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In this article we study the problem

&2u+u=u p

in 0a{ u>0,

u=0, on �0a

in the case 0a is an expanding domain. In particular, for n�2 when 0a=
[x # Rn : a<|x|<a+1] is an expanding annulus as a � �, we prove the existence
of many rotationally non-equivalent solutions obtained as local minimizers of the
corresponding energy functional. Moreover, we study the exact symmetry and the
shape of these solutions, and under certain conditions we prove the existence of
solutions with prescribed symmetry. � 1999 Academic Press

1. INTRODUCTION

In this paper we discuss the existence of nonradial solutions for the semi-
linear elliptic equation

&2u+u=u p

in 0a{ u>0, (1)

u=0, on �0a

where

0a /Rn, n�2

is an expanding domain as a � �, with smooth boundary having certain
symmetries (to be specified later) and

1<p<
n+2
n&2

.
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Our study was motivated by [3], [9], [19] (see also [8] and [10])
where many nonradial solutions for (1) are found in the case 0a is an
annulus. The method used there is to restrict the energy functional to sub-
spaces of functions with symmetries. When further restricted to the Nehari
manifold, the absolute minimum of the functional is achieved and gives a
solution of (1). Using this method it is due to Coffman [3] for n=2 and
to Li [9] for n�4 that the number of rotationally nonequivalent solutions
tends to infinity as a � �. For n=3, the same method is employed in [15]
to give a classification of solutions obtained as least energy critical points.
It is shown that as a � �, only six different types of symmetries allow dis-
tinct ground state solutions. The difficulty for n=3 is that the class of sym-
metries available is not so rich. The question whether a result similar to the
case n=2 and n�4 holds has not been settled ([9], [15]) until Byeon [2]
gives an affirmative answer. We were unaware of [2] until after we sub-
mitted this paper and we thank B. Kawohl, Y. Y. Li and the referee for
informing us about the work of [2] and for their helpful comments.

In this paper we introduce a new approach to the problem and show
how to construct new solutions for (1) that are obtained as local mini-
mizers of the energy. We must point out that, in general, solutions given
in this paper cannot be obtained as global minimizers of the energy func-
tional. (See remarks in 4.1.) Our method works for any n�2 and in par-
ticular a consequence of one of our main results (Theorem 2.22) gives the
following (see Theorem 1.1) that recovers the result of Byeon. Though the
idea of local minimization was used in [2], our approach is different from
[2] and stems out of our study for nonlinear Neumann problems ([20]
[14]) and for nonlinear Schro� dinger equations ([21]) where similar
phenomena occur.

Theorem 1.1. For n=3 and 0a=[x # Rn : a<|x|<a+1], the number
of rotationally nonequivalent solutions of (1) tends to infinity as a � �.

Another advantage of our method is that we can get qualitative proper-
ties of the solutions constructed such as the shape of solutions and the
exact symmetry of solutions. We prove that all solutions obtained are
multi-bump solutions with a discrete number of bumps. These qualitative
properties in turn enable us to study the exact symmetry of the solutions.
Under certain conditions we can construct nonradial solutions with
prescribed symmetry. This question was not addressed at all in the pre-
vious papers on this problem with the exception [8] where for n=2 the
symmetry of global minimizers was examined (See Remark 3.7). In par-
ticular, as an example of another main result of this paper (Theorem 3.2)
we have the following which also implies Theorem 1.1. Let Dk /O(2) be
the group fixing a regular k polygon in R2.
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Theorem 1.2. Let n�2 and 0a=[x # Rn : a<|x|<a+1]. Then for
each k�3 there is ak such that for all a>ak (1) has a solution which has
exact symmetry Dk_O(n&2).

Here we define the isotropy subgroup 7u for a function u # H 1
0(0a) by

7u=[g # O(n): u(g&1x)=u(x), a.e. in 0a] and we say that u has exact
symmetry G/O(n) if 7u=G. Elliptic boundary value problems, which are
radially invariant (i.e., O(n)-invariant) and which do have nonradial solu-
tions, have been explored in recent years (e.g., [1] [16] [20] [14] and
references mentioned above on (1)), and for this type of problems it is
natural to ask the general questions that whether one can identify the exact
symmetry of a given solution and whether one can find solutions having
prescribed symmetry. One of our goals of this paper is to address these
questions for problem (1).

Our main results will be given in Sections 2 and 3. See Theorem 2.22 for
more details on the qualitative properties of solutions, and Theorem 3.2
and Remark 3.6 for more examples of groups which can be prescribed as
the exact symmetry of solutions for (1).

In the following we consider the case 0a is an annulus and we shall
indicate how the results can be extended to more general domains in
Section 4. Thus, let 0a=[x # Rn : a<|x|<a+1]. We write

Rn=Rl_Rn&l and x=(X1 , X2)

for some integer 1�l�n, X1 # Rl, and X2 # Rn&l. We define

P : Rn � Rl, by Px=X1 .

