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Abstract

For scalars there is essentially just one way to define reality, real part and to measure nonreality. In
this paper various ways of defining respective concepts for complex-entried matrices are considered. In
connection with this, products of circulant and diagonal matrices often appear and algorithms to approxi-
mate additively and multiplicatively with them are devised. Multiplicative structures have applications, for
instance, in diffractive optics, preconditioning and fast Fourier expansions.
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1. Introduction

In this paper we look, in a systematic manner, at ways to define reality for a matrix A ∈ Cp×n,
respective measures of nonreality, as well as matrix nearness problems related to these consid-
erations. Motivated by applications, we confine to the square matrix case p = n. Applications
are clearly behind questions like this since otherwise there are hardly any good reasons to pay
particular attention to real matrices if the complex field is in use.
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Real matrices (analogously, pure imaginary) in the standard sense enjoy many properties, such
as the symmetric location of their spectra with respect to the real axis. In view of the most funda-
mental operations, matrix–vector products with real matrices cost half of those performed with
complex matrices, yielding a good quantitative criterion for the notion of reality more generally.
Saving like this are of importance in applying iterative methods. As emphasized in [5, p. 1109],
savings in more demanding computations can be even from three to four times more. Our interest
in real matrices, and hence also in measuring nonreality, stems from the idea of rewriting real
matrix problems in a complex form [14].

While looking at nonreality, we often encounter products of circulant and diagonal matrices,
as well as scalings. Such products arise also in modelling diffractive optical instruments; see the
framework proposed in [17,21]. Motivated by this, we consider approximating, both additively
and multiplicatively, with products of circulant and diagonal matrices. Additive approximation
consists of approximating A in the Frobenius norm with sums

∑k
j=1 CjDj , where Cj and Dj are

circulant and diagonal matrices, for 1 � j � k. This gives rise to new preconditioning opportuni-
ties for dense Toeplitz related linear systems. It can also be used in multiplicative approximation,
where we restrict to the unitary case and devise an alternating iteration to approximate with
DCD-matrices, i.e., with matrices that are products of two diagonal and one circulant matrix.

The paper is organized as follows. In Section 2 several notions of reality for matrices are
collected in terms of conjugations and circular conjugations. Some remarks on complex symmetric
unitary matrices are made. In Section 3 we look at various ways to quantify nonreality in a more
informative manner than through the standard approach. An aim is at application motivated
geometric measures of nonreality, yielding information also on functions of A. Section 4 deals
with a number of related matrix nearness problems involving diagonal and circulant matrices.
DCD-matrices are paid particular attention to.

2. Definitions of reality for matrices

There are several natural, although quite different notions of reality for matrices, depending
on the role, i.e., the vector space in which matrices are viewed. First we consider conjugations on
Cn and then conjugations on Cn×n.

2.1. Conjugations on Cn

The following operator theoretic definition of reality appeared already in the second edition
of the classic [8, p. 146] of Halmos. We do not know who initiated this notion.

Definition 2.1. A matrix A ∈ Cn×n, when regarded as a linear operator on Cn, is said to be real
with respect to a conjugation J on Cn if

AJ = JA. (2.1)

Recall that a conjugation J is an antilinear1 operator on Cn satisfying J 2 = I and

(Jx, Jy) = (y, x) for all x, y ∈ Cn, (2.2)

1 An antilinear operator J satisfies J (x + y) = Jx + Jy and J (αx) = ᾱJ x for any α ∈ C and x, y ∈ Cn.
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where (·, ·) is the standard complex inner product [8, p. 145]. Hence J preserves the 2-norm. If τ

denotes the standard conjugation operator τx = x̄ for x ∈ Cn, then J can be represented as Eτ

for a complex symmetric unitary matrix E ∈ Cn×n. Also the converse holds, i.e., Eτ gives rise
to a conjugation whenever E is complex symmetric and unitary. Then (2.1) reads

AE = EA. (2.3)

By [13, Lemma 4.6.9], there exists U ∈ Cn×n such that E = UU
−1

, where U can be chosen to be
unitary by invoking the Takagi decomposition [12, Corollary 4.4.4]. Then we say that U generates
the respective conjugation UUTτ . This allows the condition (2.1) to be written alternatively as

UT A U = U∗AU (2.4)

implying that A must be unitarily similar to a real-entried matrix to be real in the sense of
Definition 2.1. Equivalently, there exists an orthonormal basis in which A has a real-entried
matrix representation.

Example 1. Any Hermitian matrix A is real with respect to an appropriate conjugation. One
option is to take the generating U to be a unitary matrix diagonalizing A.

Observe that the cost of checking reality is an O(n2) computation at most since a matrix vector
product with both sides of (2.3) applied to a random vector followed by taking their difference
yields the correct answer with probability one.

