(t — 1)}

+ %8’(wTi(t), (1)). (5)
Using the gradient of &(w, ) in (5) with w, this means that we should have
w o E{g(WIR()GW'X(t — 1)X(1) + GW'X(1)g(W X(t — 0)X(t — 7)} + %s’(wTi(t), r(1)). (6)

This equation immediately suggests a fixed-point algorithm and gives the right-hand side as the new value for w,
ie.

W < E{g(W'X(1)G(W'X(t — 1)X(1) + G(W k(1)) g (W k(t — 1)%(t — 7)} + %e’(wTim, r (1)), )
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Center and whiten observed data x

Design a reference r and initialize w,

Update w and u by (7) and (8) respectively [+

Normalize w

= Else
If convergence

Output the estimated results

Fig. 1. The flowchart of the proposed algorithm.

where the function g and &’ are the derivatives of G and ¢ respectively. Note that &’ = —2E{(7(¢t) — r(¢))X(¢)} when
e = —E{(y@) — r(t))z} (denoted as “New algorithm1”’). Correspondingly, when & equals (E{}(t)r(t)})z, ¢’ equals
2E{y(t)r(t)}E{r(t)X(¢)} (denoted as “New algorithm?2”).

Note that the parameter u is learnt by the gradient &(w, ©) with respect to u, i.e.

. w ) )
p 2

Specifically, our algorithms can be described as follows and their flowcharts are shown in Fig. 1.

Step 1. Center the observed signals x and whiten them to X.

Step 2. Design a suitable reference signal r and initialize w and .
Step 3. Update w and p according to (7) and (8) respectively.
Step 4. Normalize w by w/||w]||.

Step 5. If not converged, go back to Step 3.

3. Simulation results

To verify the validity of our algorithms, extensive computer simulations are carried out. The performance of
algorithms to estimate the desired signal is measured by performance index (PI), which is defined as follows

n

Plzzﬂ—l, k=1,....n, 9)

y max
j=1 max | pi|

where p; denotes the j element of the global vector p = wlVA. Pl is zero when the desired signals are perfectly
extracted. Besides, the accuracy of the recovered source signals compared to the sources is expressed using the signal-
to-noise ratio (SNR) in dB given by

SNR = 10log;o(s*>/MSE), (10

where s2 denotes the variance of the source signal, MSE denotes the mean square error between the original signal
and the recovered signal. The higher SNR is, the better performance is.
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Fig. 2. Six artificial ECG signals used in the simulations. (Sigl) Breathing artifact. (Sig2) Electrode artifact. (Sig3) FECG. (Sig4) MECG. (Sig5-
Sig6) Two i.i.d. Gaussian signals.

Table 1

The average PIs of the desired signals using New algorithm1 and New algorithm?2 to different G (u) when v = 112 for artificial ECG signals
G(u) u u? u’ log cosh(u)
New algorithm1 0.2587 0.1454 0.1845 0.1547
New algorithm?2 0.3218 0.1937 0.1865 0.1229

3.1. Experiments on artificial ECG data

The extraction of FECG using non-invasive technique is an important challenge in biomedical signal processing and
analysis. The FECG contains important information about health and condition of the fetus. However, there are some
problems, for example, FECG is always corrupted by various kinds of noise, such as the maternal ECG (MECG) with
extreme high amplitude, respiration and stomach activity, thermal noise, etc. Therefore, how to extract a clear FECG
as the first extracted signal has become a vital issue. In the following, we made many experiments on artificial ECG
data and real-world ECG data [23] in order to extract a clearer FECG signal, furthermore, to verify the efficiency of
our algorithms. We adopted six zero-mean and unit-variance source signals (2500 samples), shown in Fig. 2. From the
top to down, they were, a breathing artifact, electrode artifact, an FECG whose sampling period is 112 (i.e. 7 = 112),
an MECG and two i.i.d. Gaussian signals [24,25]. The observed signals were generated by a 6 x 6 random mixing
matrix. Note that in the experiment the time delay T was all chosen to be 112. In order to choose G of New algorithm1
and New algorithm?2 suitably, we firstly ran these two algorithms to different G respectively. This experiment was
independently repeated 100 times in which w was initialized randomly. Figs. 3 and 4 shows comparison results of the
average PI values of 100 independent trials by two algorithms. New algorithm1 performs better when G (1) = u?,
and New algorithm2 performs better when G (1) = log cosh(u). Therefore, in the following experiments, we choose
G (u) = u? for New algorithm1 and G (1) = log cosh(u) for New algorithm?2. The average PIs are shown in Table 1,
from which we can also see that the performance of New algorithm2 (when G (u) = log cosh(u)) is superior to New
algorithm1 (when G (u) = u?).

