On some categorical properties of uniform spaces of probability measures *

Vitaly V. Fedorchuk *, Yury V. Sadovnichy

Chair of General Topology and Geometry, Mechanics and Mathematics Faculty, Moscow State University,
Moscow 119899, Russia

Received 4 September 1996

Abstract

We deal with the functor $P_{\beta}^{\pi}: Unif \rightarrow Unif$ of uniform spaces of probability measures, defined by Sadovnichy (1994). We show that there is a unique natural transformation $T: S \circ P_{\beta}^{\pi} \rightarrow P \circ S$, where $S: Unif \rightarrow cUnif$ is the functor of Samuel compactification. In our first main result (Theorem 4.3) it is established that for a uniform space (X, \mathcal{U}) the component T_{X} of this natural transformation T is a homeomorphism iff \mathcal{U} is a precompact uniformity. The second main result (Theorem 4.6) shows that there is no embedding $U: Tych \rightarrow Unif$ such that $P_{\beta}^{\pi} \circ U = U \circ P_{\beta}$.

Keywords: Probability measure; Uniform space; Pseudometric; Precompact space; Natural transformation; Samuel compactification

AMS classification: 46E27; 54E70

Introduction

For a Tychonoff space X by $P_{\beta}(X)$ we denote the set of all probability measures on X with compact supports, i.e.,

$$P_{\beta}(X) = \{\mu \in P(\beta X) : \mu(K) = 1 \text{ for some compact set } K \subset X\}.$$

This set $P_{\beta}(X)$ is equipped with the *-weak topology. P_{β} is a covariant functor acting in the category $Tych$ of Tychonoff spaces. In [11–14] Sadovnichy lifted this functor onto the categories $Met r_b$ of bounded metric spaces and $Unif$ of uniform spaces, and investigated

* Corresponding author.

This paper was written while the authors were supported by the Russian Basic Research Foundation under grant 95 01-01273.
some properties of these liftings. We answer two questions arising in connection with these investigations.

Let P^u_β be the lifting of P_β onto the category Unif. We show (Proposition 4.2) that there is a unique natural transformation $T : S \circ P^u_\beta \to P \circ S$, where $S : \text{Unif} \to \text{cUnif}$ is the functor of Samuel compactification, and $P : \text{Comp} \to \text{Comp}$ is the probability measures functor. In our first main result (Theorem 4.3) it is established that for a uniform space (X, \mathcal{U}) the component $T_{\mathcal{U}}$ of this natural transformation T is a homeomorphism iff \mathcal{U} is a precompact uniformity. The second main result (Theorem 4.6) shows that there is no embedding (uniformization functor) $U : \text{Tygh} \to \text{Unif}$ such that $P^u_\beta \circ U = U \circ P_\beta$.

In Section 1 we recall all necessary notions and facts about pseudometrics and uniformities. More detailed information can be found in [4,9,10]. In Section 2 we give basic information about probability measures spaces and (pseudo)metrics on them. One can find additional information about spaces and functors of probability measures in [6,7]. The main result of Section 2 is Theorem 2.4. In this theorem sufficient conditions on a family of pseudometrics generating $*$-weak topology on $P_\beta(X)$ are given. Theorem 2.4 allows us to get a simple proof of Theorem 3.1 stating that for an arbitrary uniform space (X, \mathcal{U}) the uniformity $P_\beta(\mathcal{U})$ generates the $*$-weak topology. The main result of Section 3 (Theorem 3.11) establishes that the functor of square Π^2 is a subfunctor of P^u_β. This theorem plays a crucial role in Section 4 which contains the main results of the article.

1. Pseudometrics and uniformities

A pair (X, ρ), where X is a set and ρ is a pseudometric on X, is said to be a pseudometric space. Every pseudometric space (X, ρ) is equipped with topology τ_ρ. An open base of this topology is formed by open ε-balls

$$O(x, \varepsilon) = \{y \in X : \rho(x, y) < \varepsilon\}, \quad x \in X, \varepsilon > 0.$$

The topology τ_ρ is Hausdorff iff ρ is a metric.

Let (X, τ) be a topological space and ρ be a pseudometric on X. This pseudometric is called continuous if the mapping

$$\rho : (X \times X, \tau \times \tau) \to \mathbb{R}$$

is continuous. It is clear that ρ is continuous iff the identity mapping $(X, \tau) \to (X, \tau_\rho)$ is continuous.

Let (X, ρ) be a pseudometric space. We denote by (ρ) a binary relation on X which is defined in the following way:

$$x(\rho)y \iff \rho(x, y) = 0.$$

Evidently, (ρ) is an equivalence relation. The quotient set $X/(\rho)$ we denote by X_ρ, the quotient mapping $X \to X_\rho$ we denote by π_ρ. Let $\xi, \eta \in X_\rho$, $x, x' \in \pi_\rho^{-1}(\xi)$, $y, y' \in \pi_\rho^{-1}(\eta)$. Then it is easy to see that $\rho(x, y) = \rho(x', y')$. So we can define a
mapping $\hat{\rho}: X_\rho \times X_\rho \to \mathbb{R}$ by $\hat{\rho}(\xi, \eta) = \rho(x, y)$ for any $x \in \pi_\rho^{-1}(\xi)$ and $y \in \pi_\rho^{-1}(\eta)$. Clearly, $\hat{\rho}$ is a metric on X_ρ. The next statement is well known and trivial in proof.

Proposition 1.1. Let X be a topological space and let ρ be a continuous pseudometric on X. Then the metric $\hat{\rho}$ is continuous on X_ρ with respect to the quotient topology.

By a uniformity on a set X we mean a family \mathcal{U} of symmetric entourages of the diagonal $\Delta_X \subset X \times X$ such that:

1. If $E_1, E_2 \in \mathcal{U}$, then $E_1 \cap E_2 \in \mathcal{U}$.
2. If $E \in \mathcal{U}$, then there is $E_1 \in \mathcal{U}$ such that $E_1 \circ E_1 \subset E$.
3. If $E \in \mathcal{U}$, $E \subset E_1$, and E_1 is symmetric, then $E_1 \in \mathcal{U}$.
4. $\bigcap \{E : E \in \mathcal{U}\} = \Delta_X$.

If \mathcal{U} satisfies Conditions (1$_U$)-(3$_U$), then we say that \mathcal{U} is a preuniformity. A family $\mathcal{B} \subset \mathcal{U}$ is said to be a base of a preuniformity \mathcal{U}, if for any $E \in \mathcal{U}$ there is $E_1 \in \mathcal{B}$ such that $E_1 \subset E$. If \mathcal{B} is a base of preuniformity \mathcal{U}, then

$$\mathcal{U} = \{E \subset X \times X : E = E^{-1} \text{ and } E_1 \subset E, \ E_1 \in \mathcal{B}\}.$$

It is clear that a family \mathcal{B} of symmetric entourages of the diagonal Δ_X is a base of some preuniformity \mathcal{U} on X iff \mathcal{B} satisfies condition (2$_U$) and

(1_U) If $E_1, E_2 \in \mathcal{B}$, then there is $E \in \mathcal{B}$ such that $E \subset E_1 \cap E_2$.

Let (X, ρ) be a pseudometric space. For $\varepsilon > 0$, set

$$E(\rho, \varepsilon) = \{(x, y) \in X \times X : \rho(x, y) < \varepsilon\}.$$

Then the family

$$\mathcal{B}(\rho) = \{E(\rho, \varepsilon) : \varepsilon > 0\}$$

is a base of a preuniformity that will be denoted by $u(\rho)$.

Proposition 1.2. $u(\rho)$ is a uniformity iff ρ is a metric.

Let ρ be a (pseudo)metric on X and let $d > 0$. Set

$$\rho_d(x, y) = \min\{d, \rho(x, y)\}.$$

Evidently ρ_d is a (pseudo)metric.

Proposition 1.3. Let ρ be a pseudometric on X and $d > 0$. Then $u(\rho) = u(\rho_d)$.