The map

U �→ UUT

from the set of unitary matrices to the set of complex symmetric unitary matrices is onto. We have

UUTτ = WWTτ (2.5)

for two unitary matrices U and W if and only if UTW = U∗W , i.e., if and only if U∗W is real-
entried. Hence W = UR for a real-entried unitary matrix R is a necessary and sufficient condition
for (2.5) to hold. These simple remarks prove the following theorem.

Theorem 2.2. Unitary matrices U, W ∈ Cn×n generate the same conjugation Eτ if and only if
there exists a unitary matrix R ∈ Rn×n such that W = UR.

Corollary 2.3. A conjugation Eτ with E ∈ Rn×n and E /= I is generated only by a complex-
entried unitary matrix.

For the simplest possible way to generate E we have the following corollary (see also [12,
Theorem 4.4.7]).

Corollary 2.4. Let E ∈ Cn×n be unitary and complex symmetric. Then E = RD(RD)T with a
unitary diagonal D ∈ Cn×n and a unitary R ∈ Rn×n.

Proof. If Ex = eiθ x for a nonzero x ∈ Cn and θ ∈ R, then conjugating this identity gives Ex̄ =
e−iθ x̄. By the fact that E = E−1 we obtain Ex̄ = eiθ x̄. Either 1

2 (x + x̄) or 1
2i

(x − x̄) is nonzero
and thereby yields a real-entried eigenvector of E associated with the eigenvalue eiθ . Orthogo-
nalizing and continuing in this manner, a real-entried unitary matrix R is obtained diagonalizing
E as E = R�R∗. Taking the square root of � gives D. �
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This yields a way to build complex symmetric unitary matrices of Householder type depending
on a small number of parameters providing conjugations that are very inexpensive to apply. For
this, take a diagonal matrix �̃ such that I − 2�̃ has its eigenvalues on the unit circle as follows.

Corollary 2.5. Suppose zj ∈ C, for 1 � j � k, are located on the circle of radius 1/2 centered
at 1/2. If rj ∈ Rn are orthonormal, then the matrix

I − 2
k∑

j=1

zj rj r
∗
j

is complex symmetric and unitary.

The set of complex symmetric unitary matrices is not a group. It can be regarded as a stratified
manifold.

Corollary 2.6. The set of complex symmetric unitary matrices in Cn×n is a real a stratified
manifold with the stratum of maximal dimension (n2 + n)/2.

Proof. The set of complex symmetric unitary matrices in Cn×n is a real a stratified manifold since
its elements are given by the matrices E whose entries satisfy the polynomial equations EE∗ = I

and E = ET.
Consider the set of unitary diagonal matrices having the diagonal entries eiθj whose exponents

satisfy 0 < θ1 < θ2 < · · · < θn < 2π . It is a real manifold of dimension n. Clearly, with � varying
in this set and with R ∈ Rn×n varying among unitary matrices yields a dense subset of complex
symmetric unitary matrices trough R�R∗. Let � and �̃ be such diagonal matrices and suppose
both R, R̃ ∈ Rn×n are unitary. Then R�R∗ = R̃�̃R̃∗ if and only if S = R̃∗R� = �̃R̃∗R. This
forces R̃∗R to be diagonal and, since it is unitary and real-entried, its diagonal entries are ±1.
Hence R can be chosen such that the first non-zero entry in its each column is positive. With
this restriction, we have a one-to-one representation of complex symmetric unitary matrices in a
neighborhood of S so that since the dimension of the manifold of real unitary matrices in Rn×n

is (n2 − n)/2 (see [18, p. 197]), the claim follows. �

In practice it is of interest that an application of a unitary matrix generating a conjugation
consumes a small number of floating point operations. In view of this and Corollary 2.3, one of
the most interesting conjugation with a real-entried E /= I is generated as follows.

Example 2. Take U = Fn ∈ Cn×n, where Fn is the Fourier matrix [4, p. 32]. Then E = UUT

is the permutation matrix having ones at the positions (1,1) and (n − j + 1, j + 1), for j =
1, 2, . . . , n − 1. In case A = URU∗ for a real-entried R, matrix–vector products with A cost
essentially the same as those performed with real-entried matrices, once the FFT is invoked.

This example can be viewed in a more general framework, where computation of matrix–vector
products is economical.

Theorem 2.7. Let A ∈ Cn×n satisfy (2.3) with a symmetric permutation matrix E. Then a matrix–
vector product with A costs at most one matrix–vector product with a real-entried matrix plus
four inner products in Cn.
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Proof. Build a unitary matrix U ∈ Cn×n as follows. If the j th diagonal entry of E is one, then
set the j th diagonal entry of U also to be one. Suppose the (k, j)-entry and the (j, k)-entry of
E, with j /= k, equal one. Then let the (k, k)-entry and the (j, j)-entry of U be (1 + i)/2 and
the (j, k)-entry and the (k, j)-entry of U be (1 − i)/2. By (2.4) this yields UUT = E such that
A = URU∗ with R ∈ Rn×n. Applying either U or U∗ to a vector costs no more than two inner
products in Cn. �

Observe that in Cn×n there are
(

n

k

) (
n−k

2 !) such symmetric permutation matrices having exactly

k ones on the diagonal. See [5, p. 1108] for a number of interesting applications involving con-
jugations of this type.