Denote by O(n), the orthogonal group of Rn. Let G1 a subgroup of
O(l )/O(n) and G2 a subgroup of O(n&l )/O(n) such that for an integer
k�2 (which will be fixed throughout) we have:

FixRn (G1)=[0]_Rn&l,

(S1) {FixRn (G2)=Rl_[0],

k= min
x # S l&1_[0]

*G1x,

where *G1x is the cardinal number of the G1 -orbit of x and S l&1 is the
unit sphere in Rl. We shall establish the existence of k-bump solutions of
(1) which are symmetric under

G=G1_G2=[(g1 , g2) : gi # Gi , i=1, 2]/O(l )_O(n&l )/O(n).
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Example 1.3. For n=3, take l=2, G1=Zk rotations of multiples of
2?�k around the x3 -axis (or Dk /O(2) the group fixing a regular k
polygon in R2), and G2=O(1) symmetry about the x1x2-plane.

We make the following notations,

HG, a=[u # H 1
0(0a) : gu=u, for any g # G] (2)

where by gu we understand the function (gu)(x)=u(g&1x).

MG, a={u # HG, a : |
0a

|u| p+1=1= (3)

and

K_
G, a=[u # MG, a : #a(u)>_] (4)

where

#a(u)=
1

a+1 |
0a

|Px| |u| p+1 (x) dx. (5)

Here 0<_<1, will be specified later. Note that #a is a continuous func-
tional on H 1

0(0a) and K_
G, a is an open subset of MG, a . We are looking for

critical points of the functional

Ea(u)=|
0a

|{u|2+u2, with u # K_
G, a . (6)

By [17], a critical point in MG, a of Ea after a rescaling will be a critical
point of Ea in H 1

0(0a) also, and by regularity theory will be a classical solu-
tion of (1). Denote

ma, _= inf
u # K_

G, a

Ea(u). (7)

The requirement that u # K_
G, a makes possible to avoid the least energy in

the minimization process; nevertheless, a complication arises, namely we
have to show that ma, _ is achieved in the interior of K_

G, a .
The outline of the paper is as follows. In Section 2 using a local mini-

mization procedure as described above we shall establish the existence
theory of multi-bump solutions. Theorem 1 will be a special case of our
main result. In Section 3, based on the qualitative properties of solutions
given in Section 2 we study the exact symmetry of these solutions, giving
Theorem 1.2 as a special case. We finish the paper with some remarks and
some possible extensions of the main results.
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2. EXISTENCE

2.1. Preliminaries

Let D be the strip of width 1, D=Rn&1_(0, 1)/Rn. Denote

N={u # H 1
0(D) : |

D
|u| p+1=1= . (8)

Using the methods in [22] it is not difficult to show that the loss of com-
pactness due to invariance under translations can be overcome, and

S= inf
u # N

|
D

|{u|2+u2 (9)

is achieved by a function v # N. It is known (see [18], [22]) that
v� =S1�(p&1)v is a classical solution for the problem

&2u+u=u p

in D{ u>0, (10)

u=0, on �D

and any solution of (10), eventually after a translation, must satisfy (see
[4], [5])

v=v( |x$|, xn) where x$=(x1 , ..., xn&1), (11)

�v(r$, xn)
�r$

<0 for r$=|x$|>0, (12)

�v(r$, xn)
�xn

>0 and v(r$, xn)=v(r$, 1&xn) for 0<xn<1�2. (13)

Let 1<r<a. For y # S n&1
a (the (n&1)-dimensional sphere centered at

the origin and radius a) we construct a map .=.a, r, y from 0a & Br ( y) to
D. First, suppose y=(0, 0, ..., 0, a)=N. For x # 0a & Br ( y), define

�(x)=(x1 , x2 , ..., xn&1 , |x|&a). (14)

Note that � is a diffeomorphism on its image and

�&1 (x)=(x1 , x2 , ..., xn&1 , - (a+xn)2&x2
1& } } } &x2

n&1 ). (15)

If y{(0, 0, ..., 0, a), consider Ry a rotation in SO(n) that takes y into N.
Let

Ry=(:ij) i, j=1, ..., n .
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We define .(x)=�(Ry } x). Note that there is an ambiguity in the con-
struction of . in the sense that Ry is not unique. Nevertheless, we shall see
that this does not affect the results.

Proposition 2.1. Let J. (x) the Jacobian of .a, r, y at x, then for
any y # S n&1

a , we have J. (x) � 1 as a � � and r�a � 0, uniformly in
x # 0a & Br ( y).

Proof. The identity

J. (x)=J� (Ry } x) det(Ry)

shows that in fact it suffices to prove that

J� (x) � 1 as a � � and r�a � 0

uniformly in x # 0a & Br (N) where N is the north pole of S n&1
a . We prove

even more, namely that

��i

�xj
(x) � $ij . (16)

Indeed the matrix of first order partial derivatives of � is the identity
except for the last row which is (x1� |x|, x2 � |x|, ..., xn � |x| ). We have
a<|x|<a+1 and

x2
1+x2

2+ } } } +x2
n&1+(xn&a)2<r

hence | xi � |x| |<r�a for i=1, ..., n&1 and | (xn&a)� |x| |<r�a. From a � �
and r�a � 0 it follows that xi � |x| � 0 for i=1, ..., n&1 and xn � |x| � 1. K

Remark 2.2. The proof of Proposition 2.1 also implies

��&1
i

�xj
(x) � $ ij (17)

as a � � and r�a � 0, uniformly in x # �(0a & Br (N)).

