
b

e
btained.

before. In
ulae are
Physics Letters B 587 (2004) 100–104

www.elsevier.com/locate/physlet

Two particle states in an asymmetric box✩

Xin Li, Chuan Liu

Department of Physics, Peking University, Beijing 100871, PR China

Received 8 December 2003; received in revised form 17 February 2004; accepted 27 February 2004

Editor: T. Yanagida

Abstract

The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all thre
directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are o
These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by Lüscher
particular, thes-wave scattering length is related to the energy shift in the finite box. Possible applications of these form
also discussed.
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1. Introduction

In a series of papers, Lüscher obtained results [1
which relate the energy of a two-particle state in a
bic box (a torus) with the elastic scattering phases
the two particles in the continuum. This formula, no
known as Lüscher’s formula, has been utilized in
number of applications, e.g., linear sigma model in
broken phase [5], and also in quenched QCD [6–1
Due to limited numerical computational power, thes-
wave scattering length, which is related to the scat
ing phase shift at vanishing relative three moment
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is mostly studied in hadron scattering using quenc
approximation. CP-PACS Collaboration calculated
scattering phases at non-zero momenta in pion–
s-wave scattering in theI = 2 channel [12] using
quenched Wilson fermions and recently also in t
flavor full QCD [14]. In typical lattice QCD calcula
tions, if one would like to probe for physical inform
tion concerning two-particle states with non-zero r
ative three momentum, large lattices have to be u
which usually requires enormous amount of comp
ing resource. One of the reasons for this is the
lowing. In a cubic box, the three momenta of a sin
particle are quantized according to:k = (2π/L)n ≡
(2π/L)(n1, n2, n3), with n ∈ Z3.1 In order to con-
trol lattice artifacts due tothese non-zero momentu
modes, one needs to have large values ofL. One disad-

1 That is,n1, n2 andn3 are integers.
se.
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vantage of the cubic box is that the energy of a free p
ticle with lowest non-zero momentum is degenera
This means that the second lowest energy level of
particle with non-vanishing momentum correspond
n = (1,1,0). If one would like to measure these sta
on the lattice, even larger values ofL should be used
One way to remedy this is to use a three-dimensio
box whose shape is not cubic. If we use ageneric
rectangular box of size(η1L) × (η2L) × L with η1
andη2 other than unity, we would have three differe
low-lying one-particle energy with non-zero momen
corresponding ton = (1,0,0), (0,1,0) and (0,0,1),
respectively. This scenario is useful since it prese
more available low momentum modes for a given
tice size, which is important in the study of hadro
hadron scattering phase shift. Similar situation a
occurs in the study ofK to ππ matrix element (see
Ref. [15] for a review and references therein). The
one also needs to study two-particle states with n
vanishing relative three-momentum. Again, a cu
box yields too few available low-lying non-vanishin
momenta and large value ofL is needed to reach th
physical interesting kinematic region. In these cas
one could try an asymmetric rectangular box with o
one side being large while the other sides moder
In an asymmetric rectangular box, the original form
lae due to Lüscher, which give the relation betwe
the energy eigenvalues in the finite box and the c
tinuum scattering phases, have to be modified acc
ingly. The purpose of this Letter is to derive the equ
alents of Lüscher’s formulae in the case of a gen
rectangular (not necessarily cubic) box.

We consider two-particle states in a box of s
(η1L)× (η2L)×L with periodic boundary conditions
For definiteness, we takeη1 � 1, η2 � 1, which
amounts to denoting the length of the smallest s
of the rectangular box asL. The following derivation
depends heavily on the previous results obtained
Ref. [3]. We will take over similar assumptions
in Ref. [3]. In particular, the relation between th
energy eigenvalues and the scattering phases de
in the non-relativistic quantum mechanical model c
be carried over to the case of relativistic, massive fi
theory under these assumptions, the same way a
the case of cubic box which was discussed in de
in Ref. [3]. For the quantum mechanical model,
assume that the range of the interaction, denoted bR,
of the two-particle system is such thatR < L/2.
The modifications which have to be implement
as compared with Ref. [3], are mainly concerned w
different symmetries of the box. In a cubic box, t
representations of the rotational group are dec
posed into irreducible representations of the cu
group. In a generic asymmetric box, the symmetry
the system is reduced. In the case ofη1 = η2 �= 1, the
basic group becomesD4; if η1 �= η2 �= 1, the sym-
metry is further reduced toD2, modulo parity opera
tion. Therefore, the final expression relating the ene
eigenvalues of the system and the scattering ph
will be different.