Later on we need a nearest conjugation in the Frobenius norm ‖ · ‖F . By ‖ · ‖ we denote the
operator norm while using the standard complex Euclidean metric on Cn.

Theorem 2.8. Let A = S + T ∈ Cn×n with S complex symmetric having the Takagi decompo-
sition S = U�UT and T skew-symmetric. Then UUT is a nearest complex symmetric unitary
matrix to A in the Frobenius norm.

Proof. Use the standard inner product (M, N) = tr(N∗M) on Cn×n with M, N ∈ Cn×n. Then
the set of complex symmetric matrices is orthogonal to the set of skew-symmetric matrices.
Hence the problem of approximating A with a complex symmetric unitary matrix is equivalent to
approximating S with a complex symmetric unitary matrix. By the fact that the Frobenius norm is
unitarily invariant we can consider minimizing ‖� − U∗EU‖F while E, or equivalently, U∗EU

varies over the complex symmetric unitary matrices. From this the claim follows. �

To have a purely algebraic conjugation operation not related to the complex Euclidean geometry
of Cn, the assumptions of Definition 2.1 need to be relaxed. For this we call an antilinear operator
J satisfying merely J 2 = I a circular conjugation, i.e., (2.2) is not assumed and therefore J

cannot be expected to preserve the 2-norm. This terminology is motivated by [13, p. 478] since a
circular conjugation can be represented as Eτ with an invertible matrix E ∈ Cn×n satisfying

EE = I. (2.6)

For diagonal matrices this condition leads to unitary matrices. The next most interesting class
consists of circulant matrices allowing more variety as follows.

Example 3. Suppose E = F ∗
n �Fn is circulant, where Fn ∈ Cn×n is the Fourier matrix and

� = diag(λ1, λ2, . . . , λn). For n even from (2.6) we get the conditions λn−j λj+2 = 1 for j =
0, 1, . . . , n

2 − 1 and |λ1| = 1.

In terms of a circular conjugation, a natural definition of reality is as follows.

Definition 2.9. A matrix A ∈ Cn×n, when regarded as a linear operator on Cn, is said to be real
with respect to a circular conjugation J on Cn if

AJ = JA. (2.7)

Consider (2.6). By [12, Lemma 4.6.9], there exists an invertible S ∈ Cn×n such that E = SS
−1

leading to the condition (2.3) which can be written as
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S
−1

AS = S−1AS (2.8)

corresponding now to (2.4). This implies that A must be similar to a real-entried matrix to be
real in the sense of Definition 2.9. Equivalently, there exists a basis in which A has a real-entried
matrix representation.

With conjugations and circular conjugations, a matrix viewed as an antilinear operator on Cn

gives rise to equally natural notions of reality. To Definition 2.1 corresponds the following.

Definition 2.10. A matrix A ∈ Cn×n, when regarded as an antilinear operator on Cn, is said to
be real with respect to a conjugation J on Cn if

AτJ = JAτ. (2.9)

Let J be represented by Eτ = UUTτ for a unitary matrix U ∈ Cn×n. Then this condition
reads

AE = EA, (2.10)

i.e.,

U∗AU = UTAU (2.11)

and hence A must be unitarily consimilar to a real-entried matrix to be real in the sense of
Definition 2.10. Equivalently, there exists an orthonormal basis in which the antilinear operator
Aτ has the matrix representation Rτ with R ∈ Rn×n.

Example 4. By the Takagi decomposition, any complex symmetric matrix is real in the sense of
Definition 2.10, with an appropriate U .

Similarly, relaxing the conjugation to be merely a circular conjugation yields an analogous
notion of reality.

Definition 2.11. A matrix A ∈ Cn×n, when regarded as an antilinear operator on Cn, is said to
be real with respect to a circular conjugation J on Cn if

AτJ = JAτ. (2.12)

Let E = SS
−1

τ be the matrix representation of J . Then the condition (2.12) can be written
as

S
−1

AS = S−1AS, (2.13)

i.e., A is must be consimilar to a real-entried matrix to be real in the sense of Definition (2.11).
To be real in the sense of Definition 2.9, the trace of A must be real (and the existence of

a real Jordan canonical form [12, p. 151] tells whether A is real with respect to some circular
conjugation). As opposed to this, Definition 2.11 imposes no such restrictions on A. In fact, there
always exists a circular conjugation such that A is real in the sense Definition 2.11, i.e., every
matrix is consimilar to a real-entried matrix; see [1] and [11]. This interesting fact makes the
notion of reality interpreted in terms of antilinear operator very versatile.
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Employing different circular conjugations in the domain and range leads to the respective
generalization. For instance, Definition 2.1 then reads as follows.