For 2<2r<r$<a, using the mapping .a, r$, y and a cut-off function, we
now construct operators T=Ta, r, r$, y and T� =T� a, r, r$, y

T: H 1
0(0a) � H 1

0(D) and T� : H 1
0(D) � H 1

0(0a).

First note that if p # 0a & �Br (N) and p$ # 0a & �Br$ (N) we have that

dist(�( p), �( p$))� 1
2 (r$&2r).
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Therefore we can consider a smooth cut-off function \=\a, r, r$ : D �
[0, 1], with the properties

\(x)=\( |x$|, xn) (\ is axially symmetric) (18)

\(x)=1 for any x # �(0a & Br (N))/D (19)

\(x)=0 for any x # D"�(0a & Br$ (N)) (20)

and

|{\(x)|�
4

r$&2r
for any x # D. (21)

For u # H 1
0(0a) we now define

Tu(x)={\(x) } u(.&1
a, r$, y(x))

0
if x # .a, r$, y (0a & Br$ ( y))
if x # D".a, r$, y (0a & Br$ ( y))

(22)

For u # H 1
0(D) we define

T� u(x)={\(.a, r$, y (x)) } u(.a, r$, y (x))
0

if x # 0a & Br$ ( y)
if x # 0a"Br$ ( y)

(23)

2.2. Concentration-Compactness under Symmetry

Let am � � and um # MG, am
any sequence such that (Eam

(um)) is boun-
ded. Consider the sequence (um)/H 1 (Rn) by prolongation with zero
outside 0am

. We need the Concentration-Compactness Lemma due to
P. L. Lions ([12]). The following is a consequence of a more detailed version
of the Concentration-Compactness Lemma ([13]), as reformulated and
proved in [21].

Lemma 2.3. Let (um) be bounded in H1 (Rn) with �|um | p+1=1. Then
there is a subsequence (denoted still by (um)), a nonnegative nonincreasing
sequence (:i) satisfying lims � � �s

i=1 :i=1, and sequences ( ym, i)/Rn

associated with each :i>0 satisfying

lim inf
m � �

| ym, i& ym, j | � �, as m � �, \i{ j, (24)

such that the following property holds: If :s>0 for some s�1, then for any
=>0 there exist R>0 such that for all r�R and all r$�R

lim sup
m � �

:
s

i=1
} : i&|

Br ( ym , i)
|um | p+1 }

+ } \1& :
s

i=1

:i+&|
Rn"�s

i=1 Br$ ( ym , i)
|um | p+1 }<=. (25)
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Remark 2.4. We shall need the definition of (:i) later. As in the proof
given in [21], we may define (:i) as follows. For s # N and r>0 we define
a family of concentration functions:

Qm, s (r) := sup
yi # RN |

�s
i=1 Br ( yi)

|um | p+1 dx.

Then there exist a subsequence of (um) (still denoted by (um)) such that
limm � � Qm, s (r) exists for all s # N and r # N, and [:i]�

1 is defined by

:1= lim
r � �

lim
m � �

Qm, 1 (r),

and for s�2

:s= lim
r � �

lim
m � �

Qm, s (r)& :
s&1

i=1

:i .

Now, with (um) being in MG, am
we shall give more information about the

sequences ( ym, i) and conclude by passing to another subsequence that we
have ( ym, i)/S n&1

am
and that for each s�1 with :s>:s+1 we have

Gym, i /[ ym, 1 , ..., ym, s] for any 1�i�s. Namely, we have

Lemma 2.5. Let am � � and um # MG, am
with (Eam

(um)) bounded. Then
there is a subsequence (denoted still by (um)), a nonnegative nonincreasing
sequence (:i) satisfying lims � � �s

i=1 :i=1, and sequences ( ym, i)/S n&1
am

associated with each :i>0 satisfying

lim inf
m � �

| ym, i& ym, j | � �, as m � �, \i{ j, (26)

such that the following property holds: If :s>:s+1 for some s�1, then

Gym, i /[ ym, 1 , ..., ym, s] for any 1�i�s; (27)

and if :s>0, then for any =>0 there exist R>0 such that for all r�R and
all r$�R

lim sup
m � �

:
s

i=1
} :i&|

Br ( ym , i)
|um | p+1 }

+ } \1& :
s

i=1

:i+&|
Rn"�s

i=1 Br$ ( ym , i)
|um | p+1 }<=. (28)

First, the sequences ( ym, i) in Lemma 2.3 are by no means unique. We
have the following
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Observation 2.6. Let s�1 fixed. If there are R� >0 and ( ŷm, i),
i=1, ..., s such that | ŷm, i& ym, i |�R� for any m, and i=1, ..., s then Lemma
2.3 holds with ( ym, i) substituted by ( ŷm, i).