If \mathcal{U} is a (pre)uniformity on X, then the pair (X, \mathcal{U}) is called a (pre)uniform space. Sometimes we shall denote a (pre)uniform space (X, \mathcal{U}) by X. By \mathbb{R} we shall denote four different objects:

1. the set of all real numbers;
2. the metric space (\mathbb{R}, ρ_E), where $\rho_E(x, y) = |x - y|$;
3. the topological space $(\mathbb{R}, \tau_{\rho_E})$;
Let \((X, \mathcal{U}) \) be a uniform space. A pseudometric \(\rho \) on \(X \) is said to be \textit{uniformly continuous} if the mapping \(\rho : X \times X \to \mathbb{R} \) is uniformly continuous.

Proposition 1.4. A pseudometric \(\rho \) on a preuniform space \((X, \mathcal{U}) \) is uniformly continuous iff the identity mapping \((X, \mathcal{U}) \to (X, \rho) \) is uniformly continuous.

Corollary 1.5. A pseudometric \(\rho \) on a preuniform space \((X, \mathcal{U}) \) is uniformly continuous iff \(\mathcal{E}(\rho, \varepsilon) \in \mathcal{U} \) for any \(\varepsilon > 0 \).

Proposition 1.6. Let \(f : X \to Y \) be a uniformly continuous mapping between preuniform spaces. If \(\rho \) is a uniformly continuous pseudometric on \(Y \), then \(\rho \circ (f \times f) \) is a uniformly continuous pseudometric on \(X \).

Proposition 1.7. Let \((X, \mathcal{U}) \) be a preuniform space and \(E \in \mathcal{U} \). Then there is a bounded uniformly continuous pseudometric \(\rho \) on \(X \) such that \(\mathcal{E}(\rho, 1) \subset E \).

We shall say that a family \(R \) of uniformly continuous pseudometrics on a preuniform space \((X, \mathcal{U}) \) \textit{generates the preuniformity} \(\mathcal{U} \) if for each \(E \in \mathcal{U} \) there exist \(\rho \in R \) and \(\varepsilon > 0 \) such that \(\mathcal{E}(\rho, \varepsilon) \subset E \).

Proposition 1.8. Let \((X, \mathcal{U}) \) be a preuniform space. Then the family \(\mathcal{R}(\mathcal{U}) \) of all bounded uniformly continuous pseudometrics on \(X \) generates the preuniformity \(\mathcal{U} \).

Proposition 1.9. Let \(R \) be a family of pseudometrics on a set \(X \) satisfying the condition:

\[\text{(UP1)} \quad \text{If } \rho_1, \rho_2 \in R, \text{ then there is } \rho \in R \text{ such that } \rho_1, \rho_2 \leq \rho. \text{ Then there is a unique preuniformity } \]

\[\mathcal{U} \equiv u(R) \text{ on } X \text{ such that } R \text{ generates } \mathcal{U}. \]

Moreover, \(u(R) \) is a uniformity iff \(R \) satisfies the condition:

\[\text{(UP2)} \quad \text{For any } x, y \in X, \ x \neq y, \text{ there is } \rho \in R \text{ such that } \rho(x, y) > 0. \]

Let \((X, \mathcal{U}) \) be a preuniform space and \(E \in \mathcal{U} \). For an arbitrary \(x \in X \) set

\[E(x) = \{ y \in X : (x, y) \in E \}. \]

A preuniform space \((X, \mathcal{U}) \) is called \textit{precompact} if for any \(E \in \mathcal{U} \) there is a finite set \(\{x_1, \ldots, x_n\} \subset X \) such that

\[X - \bigcup \{ E(x_i) : i = 1, \ldots, n \}. \]

An entourage \(E \) from a preuniformity \(\mathcal{U} \) is said to be \textit{precompact} if there is a finite set \(\{x_1, \ldots, x_n\} \subset X \) such that

\[\bigcup \{ E(x_i) \times E(x_i) : i = 1, \ldots, n \} \in \mathcal{U}. \]
Proposition 1.10. A preuniform space \((X, \mathcal{U})\) is precompact iff each \(E \in \mathcal{U}\) is precompact.

Proposition 1.11. Let \((X, \mathcal{U})\) be a precompact space and let \(Y \subset X\). Then \((Y, \mathcal{U}|_Y)\) is a precompact space.

Let \(\mathcal{U}\) be a uniformity on \(X\) and \(p\mathcal{U} = \{ E \in \mathcal{U}: E\) is precompact\}.

Proposition 1.12. For an arbitrary (pre)uniformity \(\mathcal{U}\) the family \(p\mathcal{U}\) is the biggest precompact (pre)uniformity which is contained in \(\mathcal{U}\).

Proposition 1.13. A preuniform space \(X\) is precompact iff every uniformly continuous pseudometric on \(X\) is totally bounded.

Corollary 1.14. Let \((X, \rho)\) be a metric space. Then the uniformity \(u(\rho)\) is precompact iff \(\rho\) is totally bounded.

For a preuniform space \((X, \mathcal{U})\) by \(\tau(\mathcal{U})\) we denote a topology induced by \(\mathcal{U}\). In this topology a set \(U \subset X\) is open iff for any \(x \in U\) there is \(E \in \mathcal{U}\) such that \(E(x) \subset U\). A preuniform space \((X, \mathcal{U})\) is called compact if \((X, \tau(\mathcal{U}))\) is a compact space.

Proposition 1.15. Let \((X, \mathcal{U})\) be a preuniform space. Then the following conditions are equivalent:

(a) \(\mathcal{U}\) is a uniformity;
(b) \(\tau(\mathcal{U})\) is Hausdorff;
(c) \(\tau(\mathcal{U})\) is Tychonoff.

Proposition 1.16. A uniform space \(X\) is compact iff \(X\) is precompact and complete.

By \(\text{Unif}\) we denote the category of all uniform spaces and their uniformly continuous mappings. By \(c\text{Unif}, \ p\text{Unif}, \ c\text{plUnif}\) we denote full subcategories of \(\text{Unif}\) consisting respectively of all compact, precompact, complete uniform spaces. For a preuniform space \((X, \mathcal{U})\) by \(pX\) \((cpl X)\) we shall denote its precompactification \((pX, p\mathcal{U})\) \((cpl X, cpl \mathcal{U})\). Let \(C\) be a category of uniform spaces and let \(D\) be its full subcategory. A covariant functor \(r : C \rightarrow D\) is said to be a reflection if \(r \circ r = r\), and there is a natural transformation \(T : \text{Id} \rightarrow r\) of the identity functor \(\text{Id}\) such that for any \(X \in C\) and uniformly continuous mapping \(f : X \rightarrow Y \in D\) there is a unique uniformly continuous mapping \(f_0 : r(X) \rightarrow Y\) with \(f = f_0 \circ T_X\).

Proposition 1.17. The completion \(cpl : \text{Unif} \rightarrow cpl\text{Unif}\) is a reflection. A component \(T_X\) of a natural transformation \(T : \text{Id} \rightarrow cpl\) is the identity embedding \(X \rightarrow cpl X\).

Proposition 1.18. The precompactification \(p\text{Unif} \rightarrow p\text{Unif}\) is a reflection. A component \(T_X : X \rightarrow pX\) of a natural transformation \(T : \text{Id} \rightarrow p\) is the identity mapping.
A composition \(cpl \circ p \equiv S \) is called Samuel compactification. The compactification \(S(X, \mathcal{U}) \) we shall denote by \(S_\mathcal{U}X \) or \(SX \).

Proposition 1.19. \(S: \mathfrak{Unif} \to \mathfrak{ClUnif} \) is a reflection.

Proposition 1.20 [9, II, Exercise 12]. Let \((X, \mathcal{U})\) be a uniform space. Then \(p(\mathcal{U} \times \mathcal{U}) = p\mathcal{U} \times p\mathcal{U} \) iff \(\mathcal{U} \) is precompact.