Definition 2.12. A matrix A ∈ Cn×n, when regarded as a linear operator on Cn, is said to be real
with respect to conjugations J1, J2 on Cn if

AJ1 = J2A. (2.14)

In terms of matrix representations E1τ = U1U
T
1 τ and E2τ = U2U

T
2 τ for J1 and J2, with

unitary matrices U1, U2 ∈ Cn×n, the condition says that U∗
2 AU1 should be real-entried. This is

possible if we are allowed to choose the unitary conjugations freely (employ, for example, the
singular value decomposition of A). The actual interesting problem of practical importance is to
consider when to achieve this in an inexpensive way, for instance, with diagonal unitary matrices.
This we look at in Section 4.1.

2.2. Conjugations on Cn×n

Regarding square matrices as elements of the complex vector space Cn×n leads to another
notion of reality as follows.

Definition 2.13. A matrix A ∈ Cn×n is said to be real with respect to a conjugation J on Cn×n if

JA = A. (2.15)

This was the way reality was defined in the first edition [7, p. 108] of Halmos’ book in the
special case of J being the Hermitian transposition, i.e., A is real if and only if A∗ = A. (Observe
the change between the first and second editions how reality is defined.) Probably because of this,
the splitting of a square matrix into to the sum of its Hermitian and skew-Hermitian parts was
called the “Cartesian decomposition” of the matrix [7, p. 108]. Although still in use, in hindsight
this term is not completely satisfactory since there are many natural ways to define reality and
hence the respective real and imaginary parts to have a “Cartesian decomposition”.

In a similar vain, relaxing assumptions on conjugation gives the following definition.

Definition 2.14. A matrix A ∈ Cn×n is said to be real with respect to a circular conjugation J on
Cn×n if

JA = A. (2.16)

The real part of A is then defined by

1

2
(A + JA) (2.17)

and the imaginary part is obtained by subtracting this from A.
Consider a circular conjugation J on Cn represented as Eτ with E ∈ Cn×n. Then

A �→ EA E

can be regarded as the related circular conjugation operation on Cn×n resulting from Definition
2.9 while

A �→ EAE
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is the related circular conjugation operation on Cn×n resulting from Definition 2.10. Hence reality
in the sense of Definition 2.14 is the most general one including Definitions 2.9 and 2.10 just as
special cases.

3. Measures of nonreality and respective matrix splittings

Matrix–vector products with real-entried matrices cost half of those performed with complex
matrices, yielding a quantitative measure of nonreality more generally. This is a criterion we apply
in splitting matrices below.

Before that, let us first consider more standard measures in terms of Definitions 2.1 and 2.10.
(The other definitions of the preceeding section give rise to measures analogously.) The real part
of A with respect to Definition 2.1 is the matrix

Re(A) = 1

2
(A + EA E), (3.1)

so that the norm of

Im(A) = A − Re(A) (3.2)

gives rise to a readily computable measure of nonreality ofA. Since we are concerned with unitarily
invariant norms, this equals the norm of the standard imaginary part 1

2 (U∗AU − UTA U) of the
matrix U∗AU , where U generates Eτ .

Example 5. In case of the standard conjugation E = I , the matrix (3.1) is used when rounding
errors in computations yield a complex-entried answer even though the answer should be real, an
example described in [10, p. 2].

In the same way, the real part of A with respect to Definition 2.10 takes the form

1

2
(A + EAE) (3.3)

yielding similarly a measure of nonreality of A through the computation of the norm of the
imaginary part A − Re(A). These two measures coincide if and only if E is real-entried.

The measure of nonreality resulting from (3.2) is the straightforward matrix version of the
imaginary part computed in the scalar case. To contrast its behaviour, consider the inversion. In
the scalar case, for any nonzero z = x + iy ∈ C, we have z−1 = z/|z|2, i.e., there is no (relative)
difference in the parts of z and its reciprocal. In the matrix case this is not so since the parts can
scale very differently without any usual signs reflecting it. In fact, taking E = I and

A =
[

1 t

0 i

]
with t ∈ R, so that A−1 =

[
1 it
0 −i

]
(3.4)

illustrate how the respective sizes of the real and imaginary parts can get completely reversed
(when t is large) while ‖A‖ = ‖A−1‖ as well as ‖A‖F = ‖A−1‖F . It is not indicated by the
eigenvalues of A either. This appears to be a feature that should be somehow reflected by a
measure of nonreality due to the fact that one is seldom interested in the matrix A alone. In
practice functions of A, such as its inverse (in the non-singular case) and its exponential, are
sought.

For a geometric point of view, consider the case of A being complex on a small dimensional
subspace of Cn. This is obviously the case, for instance, when A is real-entried except one column
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is complex. To deal with this, consider measuring nonreality modulo small rank perturbations.
For simplicity, let E = I and look at

min
rank(F )�k

‖Im(A − F)‖ (3.5)

for 1 � k < n. Of particular interest is to find F of smallest possible rank such that

A = R + F, (3.6)

where R ∈ Rn×n. In this splitting R is said to be the respective real part of A. If the rank of F is
small, then A should be though of as being complex on a small dimensional subspace of Cn.