Proof. Note that lim inf | ŷm, i& ŷm, j | finite for some i{ j as m � �
implies lim inf | ym, i& ym, j | is finite which contradicts (24). For R>0, let
R� =R+R� so that BR ( ym, i)/BR� ( ŷm, i) for any m and i. For any r̂, r̂$�R� ,
let r, r$�R such that

BR ( ym, i)/B r̂ ( ŷm, i)/Br ( ym, i), (29)

and

Rn>.
s

i=1

Br$ ( ym, i)/Rn>.
s

i=1

B r̂$ ( ŷm, i)/Rn>.
s

i=1

BR ( ym, i). (30)

Therefore

|
BR ( ym , i)

|um | p+1�|
Br̂ ( ŷm , i)

|um | p+1�|
Br ( ym , i)

|um | p+1,

and

|
Rn"�s

i=1 Br$ ( ym , i)
|um | p+1�|

Rn"�s
i=1 Br̂ $ ( ŷm , i)

|um | p+1

�|
Rn" _ s

i=1BR( ym , i)
|um | p+1.

This implies Lemma 2.3 is true with ym, i , substituted by ŷm, i . K

Observation 2.7. The points ( ym, i) can be assumed to be on S n&1
am

.

Proof. Take 0<=<:i . From (25), there is R>0 such that for m large
we have

|
Br ( ym , i)

|um | p+1>:i&=>0 for all r�R. (31)

Therefore,

dist( ym, i , S n&1
am

)�R+1

otherwise supp(um)/0am
and BR ( ym, i) would not intersect. Let ŷm, i the

points where the directions of ym, i intersect S n&1
am

. Then | ŷm, i& ym, i |�
R� =R+1, therefore for m large we can apply Observation 2.6 replacing
ym, i by ŷm, i . K
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From now on, we consider the points ym, i to be on S n&1
am

. We need some
preliminaries.

Proposition 2.8. Let ( ym)/Rn, | ym | � �. Then there are R� >0,
1�*�n and !1 , ..., !* orthonormal vectors in Rn such that for a subsequence
(denoted by ( ym))

| ym&( ym , !1) !1& } } } &( ym , !*) !* |�R� ,

( ym , ! i) � �, 1�i�*,

( ym , ! i+1)�( ym , !i) � 0, 1�i�*&1 as m � �.

Proof. We construct the vectors !i as follows: let am, 1=| ym | � � and
'm, 1= ym �am, 1 . For a subsequence, 'm, 1 � !1 as m � �. Note that

ym=am, 1'm, 1 implies 1=� ym

am, 1

, 'm, 1� , i.e.
( ym , !1)

am, 1

� 1. (32)

Denote am, 2=| ym&( ym , !1) !1 |. If a subsequnce of (am, 2) is bounded, the
conclusion follows with *=1. Therefore assume am, 2 � �. Since

ym&am, 1!1

am, 1

� 0 and | ym&am, 1!1 |�| ym&( ym , !1) !1 | , (33)

we have

am, 2 �am, 1 � 0. (34)

Let 'm, 2=( ym&( ym , !1) !1)�am, 2 . For a subsequence, 'm, 2 � !2 as
m � �. Since 'm, 2 = !1 for any m, it follows !2 = !1 . We have

ym=( ym , !1) !1+am, 2 'm, 2 , hence
( ym , !2)

am, 2

� 1. (35)

From (32), (34), (35) we have

( ym , !2)
( ym , !1)

� 0.

We go on in this manner. Assume we constructed !1 , ..., !i such that

( ym , ! i) � �, ( ym , !i)�( ym , !i&1) � 0

and

( ym , ! i)
am, i

� 1. (36)
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Let am, i+1=| ym&(ym , !1) !1& } } } &(ym , !i) !i | . If (am, i+1) has a bounded
subsequence, again the conclusion follows. So, assume am, i+1 � �. Let

'm, i+1=( ym&( ym , !1) !1& } } } &( ym , !i) !i)�am, i+1 .

For a subsequence, 'm, i+1 � !i+1 as m � �. Since 'm, i+1 = !1 , ..., ! i for any
m, it follows !i+1 = !1 , ..., ! i . Since

ym&( ym , !1) !1& } } } &( ym , !i&1) ! i&1&am, i! i

am, i
� 0 and

| ym&( ym , !1) !1& } } } &( ym , !i&1) !i&1&am, i! i |

�| ym&( ym , !1) !1& } } } &( ym , !i) !i |,

we get

am, i+1 �am, i � 0. (37)

Also

ym=( ym , !1) !1+ } } } +( ym , !i) !i+am, i+1'm, i+1 ,

hence

( ym , ! i+1)
am, i+1

� 1. (38)

From (36), (37), (38) we have

( ym , ! i+1)
( ym , !i)

� 0.