2. Pseudometrics on spaces of probability measures

Let \(X \) be a compact Hausdorff space. By \(C(X) \) we denote a Banach space of all real-valued continuous functions on \(X \). The dual space \(C(X)^* \) is equipped with the \(*\)-weak topology, i.e., the topology induced by the identity embedding \(C(X)^* \subset \mathbb{R}^{C(X)} \). By Riesz’ theorem the positive cone \(C(X)^*_+ \) is affinely isomorphic to the space \(M(X) \) of all Borel finite positive regular measures on \(X \). This space is also equipped with the \(*\)-weak topology. We shall identify measures \(\mu \in M(X) \) with linear functionals from \(C(X)^* \). So, sometimes, for \(\phi \in C(X) \) we shall write \(\mu(\phi) \) instead of \(\int \phi \, d\mu \). A measure \(\mu \in M(X) \) is said to be a probability measure if \(\mu(1_X) = 1 \). The set of all probability measures on \(X \) is denoted by \(P(X) \). The space \(P(X) \) is a convex compact subset of \(\mathbb{R}^{C(X)} \). By the definition of \(*\)-weak topology its open base consists of sets

\[
O(\mu, \varphi_1, \ldots, \varphi_k, \varepsilon) = \{ \mu' \in P(X): |\mu(\varphi_i) - \mu'(\varphi_i)| < \varepsilon, \; i = 1, \ldots, k \}, \tag{2.1}
\]

where \(\mu \in P(X), \varphi_i \in C(X), \varepsilon > 0 \).

If \(f: X \to Y \) is a continuous mapping, then the formula

\[
P(f)(\mu)(\varphi) = \mu(\varphi \circ f), \tag{2.2}
\]

where \(\mu \in P(X) \) and \(\varphi \in C(Y) \), defines a continuous mapping \(P(f): P(X) \to P(Y) \). So, \(P \) is a covariant functor acting in the category \(\mathfrak{Comp} \) of compact Hausdorff spaces and their continuous mappings. It is clear that the mapping \(P(f) \) can be defined in the following way:

\[
P(f)(\mu)(B) = \mu(f^{-1}B), \tag{2.3}
\]

where \(B \subset Y \) is an arbitrary Borel set.

Let \(X \) be a compact Hausdorff space and \(\mu \in P(X) \). Set

\[
\text{supp } \mu = \{ x \in X: \mu(Ox) > 0 \text{ for any arbitrary neighbourhood } Ox \}.
\]

This set \(\text{supp } \mu \) is called the support of \(\mu \). The next statement is evident.

Proposition 2.1. Let \(X \) be a compact Hausdorff space, \(F \subset X \) and let \(\mu \in P(X) \). Then \(F = \text{supp } \mu \) iff \(F \) is the smallest closed subset of \(X \) such that \(\mu(F) = 1 \).

Now let \(X \) be a Tychonoff space and let \(\beta X \) be its Stone–Čech compactification. Set

\[
P_\beta(X) = \{ \mu \in P(\beta X): \text{supp } \mu \subset X \}. \tag{2.4}
\]
Let γX be an arbitrary compactification of X and let $\pi_\gamma : \beta X \to \gamma X$ be a natural projection.

Proposition 2.2. $P(\pi_\gamma)|P_\beta(X)$ is a homeomorphism.

In fact, $P(\pi_\gamma)|P_\beta(X)$ is evidently a one-to-one correspondence and $P_\beta(X) = P(\pi_\gamma)^{-1}P(\pi_\gamma)(P_\beta(X))$. Hence, topologically we can define $P_\beta(X)$ as:

$$P_\beta(X) = \{\mu \in P(\gamma X): \text{supp} \mu \subset X\},$$

where γX is an arbitrary compactification of X.

Let $f : X \to Y$ be a continuous mapping between Tychonoff spaces and let $\beta f : \beta X \to \beta Y$ be its Stone–Čech compactification. We set

$$G(f) = P(\beta f)|P_\beta(X).$$

Clearly, $G(f)(\beta(X)) \subset \beta(Y)$. Thus, P_β is a covariant functor acting in the category Top of Tychonoff spaces and their continuous mappings. Evidently, P_β is an extension of the functor $P : \text{Comp} \to \text{Comp}$ to the category Top.

For $x \in X$, by $\delta(x)$ we denote the Dirac measure, which is defined by

$$\delta(x)(\varphi) = \varphi(x) \quad \text{or} \quad \delta(x)\{x\} = 1.$$

It is easy to see that the Dirac embedding

$$\delta : X \to P_\beta(X)$$

is a topological embedding. Usually we shall identify the spaces X and $\delta(X) \subset P_\beta(X)$.

Let X be a Tychonoff space and let ρ be a pseudometric on X. We define a distance function $P_\beta(\rho)$ on $P_\beta(X)$ by:

$$P_\beta(\rho)(\mu_1, \mu_2) = \inf \{\lambda(\rho): \lambda \in A(\mu_1, \mu_2)\},$$

where

$$A(\mu_1, \mu_2) = \{\lambda \in P(X \times X): \text{pr}_i(\lambda) = \mu_i, \ i = 1, 2\},$$

$\text{pr}_i = P_\beta(p_i)$, and $p_i : X \times X \to X$ is the projection onto the ith factor.

Proposition 2.3. If ρ is a bounded continuous pseudometric on a Tychonoff space X, then $P_\beta(\rho)$ is a continuous pseudometric on $P_\beta(X)$ such that $P_\beta(\rho)|X = \rho$ and $\text{diam} P_\beta(\rho) = \text{diam} \rho$.

Basically it was proved in [5] for a metric compact space (X, ρ). For a general case look at [2,11].

We shall say that a family R of pseudometrics on X separates points and closed subsets if for each $x \in X$ and closed set $F \subset X$, $x \notin F$, there is a pseudometric $\rho \in R$ such that $\rho(x, F) > 0$, where

$$\rho(x, F) = \inf \{\rho(x, y): y \in F\}.$$
We shall say that a family \(R \) of continuous pseudometrics on \(X \) generates the topology of \(X \) if for each \(x \in X \) and each neighbourhood \(O_x \) there are \(\rho \in R \) and \(\varepsilon > 0 \) such that \(O^\rho(x, \varepsilon) \subset O_x \).

Theorem 2.4. Let \(R \) be a family of continuous bounded pseudometrics on \(X \) which is directed, i.e., satisfies (UP1), and separates points and closed subsets. Then the family

\[
P_\beta(R) = \{ P_\beta(\rho): \rho \in R \}
\]

generates the \(*\)-weak topology of \(P_\beta(X) \).

To prove this theorem we need some auxiliary results.

Proposition 2.5. Let \(X \) be a compact Hausdorff space, \(C \subset C(X) \) be a family of functions, which separates points of \(X \) and contains all finite products. Then

\[
B_C = \{ O(\mu, \varphi, \varepsilon): \varphi \in C, \varepsilon > 0 \}
\]

is a subbase of \(P(X) \).