Invoking the Sherman–Morrison–Woodbury formula with the splitting (3.6), the rank behaves
in the inversion such that the respective reminder F is of the same rank. Furthermore, suppose
rank(F ) � n and consider computing matrix–vector products with A. An economical way to do
this is to compute matrix–vector products with R and F separately and then form the sum of
the vectors. In the inversion savings result analogously, once the Sherman–Morrison–Woodbury
formula is applied.

Solving (3.5) and (3.6) can be accomplished in terms of the singular value decomposition of
Im(A).

Theorem 3.1. Let A = X + iY ∈ Cn×n with X, Y ∈ Rn×n. Then A = R + F with R ∈ Rn×n

and F ∈ Cn×n with rank(F ) = ⌈ rank(Y )
2

⌉
.

Proof. Consider a real-entried rank-2 matrix M given in terms of its reduced singular value
decomposition as M = σ1u1v

∗
1 + σ2u2v

∗
2 , where the right and left singular vectors are obviously

real-entried. Form w = 1
2 ((v1 + v2) + i(v1 − v2)) which is of unit length and orthogonal to w.

Because of the construction, we have M = M[ww][ww]∗ = Mww∗ + MwwT = tw∗ + tw∗ =
2Re(tw∗) with t = Mw.

With this, let Y = ∑rank(Y )
j=1 σjujv

∗
j be the reduced singular value decomposition of Y . Without

loss of generality, we may assume rank(Y ) to be even. Then use the prescribed construction with
each rank-2 matrix σ2k−1u2k−1v

∗
2k−1 + σ2ku2kv

∗
2k to have tkw

∗
k , for 1 � k � rank(Y )/2. As a

result, −iA − ∑rank(Y )/2
k=1 tkw

∗
k is pure imaginary, from which the claim follows. �

Let us produce an analogous splitting to (3.6) in terms of scaled circulant matrices. By now
approximating with circulant matrices, proposed in [22], can be regarded as classical in numerical
linear algebra. Motivated by this, we derive a generalized approximation scheme aimed at mea-
suring nonreality geometrically, as well as at other task in numerical linear algebra. To this end,
let θ ∈ R be fixed and look at matrices of the form CD with C ∈ Cθ , the set of {eiθ }-circulant
matrices, and D ∈ D, the set of diagonal matrices. Invoking the FFT, matrix–vector products with
such matrices cost at most O(n log n) floating point operations.

Regard the rows of a rank-1 matrix as consisting of a fixed row vector multiplied by constants.
The analogy with a matrix CD becomes clear once its diagonals are viewed as modulo n. (The
main diagonal is numbered as the zeroth and the rightmost as the (n − 1)th.) The matrix D takes
the role of the row vector while the multiplying constants are the entries appearing in C. Then
solving

min
C∈Cθ ,D∈D ‖A − CD‖F (3.7)

can be accomplished by computing the best rank-1 approximation to the matrix obtained by
permuting the entries of A and multiplied by e−iθ as follows. Let P denote the permutation
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matrix having ones the diagonal joining the left lower corner with the right upper corner. Let
LA be the lower triangular matrix having as its j th row the (j − n)th diagonal of A, augmented
with zeros at the right end, for j = 1, 2, . . . , n. Similarly, let UA be the strictly upper triangular
matrix having as its j th row the j th diagonal of A, augmented with zeros at the left end, for
j = 1, 2, . . . , n − 1. With these preliminaries, define Pθ on Cn×n as

Pθ (A) = P(LA + e−iθUA). (3.8)

A 3-by-3 example should clarify this operation.

Example 6. Pθ acts on C3×3 as

Pθ

⎛
⎝

⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦

⎞
⎠ =

⎡
⎣a11 a22 a33

a21 a32 0
a31 0 0

⎤
⎦ + e−iθ

⎡
⎣0 0 0

0 0 a13
0 a12 a23

⎤
⎦ ,

i.e., first the strictly upper triangular part of A is multiplied by e−iθ , then the rows of A are rotated
45 degrees and reorganized to have a square matrix.

With the help of the singular value decomposition, solving (3.7) consists of taking the best
rank-1 approximation σ1u1v

∗
1 to Pθ (A) and applying P−1

θ to it to have

CD = Cθ(
√

σ1u1)diag(
√

σ1v1),

where Cθ(
√

σ1u1) denotes the {eiθ }-circulant matrix having
√

σ1u1 as its first column.

Proposition 3.2. Let M ∈ Cn×n. Then Pθ (M) is of rank 1 if and only if M = CD with C ∈ Cθ

and D ∈ D.