We ran the BCBSE algorithm, SemiBSE algorithm, GABSE algorithm and our two algorithms—New algorithm1
(choosing G(u) = u?) and New algorithm2 (choosing G(u) = logcosh(u)) for extraction of the FECG
simultaneously. In these algorithms, the time delay T was chosen to be 112. The parameter p was initialized as
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Fig. 4. Average PIs over 100 independent runs to New algorithm2 at 7 = 112.

@ = 1 and w was set randomly. It should be noticed that the selection of the reference signal r is crucial for
the performance of our algorithms. In this simulation, we employed the most simple reference signal which was
identical to the corresponding source (i.e. Sig3). The accuracy of extraction was measured by the accuracy index (10).
The SNRs of the extracted FECGs are 3.397 dB (BCBSE algorithm), 11.067 dB (SemiBSE algorithm), 21.347 dB
(GABSE algorithm), 22.595 dB (New algorithm1) and 25.588 dB (New algorithm?2) respectively. Fig. 5 presents
the FECGs extracted by five algorithms. Compared with other algorithms, New algorithm1 and New algorithm?2
obtained more clearer FECG signals. In order to further illustrate the effectiveness of our algorithms, we did this
extraction experiment 100 times independently and gave here the mean SNR values of these trials. The mean SNR
values are 3.395 dB (BCBSE algorithm), 10.039 dB (SemiBSE algorithm), 21.347 dB (GABSE algorithm), 22.903
dB (New algorithm1) and 25.588 dB (New algorithm?2) respectively. The superiority of our algorithms at 7 = 112 is
straightforward, especially New algorithm2.

It should be mentioned that our algorithms have the property of perfect robustness. Even if the range of the
estimated errors was changed largely, our algorithms also worked well, which is important in practice. In the
simulations, the SNRs over 100 independent trials were computed when T was changed from 100 to 145. Note that
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Fig. 5. Extraction results for artificial ECG signals at t = 112. From top to bottom, the extracted FECGs by BCBSE algorithm, SemiBSE
algorithm, GABSE algorithm, New algorithm1 and New algorithm?2 respectively.
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Fig. 6. Comparison of SNRs of five algorithms at different time delay 7 for artificial ECG signals.

to each of experiments, the mixing matrix A and the weight vectors w were generated randomly, and the reference
signals using in our algorithms was still Sig3 in Fig. 2. Fig. 6 shows the comparison results of the average SNRs. Even
if the time delay has a large estimated errors, our algorithms improve the performance considerably over existing
algorithms.

Moreover, it must be noted that the selection of the reference signal is an important issue for the proposed
algorithms. Therefore, we will demonstrate this problem with some experiments, which are based on above artificial
ECG data and New algorithm2. Three signals r1, r» and r3 were used as references respectively, which are shown in
Fig. 7. Note that r| corresponds to the MECG signal, r, has the same period as desired FECG but includes lots of
respiration noise and r3 corresponds to Sig3 in Fig. 2, which is the best one among three signals.

Fig. 8 provides the SNR comparison results when the three above-mentioned reference signals were utilized. It can
be clearly seen that the best r3 gives the best performance. On the contrary, r» shows the worst one, which contains
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Fig. 8. SNR comparison results of New algorithm2 to reference signals r{, rp and r3 for artificial ECG signals.

lots of noise, therefore r, is an unsuitable reference signal for the extraction of desired FECG. As for r;, which is a
clearer signal with different fundamental period but the same pulse shape as FECG signal, its application improves
the performance of the proposed algorithm to some extent when t falls in the interval [108, 115]. This means that
the algorithm’s performance is affected by the reference signal, but it shows that even if the reference signal is not
selected well, the proposed algorithm is able to provide satisfactory performance, for example in the case of r{, which
shows the robustness of the proposed algorithms to the reference signal.

3.2. Experiments on real-world ECG data

In order to further confirm the validity of the proposed algorithms, we have performed experiments on real-world
ECG data which is distributed by De Moor [23]. This data is a famous ECG measured from a pregnant woman (in
Fig. 9). One can see the heart beat of both the mother (stronger and slower) and the fetus (weaker and faster). Note
that the fetal influence is stronger in the first channel in Fig. 9. The ECG measurements were recorded over 10s and
sampled at 250 Hz (although in De Moor’s homepage he claims the sampling frequency is 500 Hz, Barros et al. [3]
assure it is 250 Hz).
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By using prior information about FECG frequency, we might estimate the optimal time delay T = 112. The same
parameters were chosen as the experiments on artificial data. Fig. 10 corresponds to the extracted FECGs by the above
five algorithms. Note that the reference signal of our algorithms was Sig3 in artificial ECG data. From the figure we
can see that the desired FECGs are all well extracted, except for the BCBSE algorithm. Since the mixing matrix A
and the pure FECG signal were not available, the PI and the SNR performance could not be computed as above. But
we could perceive distinctly the quality of extracted FECG through experience.