Proof. It follows from the definition of \(*\)-weak topology that the set

\[
B_D = \{ O(\mu, \psi, \varepsilon): \psi \in D, \varepsilon > 0 \},
\]

where \(D \) is dense in \(C(X) \), is a subbase of \(P(X) \). So, it suffices to show that for some dense set \(D \subset C(X) \) and an arbitrary neighbourhood \(O(\mu, \psi, \varepsilon) \in B_D \) there is a smaller neighbourhood of \(\mu \) which is an intersection of a finite family of neighborhoods from \(B_C \). Let \(D \) be the smallest subring of \(C(X) \) containing \(C \) and all constants. The set \(D \) is dense in \(C(X) \) by the Weierstrass–Stone theorem. Since \(C \) contains all its finite products, each function \(\psi \in D \) has a form

\[
\psi = r_1 \varphi_1 + \cdots + r_k \varphi_k + r_{k+1},
\]

where \(\varphi_i \in C, r_i \in R \). Let

\[
r = \max \{ |r_i|: i = 1, \ldots, k \}, \quad \delta = \frac{\varepsilon}{kr}.
\]

It remains to show that

\[
\bigcap_{i=1}^k O(\mu, \varphi_i, \delta) \subset O(\mu, \psi, \varepsilon).
\]

Let \(\nu \in \bigcap_{i=1}^k O(\mu, \varphi_i, \delta) \equiv O(\mu, \varphi_1, \ldots, \varphi_k, \delta) \). Then

\[
|\mu(\psi) - \nu(\psi)| = \left| \sum_{i=1}^k r_i (\mu(\varphi_i) - \nu(\varphi_i)) + \mu(r_{k+1}) - \nu(r_{k+1}) \right|
\]

\[
= \left| \sum_{i=1}^k r_i (\mu(\varphi_i) - \nu(\varphi_i)) \right| \quad \text{(since } \mu(s) = \nu(s) = s \text{ for any constant } s)\]
Proposition 2.5 is proved. □

Now let X be a Tychonoff space. We shall say that a family Φ of continuous functions $\varphi : X \to [0, 1]$ correctly separates points and closed subsets of X if for any closed set $F \subset X$ and point $x \in X \setminus F$ there is a function $\varphi \in \Phi$ such that $\varphi(F) = 0$ and $\varphi(x) = 1$.

Proposition 2.6. Let X be a Tychonoff space, $C_\beta(X)$ be a family of all bounded real-valued continuous functions of X, $\Phi \subset C_\beta(X)$ correctly separates points and closed subsets of X and contains all its finite products. Then the family

$$\{O(\mu, \varphi_1, \ldots, \varphi_k, \varepsilon) : \mu \in P_\beta(X), \; \varphi_i \in \Phi, \; \varepsilon > 0\}$$

is a base of $P_\beta(X)$.

Proof. Evidently, the diagonal product $f : X \to I^\Phi$ of functions $\varphi \in \Phi$ is an embedding. Let us denote by γX the closure of $f(X)$ in I^Φ. From definition of f we have $\Phi \subset C_\gamma(X)$, where $C_\gamma(X) = C(\gamma X)|X$. Consequently, every function $\varphi \in \Phi$ can be extended to a function $\overline{\varphi} \in C(\gamma X)$. Let $\overline{f} : \gamma X \to I^\Phi$ be the diagonal product of functions φ, $\varphi \in \Phi$. Clearly, \overline{f} is the identity embedding. Hence, the family $\overline{\Phi} = \{\overline{\varphi} : \varphi \in \Phi\}$ separates points of γX. Moreover, it contains all its finite products. Thus, according to Proposition 2.5 the sets $O(\mu, \overline{\varphi}_1, \ldots, \overline{\varphi}_k, \varepsilon)$, $\overline{\varphi}_i \in \overline{\Phi}$, form a base of $P(\gamma X)$. Then in view of (2.5) their traces $O(\mu, \varphi_1, \ldots, \varphi_k, \varepsilon)$, $\varphi_i \in \Phi$, on $P_\beta(X)$ form a base on $P_\beta(X)$. Proposition 2.6 is proved. □

For a family R of continuous pseudometrics on a Tychonoff space X we shall denote by $\Phi(R)$ the set of all functions $\varphi \in C_\beta(X)$ which are uniformly continuous with respect to some pseudometric $\rho \in R$.

Proposition 2.7. Let R be a directed family of continuous pseudometrics on X separating points and closed subsets of X. Then the family

$$\{O(\mu, \varphi, 1) : \mu \in P_\beta(X), \; \varphi \in \Phi(R)\}$$

(2.7)

form a subbase of $P_\beta(X)$.

Proof. First of all let us check that $\Phi(R)$ is a ring over \mathbb{R}. Let $\varphi_1, \varphi_2 \in \Phi(R)$ and let φ_i be uniformly continuous with respect to $\rho_i \in R$. There is $\rho \in R$ such that $\rho \geq \max\{\rho_1, \rho_2\}$. Then φ_1, φ_2 are uniformly continuous with respect to ρ. Hence, $\varphi_1 + \varphi_2$ and $\varphi_1 \cdot \varphi_2$ are uniformly continuous. Consequently, $\Phi(R)$, containing all constants, is a ring over \mathbb{R}.
Further, $\Phi(R)$ correctly separates points and closed subsets of X. In fact, let $x_0 \in X \setminus F$. There is a pseudometric $\rho \in R$ such that $\rho(x_0,F) - a > 0$. Let

$$\varphi(x) = \min \left\{ 1, \frac{d(x,F)}{a} \right\}.$$

It is clear, that $\varphi \in \Phi(R)$ satisfies the condition of a correct separation of x_0 and F. Hence, by Proposition 2.6 the family

$$\{ O(\mu, \varphi, \epsilon) : \mu \in P_\beta(X), \, \varphi \in \Phi(R), \, \epsilon > 0 \}$$

forms a subbase of $P_\beta(X)$. But if $\varphi \in \Phi(R)$ and $r \in \mathbb{R}$, then $r \cdot \varphi \in \Phi(R)$. It yields that the families (2.8) and (2.7) coincide. Proposition 2.7 is proved. \square

Remark 2.8. It is easy to see that if a family

$$\{ O(\mu, \varphi, \epsilon) : \mu \in P_\beta(X), \, \varphi \in \Phi, \, \epsilon \in E \},$$

is a subbase of $P_\beta(X)$, then for an arbitrary $\mu_0 \in P_\beta(X)$ the family

$$\{ O(\mu_0, \varphi, \epsilon) : \varphi \in \Phi, \, \epsilon \in E \},$$

is a subbase of neighborhoods of μ_0 in $P_\beta(X)$.

Proof of Theorem 2.4. According to Propositions 2.3, 2.7 and Remark 2.8 it suffices to prove that every subbasic neighbourhood $O(\mu_0, \varphi, 1)$, $\varphi \in \Phi(R)$, of a measure μ_0 contains an ϵ-neighbourhood of this measure with respect to a pseudometric $\rho \in R$. Set $M = ||\varphi|| + 1$. Since φ is uniformly continuous, there is $\delta, 0 < \delta < 1/(4M)$, such that $\rho(x_1,x_2) < \delta$ implies $|\varphi(x_1) - \varphi(x_2)| < 1/2$. We are going to show that

$$O^P_\beta(\rho)(\mu_0, \epsilon) \subset O(\mu_0, \varphi, 1)$$

for $\epsilon = \delta^2$. Let $\mu \in P_\beta(X)$ and $P_\beta(\rho)(\mu_0, \mu) < \epsilon$. There is $\lambda \in A(\mu_0, \mu)$ such that $\lambda(\rho) < \epsilon$. Set

$$A = \{(x_1,x_2) \in X \times X : \rho(x_1,x_2) \geq \delta \}.$$

Then $\epsilon > \lambda(\rho) \geq \int_A \rho(x_1,x_2) \, d\lambda \geq \delta \lambda(A)$. Hence, $\lambda(A) < \epsilon/\delta = \delta$. Consequently,

$$|\mu_0(\varphi) - \mu(\varphi)| = \left| \int_{X \times X} \varphi(x_1) \, d\lambda - \int_{X \times X} \varphi(x_2) \, d\lambda \right|$$

$$\leq \int_{X \times X} |\varphi(x_1) - \varphi(x_2)| \, d\lambda$$

$$\leq \int_A |\varphi(x_1) - \varphi(x_2)| \, d\lambda + \int_{X \times X \setminus A} |\varphi(x_1) - \varphi(x_2)| \, d\lambda$$

$$\leq 2M\lambda(A) + \frac{1}{2}\lambda(X \times X \setminus A) < 2M\delta + \frac{1}{2} < 1.$$

Theorem 2.4 is proved. \square

Proposition 2.3 and Theorem 2.4 yield

Theorem 2.9. Let (X, ρ) be a bounded metric space. Then $P_\beta(\rho)$ is a metric generating the $*$-weak topology of $P_\beta(X)$.

This theorem was proved by Al-Kassas [1] for uniformly zero-dimensional \(X \) and by Sadovnichy [11] for the general case.