2. Energy eigenstates and singular periodic
solutions of Helmholtz equation

As discussed in Ref. [3], the energy eigensta
in a box is intimately related to the singular period
solutions of the Helmholtz equation:

(1)
(∇2 + k2)ψ(r) = 0.

These solutions are periodic:ψ(r + n̂L) = ψ(r)
and are bounded by certain powers ofr = |r| near
r = 0. The momentum modes in the rectangu
box are quantized as:k = (2π/L)ñ. Here we intro-
duce the notations:̃n ≡ (n1/η1, n2/η2, n3) and n̂ ≡
(n1η1, η2n2, n3) with n = (n1, n2, n3) ∈ Z3. For reg-
ular values ofk,2 the singular periodic solutions o
Helmholtz equation can be obtained from the Gree
function:

(2)G
(
r; k2) = 1

η1η2L3

∑
p

eip·r

p2 − k2 .

We define:Ylm(r) ≡ rlYlm(Ωr), whereΩr represents
the solid angle parameters(θ,φ) of r in spherical
coordinates;Ylm are the usual spherical harmon
functions. It is well known thatYlm(r) consist of
all linear independent, homogeneous functions
(x, y, z) of degreel that transform irreducibly unde
the rotational group. We then define

(3)Glm

(
r; k2) = Ylm(∇)G

(
r; k2),

which form a complete, linear independent set
functions of singular periodic solutions to Helmho

2 This means that|k| �= (2π/L)|ñ| for anyn ∈ Z3.
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equation. The functionsGlm(r; k2) may be expande
into spherical harmonics:

Glm

(
r; k2)

= (−)lkl+1

4π

[
Ylm(Ωr)nl(kr)

(4)

+
∑
l′m′

Mlm;l′m′Yl′m′(Ωr)jl′(kr)

]
.

Here,jl andnl are the usual spherical Bessel functio
and the matrixMlm;l′m′ is related to themodifiedzeta
function via

Mlm;js =
∑
l′m′

(−)s ij−lZl′m′(1, q2;η1, η2)

η1η2π3/2ql′+1

× √
(2l + 1)(2l′ + 1)(2j + 1)

(5)×
(

l l′ j

0 0 0

)(
l l′ j

m m′ −s

)
.

In this formula, the Wigner 3j -symbols can be relate
to the Clebcsh–Gordan coefficients in the usual w
For a given angular momentum cutoffΛ, the quantity
Mlm;l′m′ can be viewed as the matrix element o
linear operatorM̂ in a vector spaceHΛ, which is
spanned by all harmonic polynomials of degreel � Λ.
The modified zeta function is formally defined by

(6)Zlm

(
s, q2;η1, η2

) =
∑

n

Ylm(ñ)

(ñ2 − q2)s
.

According to this definition, the modified zeta functi
at the right-hand side of Eq. (5) is formally diverge
and needs to be analytically continued. Follow
similar discussions as in Ref. [3], one could obtai
finite expression for the modified zeta function whi
is suitable for numerical evaluation. It is also obvio
from the symmetry ofD4 or D2 that, for l � 4, the
only non-vanishing zeta functions ats = 1 are:Z00,
Z20, Z2±2, Z40, Z4±2 andZ4±4. One easily verifies
that, if η1 = η2 = 1, all of the above definitions an
formulae reduce to the those obtained in Ref. [3].

The energy eigenstates of the two-particle sys
may be expanded in terms of singular periodic
lutions of Helmholtz equation. This solution in th
region where the interaction is vanishing can be
pressed in terms of ordinary spherical Bessel fu
tions, which is related to the scattering phases in
usual way. For the two-particle eigenstate in the sy
metry sectorΓ in a box of particular symmetry (e
ther D4 or D2), the energy eigenvalue,E = k2/2µ

with µ being the reduced mass of the two particl
is determined by

det
[
e2iδ − Û(Γ )

] = 0,

(7)Û(Γ ) = (
M̂(Γ ) + i

)
/
(
M̂(Γ ) − i

)
.

Here Γ denotes a particular representation of
groupD4 or D2. M̂(Γ ) represents a linear operator
the vector spaceHΛ(Γ ). This vector space is spann
by all complex vectors whose components arevln,
with l � Λ, andn runs from 1 to the number of oc
currence ofΓ in the decomposition of representati
with angular momentuml, see Ref. [3] for details. To
write out more explicit formulae, one therefore has
consider decompositions of the rotational group rep
sentations under appropriate symmetries.