418 H. Zhang et al. / Journal of Computational and Applied Mathematics 223 (2009) 409—420

Tau=125
5
I
B 0w Aty
§ 0 WMWMWW
- 50 500 1 OOU 1 500 2000 2500
w 10
B
.GE_J 0 1L....; FMMWWMM‘MW
n —10
500 1000 1500 2000 2500
5
m
w
g DMW" M\IWNWW% W'H*W«WMMMWM
75
500 1 000 1 500 2000 2500
= 10 T T T T
E
2 £
(G A
< -10 . A . A
® 0 500 1000 1500 2000 2500
o 10 T T T T
E
EES | ]
§5 opprrh e tpdebr ot opprd ot
o
< -10 : : : :
® 0 500 1000 1500 2000 2500

Fig. 11. Comparison of extracted FECGs at t = 125 for real-world ECG data. From top to bottom, the extracted FECGs by BCBSE algorithm,
SemiBSE algorithm, GABSE algorithm, New algorithm1 and New algorithm2 respectively.

In this case, one could also make use of either the fact that a fetal heart rate is around 120 beats per second, which
means that the heart should strike every 0.5 s (corresponding to 125 samples for the data) [3,24]. It means that we
can simply use T = 125 in these algorithms without examining the autocorrelation of the sensor signal. We provided
the waveforms of the FECG signal recovered by above five algorithms in Fig. 11. Obviously, the extracted FECGs by
our algorithms are the clearest, while the one by the SemiBSE algorithm is close to MECG. The results by BCBSE
algorithm and GABSE algorithm are the worst ones, which are mixed with lots of respiratory noise.

And we also made 100 independent experiments to examine the robustness of our algorithms when the time delay
was changed from 100 to 145. Note that in these experiments, we believed that the optimal desired FECG could
be obtained at T = 112. So we could take the FECG extracted by New algorithm?2 at the time delay t = 112 as
the benchmark signal (shown in Fig.10 (New algorithm?2)). Based on this benchmark, we computed the correlation
coefficients between estimated signal at different time delay and the benchmark signal (all estimated signals are
normalized to be zero-mean and unit-variance). The results are plotted in Fig. 12.

Similar to [24], a correlation coefficient of the estimated signal which is higher than 0.9 can be considered to achieve
a good extraction level. From the results, we can see that the GABSE algorithm is sensitive to the estimation error of
the time delay and the extracted signal is satisfactory only when 7 € [108, 115]. As to SemiBSE algorithm and BCBSE
algorithm, their performances are the worst, which are too sensitive to extract desired FECG signal at all. However, our
algorithms work well, especially New algorithm1 performs more robustly than the others in the whole interval [100,
145]. Therefore, these results indicate that New algorithm1 is the best one among above algorithms, which is identical
with the known facts in [17], that is, the mean squared error(mse) e(y,r) = E{(y — r)z} was quite efficient for
heart artifact signals. However, it must be noted that these results are not inconsistent with foregoing FECG extraction
results at T = 112, which show New algorithm?2 is superior to New algorithm1. Because, when 7 € [108, 115], the
average correlation coefficient of New algorithm?2 is 0.9982. It is higher than that of New algorithm1, which is 0.9936.

4. Discussions and conclusions

Due to the low computation load and fast processing speed, blind source extraction has become one of the
promising methods in the field of neural networks, especially unsupervised learning, and more generally in advanced
statistics and signal processing. Against this background, Shi et al. [25] addressed the semi-blind source extraction
problem when the desired source signals have linear or nonlinear autocorrelations. Based on the generalized
autocorrelations of the primary sources, they proposed the GABSE algorithm and successfully applied it to the
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extraction of the FECG. In many applications, like biomedical applications, some reference signal is explicitly
available which corresponds to stimulus. In such cases, it is usually desired to extract the signal which is as close as
possible to the reference signal. For this purpose, we develop a new objective function for the extraction of temporally
correlated source, which is based on the the generalized autocorrelations and reference information of desired source
signal. Maximizing this objective function, we propose a semi-blind source extraction fixed-point algorithm which
can extract a clearer FECG and is very robust to the estimated error of the time delay. Experiments with artificial ECG
data and real-world ECG data reveal the efficacy and accuracy of the proposed method.

Actually, contrary to gradient-based algorithms, there is no learning rate in the proposed algorithms, which makes
it easy to use, and more reliable. However, it should be pointed that the steady good performance of our algorithms
may be contributed to the application of a properly reference signal. Fortunately, the proposed method does not
greatly depend on the selection of the reference signals, which makes this method suitable for broader applicability.
Undoubtedly, the better the reference signal, the better performance of the algorithm. Appropriate estimation of the
reference signal is critical for achieving best performance. Therefore the selection of the reference signal still remains
one of the important issues, just as in other works [19-22,28]. So our future work will focus on how to design more
suitable reference signals so as to improve the quality of the semi-blind source extraction algorithms.
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