Let \(C \) be some category, whose objects are Tychonoff spaces with an additional structure (metric, group, uniform and so on) and let \(\mathcal{F} : C \to \text{Tych} \) be a “forgetful” functor. We say that a functor \(\mathcal{G} : \text{Tych} \to \text{Tych} \) is lifted unto the category \(C \) if there is a functor \(\tilde{\mathcal{G}} : C \to C \) such that \(\mathcal{F} \circ \tilde{\mathcal{G}} = \mathcal{G} \circ \mathcal{F} \). Theorem 2.9 implies

Theorem 2.10. The functor \(P_\beta \) is lifted unto the category \(\text{Metr}_b \) of all bounded metric spaces and their continuous mappings.

The just described lifting of \(P_\beta \) unto the category \(\text{Metr}_b \) we shall denote by \(P_{\beta}^{\text{Metr}_b} \).

Let us check some simple properties of this lifting.

Proposition 2.11. The functor \(P_{\beta}^{\text{Metr}_b} \) preserves isometric embeddings.

Proof is trivial.

Lemma 2.12. Let \(f : X \to Y \) be a continuous mapping between Tychonoff spaces, and \(\rho_1 \) and \(\rho_2 \) be continuous bounded pseudometrics on \(X \) and \(Y \) respectively. Let \(\mu, \nu \in P_\beta(X) \) and

\[
P_\beta(\rho_1)(\mu, \nu) = \int_{X \times X} \rho_1(x_1, x_2) \, d\lambda,
\]

where \(\lambda \in \Lambda(\mu, \nu) \). Then

\[
P_\beta(\rho_2)(P_\beta(f)(\mu), P_\beta(f)(\nu)) \leq \int_{X \times X} \rho_2(f(x_1), f(x_2)) \, d\lambda.
\]

This lemma for metric compact spaces was proved in [5]. For the general case the proof is the same.

Corollary 2.13. The functor \(P_{\beta}^{\text{Metr}_b} \) preserves nonexpansive mappings.

The next statement for metric compact spaces was also proved in [5]. We repeat the proof in view of the high importance of this statement.

Lemma 2.14. Let \(f : X \to Y \) be a continuous mapping between Tychonoff spaces, and let \(\rho_1 \) and \(\rho_2 \) be continuous pseudometrics of diameter \(\leq a \) on \(X \) and \(Y \) correspondingly. If \(f : (X, \rho_1) \to (Y, \rho_2) \) is an \((\varepsilon, \delta) \)-uniformly continuous mapping of pseudometric spaces, then \(P_\beta(f) \) is \((2\varepsilon, \varepsilon \delta / a) \)-uniformly continuous.

Proof. Let \(P_\beta(\rho_1)(\mu, \nu) < \varepsilon \delta / a \). Since \(\Lambda(\mu, \nu) \subset P(\text{supp} \mu \times \text{supp} \nu) \) is compact, there is \(\lambda \in \Lambda(\mu, \nu) \) such that

\[
P_\beta(\rho_1)(\mu, \nu) = \int_{X \times X} \rho_1(x_1, x_2) \, d\lambda.
\]
Then
\[P_\beta(\rho_2)(P_\beta(f)(\mu), P_\beta(f)(\nu)) \leq \int_{X \times X} \rho_2(f(x_1), f(x_2)) \, d\lambda \quad \text{(by Lemma 2.12)} \]
\[= \int_{\rho_1(x_1, x_2) < \delta} \rho_2(f(x_1), f(x_2)) \, d\lambda + \int_{\rho_1(x_1, x_2) \geq \delta} \rho_2(f(x_1), f(x_2)) \, d\lambda \]
\[< \varepsilon + \frac{a}{\delta} \int_{\rho_1(x_1, x_2) \geq \delta} \rho_1(x_1, x_2) \, d\lambda \quad \text{(since } f \text{ is } (\varepsilon, \delta)-\text{uniformly continuous)} \]
\[\leq \varepsilon + \frac{a}{\delta} P_\beta(\rho_1)(\mu, \nu) < \varepsilon + \frac{a}{\delta} \cdot \frac{\varepsilon \delta}{a} = 2\varepsilon. \]

Lemma 2.14 is proved. \(\square \)

Corollary 2.15. The functor \(P_\beta^{M_b} \) preserves uniformly continuous mappings.

Let us denote by \(\text{Metr}_{b} \) the subcategory of \(\text{Metr}_b \) consisting of all bounded metric spaces and all their uniformly continuous mappings. Theorem 2.10 and Corollary 2.15 imply

Theorem 2.16. The functor \(P_\beta \) is lifted onto the category \(\text{Metr}_{b} \).

We shall denote this lifted functor by \(P_\beta^{M_{b}} \).

3. Probability measures on uniform spaces

Let \((X, \mathcal{U})\) be a uniform space. Let \(R(\mathcal{U}) \) be a family of all bounded uniformly continuous pseudometrics on \((X, \mathcal{U})\). Then, evidently, the family \(P_\beta(R(\mathcal{U})) \) satisfies condition \((\text{UP1})\). Hence, the preuniformity \(u(P_\beta(R(\mathcal{U}))) \) (look at Proposition 1.9) on \(P_\beta(X) \) induces on \(X \) the preuniformity \(\mathcal{U} \) in view of Propositions 1.8 and 2.3. We shall denote this preuniformity by \(P_\beta(\mathcal{U}) \).

Theorem 3.1 [13]. Let \((X, \mathcal{U})\) be a uniform space. Then \((P_\beta(X), P_\beta(\mathcal{U}))\) is a uniform space with \(*\)-weak topology.

Proof. In view of Proposition 1.9 it suffices to verify that the preuniformity \(P_\beta(\mathcal{U}) \) generates the \(*\)-weak topology. We shall deduce it from Theorem 2.4. For this we have to check that the family \(R(\mathcal{U}) \) separates points and closed subsets of \(X \). Let \(x \in X \setminus F \), where \(F \) is closed in \(X \). By definition of a uniform topology, there is \(E \in \mathcal{U} \) such that \(E(x) \subset X \setminus F \). According to Proposition 1.8 there are \(\rho \in R(\mathcal{U}) \) and \(\varepsilon > 0 \) such that \(E(\rho, \varepsilon) \subset E \). Then \(\rho(x, F) \geq \varepsilon > 0 \). Theorem 3.1 is proved. \(\square \)

Proposition 3.2. If a family \(R \) of bounded uniformly continuous pseudometrics on a uniform space \((X, \mathcal{U})\) generates the uniformity \(\mathcal{U} \), then the family \(P_\beta(R) \) generates the uniformity \(P_\beta(\mathcal{U}) \).
Proof. Let E be an arbitrary entourage from the uniformity $P_\beta(U)$. By definition of this uniformity there are a pseudometric $\rho \in R(U)$ and $\varepsilon > 0$ such that $P_\beta(\rho)^{-1}[0, \varepsilon) \equiv E(P_\beta(\rho), \varepsilon)) \subset E$. Since R generates U, there are $\rho_1 \in R$ and $\delta > 0$ such that $\rho_1^{-1}[0, \delta)) \subset \rho^{-1}[0, \varepsilon/2))$. Hence, the identity mapping $(X, \rho_1) \to (X, \rho)$ is $(\varepsilon/2, \delta)$-uniformly continuous. Let $a = \max\{\text{diam} \rho_1, \text{diam} \rho\}$. Consequently, by Lemma 2.14, the identity mapping

$$(P_\beta(X), P_\beta(\rho_1)) \to (P_\beta(X), P_\beta(\rho))$$

is $(\varepsilon, (\varepsilon \delta)/(2a))$-uniformly continuous. Therefore,

$P_\beta(\rho_1)^{-1}\left[0, \frac{\varepsilon \delta}{2a}\right) \subset P_\beta(\rho)^{-1}[0, \varepsilon) \subset E.$

Proposition 3.2 is proved. □

Corollary 3.3. If (X, ρ) is a bounded metric space, then the uniformities $P_\beta(u(\rho))$ and $u(P_\beta(\rho))$ on $P_\beta(X)$ coincide.