Remark. In view of preconditioning for iteratively solving linear systems, this approach is prone
to yield better preconditioners than mere circulant preconditioning [3]. The cost of solving (3.7)
to have a preconditioner CD consists of finding approximately the best rank-1 approximation to
Pθ (A). For this there are efficient high quality software such as Propack [19].

Since Pθ on Cn×n is linear and preserves the Frobenius norm, we can conclude that with the
prescribed approach we can solve

min
Cj ∈Cθ ,Dj ∈D

∥∥∥∥∥∥A −
k∑

j=1

CjDj

∥∥∥∥∥∥
F

for any 1 � k � n. When zero is attained, we have a representation of A as the sum of products
of {eiθ }-circulant and diagonal matrices.2 This can be viewed as a tensor-product type of repre-
sentation of A in a rotated frame. Because of the properties of Pθ , the set of those matrices that
can be represented as the sum of at most k such products is isomorphic to the set of matrices of
rank k at most. There are problems with moderate values of k as follows.

Example 7. In an application arising in electrical impedance tomography (see [15] and references
therein) there appear large matrices, after discretizations, of the form κI + CD with κ ∈ C, C

2 Analogous representations are obtained with matrices of the form HD, where H is restricted to be a circulant-Hankel
matrix, i.e., a matrix with cyclically appearing anti-diagonals.



314 M. Huhtanen / Linear Algebra and its Applications 424 (2007) 304–319

circulant and D ∈ D. Hence, for such matrices k = 2 at most. This makes the preconditioning
ideas described in the above remark appealing for linear systems involving κI + CD.

With θ fixed, analogously to the proof of Theorem 3.1, we can represent A as

A = R1 + eiθR2 +
k∑

j=1

CjDj , (3.9)

with R1 ∈ Rn×n lower triangular and R2 ∈ Rn×n strictly upper triangular such that k has the
smallest possible value. Again, in case k � n, matrix–vector products with A can be computed
economially by performing them separately with the terms, once the FFT is invoked. Then A can
be regarded as almost real when interpreted through the complexity of matrix–vector products.

For further geometric ways to quantify the phenomenon described with the matrix and its
inverse in (3.4), and more generally with functions of A ∈ Cn×n, look at the double commutant

K(A; I ) = span{I, A, A2, . . . , An−1}
of A. For simplicity, consider the standard conjugation E = I . Obviously K(A; I ) = K(A; I ).
If we have K(A; I ) = K(A; I ), then A = p(A) for a polynomial p. Then A commutes with A

and the scalar inversion formula z−1 = z̄/|z|2 has a simple analogy as follows, where a real-entried
matrix needs to be inverted only once.

Proposition 3.3. Suppose A ∈ Cn×n is invertible and commutes with A. Then

A−1 = A(X2 + Y 2)−1,

where X = 1
2 (A + A) and Y = 1

2i
(A − A).

Proof. We have AA = AA if and only if XY = YX. Moreover, AA = X2 + Y 2 holds then and
therefore X2 + Y 2 is invertible. It then follows that (X + iY )(X − iY )(X2 + Y 2)−1 = I . �

When A commutes with A, we also obviously have eA = eXeiY , i.e., most often encountered
functions of A can be generated entirely in terms of real-entried matrices. Therefore, when looking
at functions of A, the norm of

AA − AA

yields an algebraic measure of nonreality of A, while the difference between the subspaces
K(A; I ) and K(A; I ) can be regarded as measuring the same thing geometrically. Recall that
the distance between two subspaces is defined as the norm of P − Q, where P and Q are orthog-
onal projections onto the subspaces [2, p. 202]. On Cn×n we use the standard inner product
(A, B) = tr(B∗A).

In measuring nonreality of A ∈ Cn×n, the standard approach is to look at the imaginary part
(3.2) with respect to a fixed conjugation, which typically is taken to be Eτ with E = I . It is non-
standard to allow the conjugation vary, or be even circular. In terms of Definition 2.9 this leads to

inf
EE=I

‖A − EA E‖
which appears to be quite an intractable way of measuring nonreality. Consider instead Definition
2.11. As noted in connection with (2.13), we always have

min
EE=I

‖A − EAE‖ = 0.
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To solve this, first compute the nullspace of the C-linear operator

X �→ AAX − XAA

on Cn×n. With its elements X, form Y = AX + XA among which find those satisfying YY = I

to have a circular conjugation Yτ solving the problem.3

After these geometric considerations involving conjugations on Cn, let us make some remarks
on conjugations on Cn×n. We look at an interesting special case of Definition 2.14 related to the
standard Hermitian transposition. For this, let S ∈ Cn×n be Hermitian and invertible and define a
conjugation on Cn×n by

JA = SA∗S−1. (3.10)

This corresponds to using (possibly) an indefinite scalar product in Cn×n; see [6] for its applica-
tions. Having JA = A is covered by the following more general result. See also [9].

Theorem 3.4 [20]. Let S ∈ Cn×n be invertible. Then SA∗S−1 = A if and only if A is the product
of two Hermitian matrices.