3. Symmetry of an asymmetric box

As mentioned in the beginning of this Letter, mo
ifications have to be made since the symmetry of
asymmetric box is different from that of a cubic on
We first describe the caseη1 = η2. The symmetry
group isD4, which has 4 one-dimensional represe
tations:A1, A2, B1, B2 and a two-dimensional irre
ducible representationE. The representations of th
rotational group are decomposed according to

0 = A+
1 , 1 = A−

2 + E−,

(8)2 = A+
1 + B+

1 + B+
2 + E+,

as is seen, in theA+
1 sector, up to l � 2 both

s-wave andd-wave contribute. This corresponds
two linearly independent, homogeneous polynom
with degrees not more than 2, which are invari
underD4. These two polynomials can be identifi
asY00 andY20 ∝ (x2 + y2 − 2z2). Therefore, we can
write out the reduced matrix elementM(A+

1 )ll′ = mll′
in this sector:

m00 =W00, m20 = m02 = −W20,

(9)m22 =W00 + 2
√

5

7
W20 + 6

7
W40,
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where we have introduced the notation

(10)Wlm

(
1, q2;η1, η2

) ≡ Zlm(1, q2;η1, η2)

π3/2η1η2ql+1 .

We find that, in the case ofD4 symmetry, Eq. (7)
becomes

(11)

(
1+ m2

02

m00

tanδ2

1− m22tanδ2

)
tanδ0 = 1

m00
.

Similar formula also appears in the case of cubic b
except that the mixing withs-wave comes in atl = 4,
not atl = 2.

For the caseη1 �= η2, the symmetry group become
D2 which has only 4 one-dimensional representatio
A, B1, B2 andB3. The decomposition (8) is replace
by

0 = A+, 1 = B−
1 + B−

2 + B−
3 ,

(12)2 = A+ + A+ + B+
1 + B+

2 + B+
3 .

So, up to l � 2, A+ occurs three times: once in
l = 0 and twice inl = 2. The corresponding bas
polynomials can be taken as:Y00, Y20 and (Y22 +
Y2−2)/

√
2. If we denote the above three states as:

and2̄, the reduced matrix̂M(A+) is three-dimensiona
with matrix elementsm00, m02 = m20 andm22 given
in Eq. (9) and the rest are given by

m02̄ = m2̄0 = − 1√
2
(W22 +W2−2),

m22̄ = m2̄2 = −
√

10

7
(W22 +W2−2)

+
√

30

14
(W42 +W4−2),

m2̄2̄ =W00 − 2
√

5

7
W20 + 1

7
W40

(13)+
√

5

14
(W44 +W4−4).

Similar to Eq. (11), the relation between the ene
eigenvalue and the scattering phases now reads(

1

m00
cotδ0 − 1

)∣∣∣∣1− m22tanδ2 m22̄ tanδ2
m22̄ tanδ2 1− m2̄2̄ tanδ2

∣∣∣∣
= m02tan2 δ2

m00

∣∣∣∣m02 m22̄
m02̄ (cotδ2 − m2̄2̄)

∣∣∣∣
(14)− m02̄ tan2 δ2

m

∣∣∣∣m02 (cotδ2 − m22)

m ¯ m ¯

∣∣∣∣.

00 02 22
If the d-wave phase shift were small enough, it is ea
to check that both Eqs. (11) and (14) simplifies to

(15)cotδ0(k) = m00 = Z00(1, q2;η1, η2)

π3/2η1η2q
.

For the general case, Eqs. (11) and (14) offer
desired relation between the energy eigenvalue
the A+

1 sector and the scattering phases for the ca
η1 = η2 andη1 �= η2, respectively.

4. Large volume expansion of the scattering
length

It is known that in low-energy scattering process
the scattering phasesδl(k) behaves like: tanδl(k) ∼
k2l+1 for small k, where k is the relative momentum
of the two particles being scattered. It is easy to ve
that bothm00 and m02 behave like 1/q3 as q ∼ 0.
Since tanδ2(q) goes to zero likeq5, we see that the
effects due tod-wave phase shift in Eqs. (11) and (1
are negligible as long asthe relative momentumq is
small enough. Therefore, in both cases, thes-wave
scattering lengtha0 will be determined by the zer
momentum limit of Eq. (15).

For a large box, a largeL expansion of the formula
can be deduced. Using Eq. (15), we find that
s-wave scattering lengtha0 is related to the energ
difference in a generic rectangular box via3

δE = − 2πa0

η1η2µL3

[
1+ c1(η1, η2)

(
a0

L

)

(16)+ c2(η1, η2)

(
a0

L

)2

+ · · ·
]
.