The next statement is a corollary of both Proposition 1.6 and Lemma 2.14.

Proposition 3.4 [13]. If $f : (X, U) \to (Y, V)$ is a uniformly continuous mapping between uniform spaces, then the mapping

$P_\beta(f) : (P_\beta(X), P_\beta(U)) \to (P_\beta(Y), P_\beta(V))$

is also uniformly continuous.

Theorem 3.1 and Proposition 3.4 imply

Theorem 3.5 [13]. The functor $P_\beta : \text{Tych} \to \text{Tych}$ is lifted onto the category Unif.

We denote this lifted functor by P^β. Let $\mathcal{MUnif} \subset \text{Unif}$ be the category of all metrizable uniform spaces and their uniformly continuous mappings. We have

$P^\beta(\mathcal{MUnif}) \subset \mathcal{MUnif}$

according to Corollary 3.3 and Lemma 2.14. We shall denote the restriction $P^\beta|\mathcal{MUnif}$ by $P^\beta\mu$. Let $\mathcal{F}_u : \text{Metr}_bu \to \mathcal{MUnif}$ be the uniformization functor.

Proposition 3.6. The functor $P^\mu : \mathcal{MUnif} \to \mathcal{MUnif}$ is lifted to the functor

$P^\mu_{\text{Metr}_bu} : \text{Metr}_bu \to \text{Metr}_bu$.

Proof. It is sufficient to check that

$$\mathcal{F}_u \circ P^\mu_{\text{Metr}_bu} = P^\mu \circ \mathcal{F}_u.$$ \hspace{1cm} (3.1)

For spaces $(X, \rho) \in \text{Metr}_bu$, Eq. (3.1) follows from Corollary 3.3. For mappings $f \in \text{Metr}_bu$, Eq. (3.1) follows from Lemma 2.14 and Proposition 3.2. □
Proposition 3.7 [3]. If \(f : (X, \mathcal{U}) \rightarrow (Y, \mathcal{V}) \) is a uniform embedding, then
\[
P^\beta(f) : (P^\beta(X), P^\beta(\mathcal{U})) \rightarrow (P^\beta(Y), P^\beta(\mathcal{V}))
\]
is also a uniform embedding.

Proof. We may assume that \(f : X \rightarrow Y \) is the identity embedding. By (2.5) and Proposition 3.4, \(P^\beta(f) \) is a topological embedding and a uniformly continuous mapping. Let \(E \subset P^\beta(\mathcal{U}) \) be an arbitrary entourage. By definition of \(P^\beta(\mathcal{U}) \) there is a pseudometric \(\rho \in R(\mathcal{U}) \) such that \(\rho^{-1}[0, \varepsilon) \subset E \) for some \(\varepsilon > 0 \). This pseudometric \(\rho : X \times X \rightarrow \mathbb{R} \) can be extended to a bounded uniformly continuous pseudometric \(\rho_1 \) on \((Y, \mathcal{V}) \) (see [8, 8.5.6]). Let \(E_1 = \rho_1^{-1}[0, \varepsilon) \). Then \(E_1 \in P^\beta(\mathcal{V}) \) by definition and evidently \(E_1 \cap (X \times X) = \rho^{-1}[0, \varepsilon) \subset E \). Proposition 3.7 is proved. \(\Box \)

Proposition 3.8 [3]. A uniform space \((X, \mathcal{U})\) is precompact iff \((P^\beta(X), P^\beta(\mathcal{U}))\) is precompact.

Proof. If \((P^\beta(X), P^\beta(\mathcal{U}))\) is precompact, then \((X, \mathcal{U})\) is precompact in view of Proposition 1.11 and a uniform embedding
\[
\delta : (X, \mathcal{U}) \rightarrow (P^\beta(X), P^\beta(\mathcal{U})).
\]
Conversely, if \((X, \mathcal{U})\) is precompact, then \((X, \mathcal{U}) \rightarrow S_\mathcal{U}X \) is a uniform embedding into a compact space. Then, by Proposition 3.7, \((P^\beta(X), P^\beta(\mathcal{U}))\) is a subspace of the compact uniform space \(P(S_\mathcal{U}X) \). Applying Proposition 1.11 once more, we get a precompactness of \((P^\beta(X), P^\beta(\mathcal{U}))\). The proposition is proved. \(\Box \)

Proposition 3.8 and Corollaries 3.3 and 1.14 imply

Proposition 3.9. A metric space \((X, \rho)\) is totally bounded iff \((P^\beta(X), P^\beta(\rho))\) is totally bounded.

Proposition 3.10. Let \((X, \mathcal{U})\) be a uniform space and let
\[
i \equiv i_X : X \times X \rightarrow P^\beta(X)
\]
be a mapping which is defined as follows:
\[
i(x_1, x_2) = \frac{9}{10} \delta(x_1) + \frac{1}{10} \delta(x_2).
\]
Then \(i : (X \times X, \mathcal{U} \times \mathcal{U}) \rightarrow (P^\beta(X), P^\beta(\mathcal{U})) \) is a uniform embedding.

Proof. It suffices to show that for every bounded uniformly continuous pseudometric \(\rho \) on \(X \) the mappings \(i \) and \(i^{-1} \) are uniformly continuous with respect to the pseudometric \(\rho \times \rho \) and \(P^\beta(\rho) \), where
\[
\rho \times \rho((x_1, x_2), (y_1, y_2)) = \rho(x_1, y_1) + \rho(x_2, y_2).
\]
We shall prove more: for any \(\xi, \eta \in X \times X \)
\[
\frac{1}{20} \rho \times \rho(\xi, \eta) \leq P^\beta(\rho)(i(\xi), i(\eta)) \leq \rho \times \rho(\xi, \eta).
\]
Let $\xi = (x_1, x_2)$, $\eta = (y_1, y_2)$, $\rho(x_1, y_1) = \rho_1$, $\rho(x_2, y_2) = \rho_2$. We are going to prove that

$$\frac{1}{10}(\rho_1 + \rho_2) \leq d \leq \rho_1 + \rho_2,$$

where $d = P_\beta(\rho)(i(\xi), i(\eta))$. Let $\lambda \in \Lambda(i(\xi), i(\eta))$. Then

$$\lambda = m_{11}\delta(x_1, y_1) + m_{22}\delta(x_2, y_2) + m_{12}\delta(x_1, y_2) + m_{21}\delta(x_2, y_1),$$

where $m_{ij} \geq 0$ and

$$m_{11} + m_{12} = m_{11} + m_{21} = \frac{9}{10},$$
$$m_{22} + m_{12} = m_{22} + m_{21} = \frac{1}{10}.$$

Let $m_{11} = a$, then $m_{12} = m_{21} = \frac{9}{10} - a$ and $m_{22} = a - \frac{8}{10}$. We have

$$d \leq \lambda(\rho) = a\rho_1 + \left(a - \frac{8}{10}\right)\rho_2 + \left(\frac{9}{10} - a\right)(\rho_{12} + \rho_{21})$$

for an arbitrary a (let us note that $\frac{8}{10} \leq a \leq \frac{9}{10}$). In particular, for $a = \frac{9}{10}$,

$$d \leq \frac{9}{10}\rho_1 + \frac{1}{10}\rho_2 \leq \rho_1 + \rho_2.$$

Since $\Lambda(i(\xi), i(\eta))$ is compact, there is a such that

$$d = a\rho_1 + \left(a - \frac{8}{10}\right)\rho_2 + \left(\frac{9}{10} - a\right)(\rho_{12} + \rho_{21}).$$

There are two possibilities: $a \geq 0.85$ and $a \leq 0.85$. Let $a \geq 0.85$. Then

$$d \geq a\rho_1 + (a - 0.8)\rho_2 \geq 0.85\rho_1 + 0.05\rho_2 \geq 0.05(\rho_1 + \rho_2).$$