If the process does not stop for some *<n (i.e., if (am, *+1) has no bounded
subsequence), then we take *=n and we have

ym=( ym , !1) !1+ } } } +( ym , !n) !n ,

and the conclusion of the proposition holds. K

From Observation 2.6 and Proposition 2.8 we conclude that by passing to
a subsequence in Lemma 2.3 we can take the sequences ( ym, i) to be of the
particular form:

ym, i=b i
m, 1! i

1+ } } } +b i
m, *i

! i
*i

, (39)

where 1�*i�n and as m � �, b i
m, j=( ym, i , ! i

j) � � for 1� j�*i and
bi

m, j+1 �b i
m, j � 0 for 1� j�*i&1.

Observation 2.9. Let ( ym) have form (39). If for g # O(n) the orthonor-
mal frames (!1 , ..., !*) and (g!1 , ..., g!*) are distinct, then | gym& ym | � �.
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Proof. We have

| gym& ym |=bm, l } (g!l&!l)+
bm, l+1

bm, l
(g! l+1&!l+1)+ } } }

+
bm, *

bm, l
(g!*&!*) }� � as m � �,

where l is the first index such that g!l {!l . K

Observation 2.10. Let ( ym, i) have form (39), then there exists t i # N such
that *Gym, i=t i and dist(gym, i , hym, i) � � as m � � for any g, h # G with
g(! i

1 , ..., ! i
*i

){h(! i
1 , ..., ! i

*i
).

Proof. By construction,

gym, i=b i
m, 1 g! i

1+...+b i
m, *i

g! i
*i

for all g # G. If [g(! i
1 , ..., ! i

*i
): g # G] contains infinitely many elements, by

Observation 2.9 we have a contradiction with (um) being bounded in
L p+1 (0am

) for

|
0m

|um | p+1�|
GBR ( ym , i)

|um | p+1 � �.

Thus *Gym, i=t i for some ti # N and there exist gj # G with j=1, ..., t i such
that Gym, i=[g1ym, i , ..., gti

ym, i] satisfying that gj (! i
1 , ..., ! i

*i
), j=1, ..., ti , are

all different. Then Observation 2.9 gives the last assertion. K

Proposition 2.11. For two sequences ( ym, i), ( ym, j) in Lemma 2.3 corre-
sponding to :i {:j we have

dist(Gym, i , Gym, j) � � as m � �.

Proof. Assume :i>:j and take 0<2=<(:i&:j). Then there is R>0 such
that (25) holds. If for a subsequence dist(Gym, i , Gym, j)�R� , then there are
gm , g� m # G such that dist(gmym, i , g� m ym, j)�R� . Let r=R+R� such that
BR (gmym, i)/Br (g� mym, j). Then we have a contradiction

:i&=<|
BR(gm ym , i)

|um | p+1�|
Br(g� m ym , j)

|um | p+1<:j+=. K

Proposition 2.12. If in Lemma 2.3 we have dist(Gym, i , Gym, j)�R� for
some R� >0 for any m, then Gym, j is included in the R� neighborhood of Gym, i .
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Proof. We have that there are (g� m), ( ĝm)/G such that

| g� mym, j& ĝm ym, i |�R� .

Then for any g # G we have

| gym, j& gg� &1
m ĝmym, i |=| g� mym, j& ĝmym, i |�R� .

This implies that Gym, j is contained in the R� neighborhood of Gym, i . K

We close up the proof of Lemma 2.5.

Proof of Lemma 2.5. Let sj # N be the sequence where a strict decrease
occurs for :i , i.e., :sj

>:sj+1 . We do an induction on s j . For j=1, we have
:1= } } } =:s1

and we show first Gym, i /[ ym, 1 , ..., ym, s1
] for any 1�i�s1 .

Consider ym, 1 first. If there is g # G such that gym, 1 is not among
[ ym, 1 , ..., ym, s1

] we conclude that for some j0�s1

lim sup
m � �

dist(gym, 1 , ym, j0
)�R� .

If this is not true then along a subsequence

lim
m � �

dist(gym, 1 , ym, j)=�

for all j=2, ..., s1 . Take 0<2=<:s1
&:s1+1 . By Lemma 2.3, there is R>0

such that (25) holds. Then by definition,

:s1+1� lim
m � � |

�
s1
j=1 BR( ym , j) _ BR (gym , 1)

|um | p+1 dx& :
s1

j=1

:j�:s1
&2=,

a contradiction. By Observation 2.6 we replace ym, j0
by gym, 1 . Let

*Gym, 1=t and consider ym, t+1 if t+1�s1 (otherwise we are done with this
step). If for some g # G, (gym, t+1) is not among the sequences, we claim there
is t< j0�s1 and R� >0 such that

lim sup
m � �

dist(gym, t+1 , ym, j0
)�R� .