Reality in this sense is thereby seemingly important, for instance, from the point of view of
applying iterative methods, provided the factors are know. Respective measures of nonreality can
be readily devised.

4. Matrix nearness problems involving circulant and diagonal matrices

Diagonal and circulant matrices appeared regularly in connection with different notions of
reality and respective measures of nonreality. In what follows we look at related matrix nearness
problems.

4.1. Recovering diagonal scalings of real-entried matrices

A complex multiple of a real-entried matrix

eiθM, with θ ∈ R and M ∈ Rn×n, (4.1)

is best treated as a pair, i.e., it is beneficial to keep the real matrix separate from the multiplying
complex number. All the relevant computations should be performed with M followed then by
a multiplication by eiθ . In what follows we consider recovering this and more general instances
that lead to analogous simplifications.

Proposition 4.1. Suppose A = {rjkeiαjk } ∈ Cn×n. Then the entries of D solving

max
D=diag(eiθ1 ,...,eiθn )

∥∥∥∥1

2
(DA + D A)

∥∥∥∥
F

,

satisfy tan(2θj ) = −
∑n

k=1 r2
jk sin(2αjk)∑n

k=1 r2
jk cos(2αjk)

for 1 � j � n.

Proof. Partial differentiate ‖ 1
2 (DA + D A)‖2

F = ∑n
j=1

∑n
k=1 r2

jk cos2(αjk + θj ) with respect to
θj and set equal to zero. Use trigonometric formulae to have the claim. �

3 Observe that with Theorem 2.8 one can produce a conjugation to approximate a given circular conjugation.
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Scaling from the right is solved analogously. Hence with A ∈ Cn×n given, look at

max
D1,D2

∥∥∥∥1

2
(D1AD2 + D1A D2)

∥∥∥∥
F

,

where D1 and D2 are constrained to be diagonal and unitary. A method to solve this approximately
consists of applying Proposition 4.1 consecutively from the left and right. This gives rise to an
alternating direction iteration where half of the unknowns are kept fixed while the remaining
ones are optimized. Clearly, a single step costs at most O(n2) floating point operations, so that an
acceptable number of iterations can be preassigned.

4.2. Nearest matrix from CD + Fk

Being interested in small rank perturbations of matrices that possess certain desirable proper-
ties, we look at matrices of the form CD + Fk , where C is circulant, D ∈ D and Fk ∈ Fk , the
set of matrices of rank k at most. Since CD is readily invertible, then so is CD + Fk , as long
as k is small and the Sherman–Morrison–Woodbury formula is invoked. This class includes very
familiar matrices.

Example 8. Matrices of the form κI + Fk with κ ∈ C and Fk ∈ Fk , such as elementary matrices,
are fundamental for matrix computations.

To find a nearest matrix in the Frobenius norm of the form CD + Fk to A ∈ Cn×n, consider
an alternating direction iteration as follows.

Algorithm 1. To approximate A ∈ Cn×n with CD + Fk:
with an initial guess F

(0)
k for Fk and j = 0

repeat
j = j + 1
solve minC(j)∈C0,D

(j)∈D ‖A − F
(j−1)
k − C(j)D(j)‖F

solve minF (j)∈Fk

∥∥∥A − C(j)D(j) − F
(j)
k

∥∥∥
F

For this to be of practical interest, a single step should cost at most O(n2) floating point
operations. Therefore, as in solving (3.7), an iterative method to provide approximative small
rank approximations must be applied.

4.3. Approximating with the products of circulant and diagonal matrices

The matrix nearness problem (3.7) can be related to the design of diffractive optical systems,
where one is interested in factoring matrices as the product of circulant and diagonal matrices
[17,21]. Any unitary matrix equals the product of unitary circulant and unitary diagonal matrices
[21, Proposition 7]. Hence by invoking the singular value decomposition, any square matrix is the
product of circulant and diagonal matrices. Such products with a small number of factors appear
frequently in numerical linear algebra, as the following interpretation illustrates.

Example 9. A rank-1 matrix, a basic building block of linear algebra, can readily be given as
D11D2, where 1 is the circulant matrix having all its entries ones while D1, D2 ∈ D.
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Hence it is of interest to set the following definition.

Definition 4.2. A ∈ Cn×n is a DCD-matrix if it can be presented as the product of a circulant and
two diagonal matrices.

Analogously, CDC-matrices consist of the product of a diagonal and two circulant matrices.
If Fn denotes the Fourier matrix and A is a DCD-matrix, then FnAF ∗

n is a CDC-matrix.

Example 10. The so-called CDC-problem consists of finding the factors of a matrix that is known
to be a CDC-matrix; see [17, Section 5]. If the DCD-problem is defined analogously, then solv-
ing a CDC-problem is equivalent to solving the respective DCD-problem, after performing the
similarity transformation with the Fourier matrix.