Here,µ designates the reduced mass of the two pa
cles whose mass values arem1 andm2, respectively.
Energy shiftδE ≡ E − m1 − m2 whereE is the en-
ergy eigenvalue of the two-particle state. Functio

3 For low relative momenta, thed-wave scattering phase behav
like: tanδ2(q) ∼ a2k5 = a2(2π/L)5q5, with a2 being thed-wave
scattering length. If we treat the effects due to tanδ2 perturbatively,
we see from Eqs. (11) and (14) that, in Eq. (16), functionsc1 andc2
receive contributions that are proportional to(a2/L5), which is of
higher order in 1/L for largeL.
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Table 1
Numerical values for the subtracted zeta functions and the coefficientsc1(η1, η2) and c2(η1, η2) under some typical topology. The thre
dimensional rectangular box has a sizeL1 = η1L, L2 = η2L andL3 = L

L1 :L2 :L3 η1 η2 Ẑ00(1,0;η1, η2) Ẑ00(2,0;η1, η2) c1(η1, η2) c2(η1, η2)

1 :1 :1 1 1 −8.913633 16.532316 −2.837297 6.375183
6 :5 :4 1.5 1.25 −12.964476 41.526870 −2.200918 3.647224
4 :3 :2 2 1.5 −16.015122 91.235227 −1.699257 1.860357
3 :2 :2 1.5 1 −10.974332 32.259457 −2.328826 3.970732
2 :1 :1 2 1 −11.346631 63.015304 −1.805872 1.664979
3 :3 :2 1.5 1.5 −14.430365 53.784051 −2.041479 3.091200
2 :2 :1 2 2 −18.430516 137.771800 −1.466654 1.278623
for
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02)
c1(η1, η2) andc2(η1, η2) are given by

c1(η1, η2) = Ẑ00(1,0;η1, η2)

πη1η2
,

(17)

c2(η1, η2) = Ẑ2
00(1,0;η1, η2) − Ẑ00(2,0;η1, η2)

(πη1η2)2 ,

where the subtracted zeta function is defined as

(18)Ẑ00
(
s, q2;η1, η2

) =
∑

|ñ|2 �=q2

1

(ñ2 − q2)s
.

In Table 1, we have listed numerical values
the coefficientsc1(η1, η2) andc2(η1, η2) under some
typical topology. In the first column of Table 1
we tabulated the ratio for the three sides of
box: η1 :η2 : 1. Note that forη1 = η2 = 1, these two
functions reduce to the old numerical values for
cubic box which had been used in earlier scatter
length calculations.

5. Conclusions

In this Letter, we have studied two-particle sc
tering states in a generic rectangular box with p
odic boundary conditions. Therelations of the energ
eigenvalues and the scattering phases in the co
uum are found. These can be viewed as a gen
ization of the well-known Lüscher’s formula. In pa
ticular, we show that thes-wave scattering length i
related to the energy shift by a simple formula, wh
is a direct generalization of the corresponding form
in the case of cubic box. We argued that this asymm
ric topology might be useful in practice since it pr
vides more available low-lying momentum modes
a finite box, which will be advantageous in the stu
of scattering phase shifts at non-zero three mom
in hadron–hadron scattering and possibly also in o
applications.

References

[1] M. Lüscher, Commun. Math. Phys. 105 (1986) 153.
[2] M. Lüscher, U. Wolff, Nucl. Phys. B 339 (1990) 222.
[3] M. Lüscher, Nucl. Phys. B 354 (1991) 531.
[4] M. Lüscher, Nucl. Phys. B 364 (1991) 237.
[5] M. Goeckeler, H.A. Kastrup, J. Westphalen, F. Zimmerma

Nucl. Phys. B 425 (1994) 413.
[6] R. Gupta, A. Patel, S. Sharpe, Phys. Rev. D 48 (1993) 388
[7] M. Fukugita, Y. Kuramashi, H. Mino, M. Okawa, A. Ukawa

Phys. Rev. D 52 (1995) 3003.
[8] S. Aoki, et al., Nucl. Phys. B (Proc. Suppl.) 83 (2000) 241.
[9] JLQCD Collaboration, Phys. Rev. D 66 (2002) 077501.

[10] C. Liu, J. Zhang, Y. Chen, J.P. Ma, Nucl. Phys. B 624 (20
360.

[11] K.J. Juge, hep-lat/0309075.
[12] CP-PACS Collaboration, Phys. Rev. D 67 (2003) 014502.
[13] N. Ishizuka, T. Yamazaki, hep-lat/0309168.
[14] CP-PACS Collaboration, hep-lat/0309155.
[15] N. Ishizuka, hep-lat/0209108.


	Two particle states in an asymmetric box
	Introduction
	Energy eigenstates and singular periodic solutions of Helmholtz equation
	Symmetry of an asymmetric box
	Large volume expansion of the scattering length
	Conclusions
	References