Otherwise, we have for a subsequence

lim
m � �

dist(gym, t+1 , ym, j)=�

for all j=t+1, ..., s1 . Also by Observation 2.10, Proposition 2.12 and (24),

lim
m � �

dist(gym, t+1 , ym, j)=�
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for all j=1, ..., t. Now, similar argument as above shows a contradiction with
the definition of :s1+1 . Next, assume the conclusion is true for sl and consider
sl+1 . If for some g # G, gym, sl+1 is not among [ ym, 1 , ..., ym, sl+1

], we claim
again there is sl< j0�sl+1 such that

lim sup
m � �

dist(gym, sl+1 , ym, j0
)�R� .

Otherwise by Observation 2.10 and Proposition 2.11, for a subsequence,

lim
m � �

dist(gym, sl+1 , ym, j)=�

for all j=1, ..., sl+1 . Using definition of :sl+1+1 and the argument above
we get a contradiction. Thus we may replace ym, j0

by gym, sl+1 . Let
*Gym, sl+1=t and go on to consider ym, sl+t+1 the same way and we then
finish the induction. K

Let am � � and um # MG, am
such that (Eam

(um)) is a bounded sequence.
Applying Lemma 2.5 we get that there is a subsequence (still denoted by
(um)) and the sequence (:i). Let s�1 be such that :s>:s+1 . Define
Mm=[ ym, 1 , ..., ym, s]. By Lemma 2.5 we make the following conventions,
M� m=Mm �G=[ y� m, 1 , ..., y� m, s� ], :� @=:i for any ym, i in the class y� m, @ and
denote by k@ the number of points in this class. Observe that by (S1), k@�2.
Let 4� the set of all :� @ , @=1, ..., s� . For a sequence as above we have

Proposition 2.13. Let am � � and um # MG, am
such that (Eam

(um)) is a
bounded sequence. Then there is a subsequence (still denoted by (um)) such that

lim inf
m � �

Eam
(um)�S :

s�

@=1

k@:� 2�(p+1)
@ . (40)

Proof. Let =>0, free for the moment. For m large we pick rm>R and
r$m>R with the following properties:

rm � �, (41)

r$m>3rm , (42)

r$m
am

� 0 (43)

so that the balls Br$m
( ym, i) are disjoint for i=1, ..., s. From (21) and (42) we

obtain

|{\m (x)|�4�rm , (44)
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for any x # D. For i=1, ..., s fixed, let vm, i=Tam, rm , r$m , ym , i
um . From (25) we

have

|
Brm ( ym , i)

|um | p+1>:i&=. (45)

Denote .m=.am , r$m , ym , i
, �m=�am , r$m

and \m=\am , rm , r$m
. The change of

variables formula gives

|
.m(Br$m

( ym , i) & 0am)
|vm, i |

p+1 (x) dx

=|
Br$m

( ym , i) & 0am

\ p+1 (.m (x)) |um | p+1 (x) J.m
(x) dx (46)

By Proposition 2.1 and (45) we conclude

lim inf
m � � |

.m (Br$m
( ym , i) & 0am)

|vm, i |
p+1 (x) dx�:i&=. (47)

From (11) we get

lim inf
m � � |

.m (Br$m
( ym , i) & 0am)

|{vm, i |
2 (x)+v2

m, i (x) dx�S(: i&=)2�(p+1). (48)

Then we have

S(:i&=)2�(p+1)�lim inf
m � � |

.m (Br$m
( ym , i) & 0am)

|{vm, i |
2 (x)+v2

m, i(x) dx

=lim inf
m � � |

.m (Br$m
( ym , i) & 0am)

\2
m(x) |{(um (.&1

m (x)))|2

+\2
m(x) u2

m(.&1
m (x)) dx

�lim inf
m � � |

.m (Br$m
( ym , i) & 0am)

|{(um(.&1
m (x)))|2+u2

m(.&1
m (x)) dx

=lim inf
m � � |

Br$m
( ym , i) & 0am

|{um |2 (x) J.m
(x)+u2

m(x) J.m
(x) dx

=lim inf
m � � |

Br$m
( ym , i) & 0am

|{um |2 (x)+u2
m(x) dx (49)
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where for the last equality we used Proposition 2.1, i.e., max |J.m
(x)&1| � 0

uniformly as m � �. Since the balls Br$m
( ym, i) are disjoint we get

lim inf
m � �

Eam
(um)�S :

s�

@

k@ (:� @&=)2�(p+1). (50)

Letting = � 0, the conclusion follows. K

2.3. Existence Theorem

Studying the function

f (x)=a1x:
1+a2x:

2+ } } } +as x:
s

where s�2, ai>0, xi�0, �s
i=1 xi=; and 0<:<1, we make the following

Observation 2.14. We note that the minimum is achieved for xj=; where
j is such that

aj= min
i=1, ..., s

[ai] and min f (x)=aj;:.

Observation 2.15. Suppose s=2 and a1=2( p&1)�( p+1), a2=k( p&1)�( p+1)

and :=2�(p+1). Let _=(2k+1)�(2k+4). If x1+x2=; # (3�4, 1] then if
0<x1�1&_=3�(2k+4) it follows f (x)>k( p&1)�( p+1) ;2�(p+1).