We view DCD-matrices as potential building blocks for multiplicative approximation, anal-
ogously to the way rank-1 matrices are basic building blocks for additive approximation. From
the point of view of fast computations and Fourier expansions, attractive orthonormal bases arise
in case the number of terms factoring a unitary matrix, possibly approximately, is well below
the dimension of the space. Moreover, a unitary matrix factored as the product of circulant and
diagonal matrices corresponds to an optical setup absorbing no energy [21, p. 141]. Motivated
by these applications, next we consider the fundamental problem of approximating a unitary
U ∈ Cn×n with such products.

Example 11. Before proceeding, we describe what can go wrong if we merely build on solving

minC∈C,D∈D ‖U − CD‖F . In the 2-by-2 case this gives us for U =
[

cos α − sin α

sin α cos α

]
with α ∈ R

the approximation C = diag(cos α/
√

2, cos α/
√

2), when | cos α| > | sin α|, while D = I . To
approximate U with a unitary matrix, replace C with its nearest circulant unitary by taking
C = I . But this means that the algorithm is stuck. A reason is that we need complex-entried
matrices.

To avoid the stagnation of the preceding example, we force the approximations to move into
the complex field by making them accurate for the product of a {eiθ }-circulant and a diagonal
matrix. To this end, we first solve, with some tolerance, the matrix nearness problem

min
0�θ<2π

min
C∈Cθ ,D∈D ‖U − CD‖F . (4.2)

Observe that for any {eiθ }-circulant matrix C we can write C = �∗
1C1�1 with a circulant matrix

C1 and

�1 = diag(1, e−iθ/n, . . . , e−iθ(n−1)/n),

so thatCD realizing (4.2) is a DCD-matrix. This can be used as an initial guess assuming the factors
are unitary, otherwise replace them with their nearest unitaries without changing the structure.
The actual iteration then proceeds as follows.

With an initial guess D̂0C0D0 to approximate U , solve

min
C∈C0,D∈D ‖D̂−1

0 UD−1
0 C−1

0 − DC‖F (4.3)

and put D̂1C1D1 = D̂0DCC0D0, after possibly replacing D and C with their nearest unitaries
without changing the structure. Then reverse the roles of C and D and solve
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min
C∈C0,D∈D ‖C−1

1 D̂−1
1 UD−1

1 − CD‖F (4.4)

and put D̂2C2D2 = D̂1C1CDD1, after possibly replacing C and D with their nearest unitaries
without changing the structure. This DCD-matrix then approximates U .

Observe that the minimization problem (4.3) is solved similarly to the way (4.4) is solved by
introducing the linear operator corresponding to (3.8). Hence these steps can then be repeated to
have the following alternating direction iteration.

Algorithm 2. To approximate unitary U ∈ Cn×n with unitary DCD-matrix:
with an initial guess D̂0CD0 for U

repeat
solve minC∈C0,D∈D ‖D̂−1

0 UD−1
0 C−1

0 − DC‖F

replace C and D by nearest unitary matrices from C0 and D
set D̂1 = D̂0D, C1 = CC0 and D1 = D0
solve minC∈C0,D∈D ‖C−1

1 D̂−1
1 UD−1

1 − CD‖F

replace C and D by nearest unitary matrices from C0 and D
set D̂0 = D̂1, C0 = C1C and D0 = DD1

Since this is a fairly nontrivial method, we demonstrate its behaviour with a small dimensional
case showing how it recovers unitary DCD-matrices.

Example 12. To illustrate the computations with Matlab [16], we took two random unitary
diagonal matrices D1, D2 ∈ C100×100 and a unitary circulant matrix C ∈ C100×100 and formed
U = D1CD2. Then we executed Algorithm 2 with the initial guesses D̂0 = C0 = D0 = I , the
identity matrix. In Fig. 4.1 we have a convergence plot in the logarithmic scale of the operator
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Fig. 4.1. Convergence of Algorithm 2 measured in the log10-scale of ‖U − D̂0C0D0‖2 for the problem in Example 12.
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norm of U − D̂0C0D0. Rounded to four digits, we started with ‖U − I‖2 = 1.925 and took 52
repeats. As is to be expected, the convergence is linear.

A crucial step to make Algorithm 2 economical is to have an efficient (iterative) method to
produce rank-1 approximations inexpensively in the inner solves. Also FFT should be used in
connection with circulant matrices. It remains as an open problem how to extend this method to
approximate with several products of DCD-matrices.

5. Conclusions

In this paper we have looked at ways to define reality and real part for matrices, as well as
respective measures of nonreality. Geometric aspects were emphasized to have matrix splittings.
In connection with this, products of circulant and diagonal matrices often appear and algorithms
to approximate additively and multiplicatively with them were devised. Multiplicative structures
have applications in diffractive optics, preconditioning and fast Fourier expansions. DCD-matrices
were introduced and an alternating direction iteration was devised to approximate unitary matrices
with them.
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