Now let $a \leq 0.85$. We have

$$\rho_2 = \rho(x_2, y_2) \leq \rho(x_2, y_1) + \rho(y_1, x_1) + \rho(x_1, y_2).$$

Hence,

$$\rho_{12} + \rho_{21} \geq \rho_2 - \rho_1.$$

Then

$$d \geq a\rho_1 + (a - \frac{8}{10})\rho_2 + (0.9 - a)(\rho_2 - \rho_1) = (2a - 0.9)\rho_1 + 0.1\rho_2$$
$$\geq 0.7\rho_1 + 0.1\rho_2 \geq 0.1(\rho_1 + \rho_2).$$

Proposition 3.10 is proved. ☐

Let $\mathcal{C} = \{\mathcal{O}, \mathcal{M}\}$ be some category, where \mathcal{O} is a family of its objects and \mathcal{M} is a family of its morphisms. Let $\mathcal{F}, \mathcal{G}: \mathcal{C} \to \mathcal{C}$ be covariant functors. Let us recall that a family $T = \{T_X: \mathcal{F}(X) \to \mathcal{G}(X): X \in \mathcal{O}\}$ of morphisms from \mathcal{M} is said to be a natural transformation of the functor \mathcal{F} in to the functor \mathcal{G} if for any morphism $f: X \to Y$ from \mathcal{M} the following diagram

$$\begin{array}{ccc}
\mathcal{F}(X) & \xrightarrow{\mathcal{F}(f)} & \mathcal{F}(Y) \\
\mathcal{T}_X \downarrow & & \downarrow \mathcal{T}_Y \\
\mathcal{G}(X) & \xrightarrow{\mathcal{G}(f)} & \mathcal{G}(Y)
\end{array}$$
is commutative. Morphisms T_X are called components of a natural transformation T. A functor F is called a subfunctor of a functor G if there is a natural transformation $T : F \to G$ such that each component T_X is a monomorphism.

By Π^2 we denote the functor of square: $\Pi^2(X) = X \times X$; if $f : X \to Y$ is a mapping, then $\Pi^2(f) = f \times f : X \times X \to Y \times Y$. The functor Π^2 acts in such categories as \mathcal{T}_Ych, Comp, Unif, cUnif and so on.

Theorem 3.11. The embedding $i_X : X \times X \to P_\beta(X)$ from Proposition 3.10 can be extended to a natural transformation $i : \Pi^2 \to P_\beta^2$.

In fact, one has only to check that for every uniformly continuous mapping $f : X \to Y$ the following diagram

$$
\begin{array}{ccc}
X \times X & \xrightarrow{f \times f} & Y \times Y \\
\downarrow i_X & & \downarrow i_Y \\
P_\beta(X) & \xrightarrow{P_\beta(f)} & P_\beta(Y)
\end{array}
$$

is commutative. But this is evident.

Remark 3.12. It is clear that the embedding $i_X : X \times X \to P_\beta(X)$ can be considered as a component of a natural transformation of functors in the category \mathcal{T}_Ych.

Proposition 3.13. Let (X, \mathcal{U}) be a uniform space. Then $P_\beta(p\mathcal{U}) = p(P_\beta(\mathcal{U}))$ iff $\mathcal{U} = p\mathcal{U}$.

Proof. Sufficiency follows from Proposition 3.8. Now let

$$P_\beta(p\mathcal{U}) = p(P_\beta(\mathcal{U})). \quad (3.2)$$

From Proposition 3.10 we have

$$\mathcal{U} \times \mathcal{U} \subset P_\beta(\mathcal{U}), \quad (3.3)$$

$$p\mathcal{U} \times p\mathcal{U} \subset P_\beta(p\mathcal{U}). \quad (3.4)$$

But (3.3) implies

$$p(\mathcal{U} \times \mathcal{U}) \subset p(P_\beta(\mathcal{U})). \quad (3.5)$$

Hence, (3.2) and (3.5) give us

$$p(\mathcal{U} \times \mathcal{U}) \subset P_\beta(p\mathcal{U}). \quad (3.6)$$

By (3.4) and (3.6), both $i(X \times X, p\mathcal{U} \times p\mathcal{U})$ and $i(X \times X, p(\mathcal{U} \times \mathcal{U}))$ are subspaces of the uniform space $(P_\beta(X), p(P_\beta(\mathcal{U})))$. Consequently, $p\mathcal{U} \times p\mathcal{U} = p(\mathcal{U} \times \mathcal{U})$. Then $\mathcal{U} = p\mathcal{U}$ by Proposition 1.20. The proposition is proved. \square
4. Main results

Proposition 4.1. The identity transformation is the only natural transformation of the functor \(P : \text{Comp} \to \text{Comp} \) into itself.

Proof. Let \(T : P \to P \) be a natural transformation and let
\[n = \{0, \ldots, n - 1\} \]
be an \(n \)-point set.

Claim 1. Let
\[\mu = \frac{1}{n} \sum_{k=0}^{n-1} \delta(k). \]
Then \(T_n(\mu) = \mu \).

Proof. In fact, assume
\[T_n(\mu) = \nu = \sum_{k=0}^{n-1} a_k \delta(k) \neq \mu. \]
Let \(a = \min\{a_k : k \in \mathbb{N}\} \) and \(b = \max\{a_k : k \in \mathbb{N}\} \). Let \(a = a_{k_0}, b = a_{k_1} \). Then \(a < b \) and \(k_0 \neq k_1 \). Define a mapping \(\varphi : n \to n \) by:
\[\varphi(k_0) = k_1, \quad \varphi(k_1) = k_0, \quad \varphi(k) = k \quad \text{for} \ k \notin \{k_0, k_1\}. \]

By the definition of natural transformation we have \(T_n \circ P(\varphi) = P(\varphi) \circ T_n \). But \(P(\varphi)(\mu) = \mu \). Hence, \((T_n \circ P(\varphi))(\mu) = T_n(\mu) = \nu \). On the other hand, \((P(\varphi) \circ T_n)(\mu) = P(\varphi)(\nu) \neq \nu, \) since \(P(\varphi)(\nu)(k_1) = a < b = \nu(k_1) \). We arrive at a contradiction and Claim 1 is proved. \(\square \)

Claim 2. Let \(m_0, \ldots, m_{n-1} \) be positive integers and \(N = \sum_{k=0}^{n-1} m_k \). Let
\[\mu = \sum_{k=0}^{n-1} \frac{m_k}{N} \delta(k). \]
Then \(T_n(\mu) = \mu \).

Proof. Indeed, define a mapping \(\varphi : N \to n \) by
\[\varphi^{-1}(k) = [m_0 + \cdots + m_{k-1} + 1, \ m_0 + \cdots + m_{k-1} + m_k]. \]
Let
\[\nu = \frac{1}{N} \sum_{l=0}^{N-1} \delta(l). \]
Clearly, \(P(\varphi)(\nu) = \mu \). On the other hand, according to Claim 1 we have \(T_N(\nu) = \nu \).

Hence,

\[
T_n(\mu) = (T_n \circ P(\varphi))(\nu) = (P(\varphi) \circ T_N)(\nu) = P(\varphi)(\nu) = \mu.
\]

Claim 2 is proved. \(\square \)

From Claim 2 we get \(T_n = \text{id}_{P(n)} \) for an arbitrary \(n > 0 \). Now let \(X \) be an arbitrary Hausdorff compact space, \(\mu \in P(X) \) and \(|\text{supp}\mu| = n < \infty \). There is an embedding \(\varphi : n \to X \) such that \(\varphi(n) = \text{supp}\mu \). From the equality \(P(\varphi) \circ T_n = T_X \circ P(\varphi) \) we get \(P(\varphi) = T_X \circ P(\varphi) \), since \(T_n = \text{id}_{P(n)} \). But \(P(\varphi) : P(n) \to P(X) \) is an embedding with \(P(\varphi)(P(n)) = P(\text{supp}\mu) \). Hence, there is a unique \(\nu \in P(n) \) such that \(P(\varphi)(\nu) = \mu \).