We prove the following

Proposition 2.16. (a) For _=(2k+1)�(2k+4) we have ma, _ �
k( p&1)�(p+1)S as a � �, and

(b) for any sequence am � � and um # K_
G, am

with Eam
(um) �

k( p&1)�( p+1)S we have #am
(um) � 1.

Proof. We prove part (a) of the proposition in two steps,

Step 1: we show

lim sup
a � �

ma, _�k( p&1)�( p+1) S.

For this we construct test functions ua # K_
G, a with Ea(ua) � k ( p&1)�( p+1)S

as a � �. Let v� a solution of the minimizing problem (9). We have that

|
D

|{v� |2+v� 2=S, and |
D

v� p+1=1. (51)

168 CATRINA AND WANG



Denote

v=
v�

k1�( p+1) . (52)

Choose r$>3r and let a>r$ sufficiently large so that the balls Br$ ( yi) are
disjoint, where yi , i=1, ..., k, are the orbit under G of y1 , a point in Rl_[0]
with fixed direction. This is possible because of (S1). Then for i=1, ..., k, let

ua, i=T� a, r, r$, yi
v (53)

and denote

ua= :
k

i=1

ua, i . (54)

Because of (11), any two rotations used in the construction on T� a, r, r$, yi
will

produce the same ua . This shows that ua is G-invariant. For r � �, r$�a � 0
we get

|
0a

u p+1
a � 1, (55)

#(ua) � 1. (56)

Therefore for a sufficiently large, ua �&ua&p+1 # K_
G, a . The energy of ua as

a � � is

Ea \ ua

&ua &p+1+=
�k

i=1 �0a
|{ua, i |

2+u2
a, i

&ua&2
p+1

=k |
D

|{v|2+v2+o(1)=k
S

k2�(p+1)+o(1)

=k( p&1)�( p+1) S+o(1). (57)

Step 2: suppose

lim inf
a � �

ma, _<k( p&1)�( p+1) S.

Then there is a sequence am � � and um # K_
G, am

such that Eam
(um) �

d<k( p&1)�( p+1)S as m � �. With the conventions preceding Proposition
2.13, we get the sequence (:i) and we let 4=[:i: :i>0]. Suppose 4 contains
infinitely many elements (in case 4 is finite take s the number of elements
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in 4). Fix 1�4>=>0 and s�2 such that :s>:s+1 and ;=� s
i=1 :i>

1&=>3�4, so ;=�s�
@=1 k @:� @ . By Proposition 2.13 we have

d= lim
m � �

Eam
(um)�S :

s�

@=1

k@:� 2�( p+1)
@ =S :

s�

@=1

k ( p&1)�( p+1)
@ (k@:� @)

2�( p+1). (58)

Some remarks are in order here. Note that if x # [0]_Rn&l then it is
fixed under G1 , its orbit is contained in [0]_Rn&l and has at least two
elements. If x # Rl_[0], then its orbit contains at least k points, and if x
is neither in [0]_Rn&l nor in Rl_[0] (i.e. both components of x are non-
zero), then its orbit contains at least 2k elements. For any m, a number of
ym, i 's in the set [ ym, 1 , ..., ym, s] corresponding to [:1 , ..., :s] may be con-
tained in [0]_Rn&l & S n&1

am
. Eventually passing to a subsequence we can

assume this number is fixed and denote it by s1 . Without loss of generality
we can assume ym, 1 , ..., ym, s1

are the only ym, i 's in [0]_Rn&l and belong
to classes y� m, 1 , ..., y� m, s� 1

. Then from (58)

d�S2( p&1)�(p+1) :
s� 1

@=1

(k@:� @)
2�( p+1)+Sk( p&1)�( p+1) :

s�

@=s� 1+1

(k@:� @)
2�( p+1), (59)

and by Observation 2.14 we have,

d�S2( p&1)�( p+1) \ :
s� 1

@=1

k@:� @+
2�(p+1)

+Sk ( p&1)�(p+1) \ :
s�

@=s� 1+1

k @ :� @+
2�( p+1)

=S2( p&1)�( p+1) \ :
s� 1

@=1

k@:� @+
2�( p+1)

+Sk ( p&1)�( p+1)\;& :
s� 1

@=1

k@:� @+
2�( p+1)

.