Then \(T_X(\mu) = T_X(P(\varphi)(\nu)) = P(\varphi)(\nu) = \mu \). Consequently, \(T_X(\mu) = \mu \) for an arbitrary measure \(\mu \in P(X) \) with finite support. But these measures are everywhere dense in \(T(X) \). So, \(T_X = \text{id}_{P(X)} \) for arbitrary \(X \in \text{Comp} \). Proposition 4.1 is proved. \(\square \)

Proposition 4.2. There is a unique natural transformation \(T : S \circ P_\beta^a \to P \circ S \).

Proof. *Uniqueness.* The category \(c\text{Unif} \subset \text{Unif} \) is invariant with respect to both functors \(S \circ P_\beta^a \) and \(P \circ S \). Hence, \(T|c\text{Unif} \) is a natural transformation of the functor \(P : c\text{Unif} \to c\text{Unif} \) into itself. By Proposition 4.1, \(T|c\text{Unif} = \text{Id} \). Let \((X, U) \) be a uniform space. Then \(P_\beta(X) \) is everywhere dense in both \(S_{P_\beta(U)}(P_\beta(X)) \) and \(P(S_U(X)) \). Since \(T|c\text{Unif} = \text{Id} \), we have \(T_U|P(K) = \text{Id} \) for an arbitrary compact subset \(K \subset X \). Consequently, \(T_U|P_\beta(X) = \text{Id} \). So \(T_U \) is unique being uniquely defined on a dense subset.

Existence. The identity mapping \((X, U) \to (X, pU) \) is uniformly continuous. Hence, the identity embedding \(i_U : (X, U) \to S_U(X) \) is uniformly continuous. Then the mapping

\[
P_\beta(i_U) : (P_\beta(X), P_\beta(U)) \to P(S_U(X))
\]

is also uniformly continuous. Applying to this mapping the functor \(p \) of the precompactification we get in view of Proposition 1.18 a uniform continuity of the mapping

\[
P_\beta(i_U) : (P_\beta(X), p(P_\beta(U))) \to P(S_U(X)).
\]

Now we extend this mapping on the completions and get by Proposition 1.17 the mapping

\[
T_U : S_{P_\beta(U)}(P_\beta(X)) \to P(S_U(X)).
\]

It is easy to verify that \(T_U \) is a component of a natural transformation \(T : S \circ P_\beta^a \to P \circ S \).

The proposition is proved. \(\square \)

Theorem 4.3. \(T_U \) is a homeomorphism iff \(U \) is a precompact uniformity.

Proof. Let \((X, U) \) be a precompact space. Then \((X, U) \to (X, pU) \) is a uniform isomorphism. Hence, \(i_U : (X, U) \to S_U(X) \) is a uniform embedding. By Proposition 3.7, mapping (4.1) is a uniform embedding too. Therefore, mapping (4.2), being equal to mapping (4.1), is a uniform embedding as well. So, \(T_U \) is the identity mapping of \(P(S_U(X)) \).
Now let T_U is a homeomorphism. Then mapping (4.2) is an embedding. Hence, the uniformity $p(P_3(U))$ on $P_3(X)$ is equal to the uniformity $P_3(pU)$ on $P_3(X) \subset P(S_U(X))$. By Proposition 3.13, $U = pU$. The theorem is proved. \hfill \Box

Theorem 4.3 and Corollary 1.14 yield

Corollary 4.4. Let (X, ρ) be a metric space. Then $T_{u(\rho)}$ is a homeomorphism iff ρ is totally bounded.

By an embedding $U : \text{Tych} \to \text{Unif}$ we mean a certain functor of a uniformization, i.e., for an arbitrary Tychonoff space X, $U(X)$ is a uniform space with the original topology of X, and for an arbitrary continuous mapping $f : X \to Y$ the mapping $f : U(X) \to U(Y)$ is uniformly continuous. There are many uniformizations $U : \text{Tych} \to \text{Unif}$. For example:

1. $U(X)$ is the universal uniform space, i.e., the biggest uniform space on X;
2. $U(X)$ is the Stone–Čech uniform space, i.e., the biggest precompact uniform space on X (for this uniform space we have $\varpi(U(X)) = \beta X$).

But the problem of a uniformization can become unsolvable if one adds some restrictions. The next assertion is an example of this.

Proposition 4.5. There is no embedding $U : \text{Tych} \to \text{Unif}$ such that

$$\Pi^2 \circ U = U \circ \Pi^2.$$ \hfill (4.3)

Proof. Assume that there is such an embedding U. Let N be a discrete space of non-negative integers.

Claim 1. $U(N)$ is a universal uniform space.

Proof. Indeed, according to (4.3) we have

$$U(N) \times U(N) = U(N \times N).$$ \hfill (4.4)

On the other hand, any uniformity of type $U(N) \times U(N)$ contains a disjoint covering consisting of two infinite sets A and B, for example, $A = \{0\} \times N, B = N^+ \times N$. Let $f : N \times N \to N \times N$ be some bijections such that $f(A) = \Delta_N$. Then $f : U(N \times N) \to U(N \times N)$ is a uniform isomorphism. Hence,

$$u = \{f(A), f(B)\}$$

is a uniform covering of $U(N \times N)$. Consequently, u is a uniform covering of $U(N) \times U(N)$, because of (4.4). There is a uniform covering v of $U(N)$ such that $v \times v$ refines u. Since $u = \{\Delta_N, N \times N \setminus \Delta_N\}$, it follows that v consists of one-point sets. Claim 1 is proved. \hfill \Box

Let $\mathbb{Q} \subset \mathbb{R}$ be the space of rationals.

Claim 2. $U(\mathbb{Q})$ is a universal space.
Proof. In fact, we have to check that an arbitrary open covering of Q is uniform. For this it suffices to show that an arbitrary disjoint covering u of Q consisting of clopen sets is uniform. There is an epimorphism $f: Q \to N$ such that

$$u = \{f^{-1}(n) : n \in N\}.$$

Since f is continuous, $f: U(Q) \to U(N)$ is uniformly continuous. Then u is a uniform covering according to Claim 1. Claim 2 is proved. □

Now let $f: Q \to Q \times Q$ be a homeomorphism. Then $f: U(Q) \to U(Q \times Q)$ is a uniform isomorphism. But $U(Q \times Q) = U(Q) \times U(Q)$ in view of (4.3). So, Claim 2 implies that the uniform space $U(Q) \times U(Q)$ is universal. But that is not correct. We arrive at a contradiction. Proposition 4.5 is proved. □

Proposition 4.5, Theorem 3.11 and Remark 3.12 imply

Theorem 4.6. There is no embedding $U: Tych \to Unif$ such that

$$P^u_\beta \circ U = U \circ P_\beta.$$

Analysis of the proof of Theorem 4.6 shows us that the next statement is true.

Theorem 4.7. There is no embedding U of the category M of all metrizable spaces into the category $MUnif$ of metrizable uniform spaces such that

$$P^u_\beta \circ U = U \circ P_\beta.$$

Remark 4.8. Banakh [2,3] considered the functors P_t and P_τ (of Radon and τ-additive measures respectively) in the category $Tych$. For an arbitrary Tychonoff space X we have

$$P_\beta(X) \subset P_t(X) \subset P_\tau(X) \subset P(\beta X).$$

He lifted the functors P_t and P_τ to the functors P^u_t and P^u_τ acting in the category $Unif$ in the same manner as it was done in Section 2 for the functor P_β. For an arbitrary uniform space (X,U) the following inclusions

$$(P_\beta(X), P_\beta(U)) \subset (P_t(X), P_t(U)) \subset (P_\tau(X), P_\tau(U))$$

are uniform. Moreover, we have the functor inclusions

$$P^u_\beta \subset P^u_t \subset P^u_\tau.$$

So all main results for the functor P^u_β (Theorems 4.3, 4.6 and 4.7, Proposition 4.4) hold for the functors P^u_t and P^u_τ as well.

References