(60)

As before, let rm � �, such that rm�am � 0 and
Brm

( ym, i) & Brm
( ym, j)=< for i{ j. Then |Px| is bounded by rm , uniformly

in x # �s1
i=1 Brm

( ym, i). Therefore,

1
am+1 |

(�s1
i=1 Brm( ym , i)) & 0am

|Px| |um | p+1 (x) dx � 0. (61)

We also have,

lim sup
m � �

1
am+1 |

0am"(�s1
i=1 Brm( ym , i))

|Px| |um | p+1 (x) dx

�lim sup
m � � |

0am"(�s1
i=1 Brm( ym , i))

|um | p+1 (x) dx � 1& :
s� 1

@=1

k@:� @ . (62)
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From (61) and (62) it follows

_<#am
(um)�1& :

s� 1

@=1

k@:� @ , (63)

hence �s� 1
@=1 k @:� @�1&_=3�(2k+4). By Observation 2.15 and (60) we get

S2( p&1)�( p+1) \ :
s� 1

@=1

k@:� @+
2�( p+1)

+Sk ( p&1)�( p+1) \;& :
s� 1

@=1

k@:� @+
2�( p+1)

�Sk( p&1)�( p+1) ;2�( p+1), (64)

with equality if and only if :� @ = 0, for @ = 1, ... , s� 1 . Hence d �
k( p&1)�( p+1)S; 2�( p+1). If = is such that ;2�( p+1) > (1&=) 2�( p+1) >
dk&( p&1)�( p+1)S &1, we obtain the desired contradiction.

For part (b), let am � � and um # K_
G, am

with Em (um) � k( p&1)�( p+1)S.
The argument above shows that :i=0 for any ym, i � Rl_[0]. Therefore all
points ym, i with :i>0 are in Rl_[0], hence #am

(um) � 1. K

Remark 2.17. There are only k ym, i 's for which :i>0, and they are the
orbit of one point only.

Proof. We apply Observation 2.14 to show that every ym, i has orbit
with k elements only, and then the inequality

:
s�

@=1

:� 2�( p+1)
@ �\ :

s�

@=1

:� @+
2�( p+1)

(65)

shows :� @=0 except for one @. K

Proposition 2.18. Let _>(2k+1)�(2k+4) be fixed. Then there is
a0>0 such that

ma, _= inf
u # K_

G , a

Ea(u)

is achieved in the interior of K_
G, a for any a�a0 .

Proof. Consider K� _
G, a , the closure in H 1

0(Rn) of K_
G, a . For a fixed, any

minimizing sequence in K� _
G, a has a convergent subsequence in the weak

topology and the limit is still in K� _
G, a . Since Ea is weakly lower semicon-

tinuous it follows that

inf
u # K� _

G , a

Ea(u)

is achieved. Suppose the proposition is false. By Proposition 2.16 there is
a sequence am � � and um # �K_

G, am
(the boundary of K_

G, am
in H 1

0(Rn))
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such that Em (um) � k( p&1)�( p+1)S. Since #a is continuous in H 1
0(Rn), it

follows that

#am
(um)=_<1, (66)

contradicting Proposition 2.16(b). K

Corollary 2.19. For a�a0 , Ea has a critical point in K_
G, a .

If u is a critical point of Ea in K_
G, a , then u� =(Ea(u))1�( p&1)u is a

weak solution of (1). By regularity theory, u� is a classical solution and by
Maximum Principle it follows u� (x)>0 for any x # 0a .

We now turn to study more about the properties of these solutions.

Remark 2.20. For any =>0 and any am � �, there are R>0 and
ym # S n&1

am
with the property Gym=[ ym, 1 , ..., ym, k] such that x # 0am

"
�k

i=1 BR ( ym, i) implies u� am
(x)<=.

Proof. Let

um (x)=
u� m (x)

&u� m &L p+1
.

Then um # K_
G, am

and Eam
(um) � k( p&1)�( p+1)S. Let =$>0. By Remark 2.17

and Lemma 2.5 we have that there are R>0, ym # S n&1
am

such that
Gym=[ ym, 1 , ..., ym, k] (has k elements) and

|
0am"� k

i=1 BR( ym , i)
u p+1

m <=$. (67)

Since u� m are solutions of (1) we can use a boot strap argument to conclude
from (67) that

u� m (x)=O(=$) for x # 0am>.
k

i=1

BR ( ym, i). (68)

For sufficiently small =$, the conclusion follows. K

For a G-invariant solution u� a obtained as before, denote

Qa=[x # 0a : u� a(x)=max
y # 0a

u� a( y)].

Proposition 2.21. For a sequence am � �, there are rm � 0 and
ym # S n&1

am
such that Gym=[ ym, 1 , ..., ym, k] and Qam

/�k
i=1 Brm

( ym, i).

Proof. For =>0 let ym and R given by Remark 2.20. Let R$m�
3Rm�3R such that Rm � �, R$m�am � 0 and BR$m

( ym, i) & BR$m
( ym, j)=<

for any i{ j. Denote v� m=Tam , Rm , R$m , ym
u� m , with u� m=u� am

. Then on the
domain given by the image of .am , Rm , ym

, denoted by Dm /D, v� m satisfies
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an elliptic equation whose coefficients, on any compact subset of D tend
uniformly to the coefficients of &2v+v=vp. Moreover, vm |�Dm & �D=0 and
by Remark 2.20, v� m (x)<= for any x # �Dm . Also

�D |{v� m |2+v� 2
m dx

(�D v� p+1
m dx)2�( p+1) � S.

By elliptic theory, v� m converges in C 2
loc(D) to a solution v� of (10). Such a

solution must satisfy (11), (12) and (13). Let 1
2>r>0, then there is a $>0

such that |{v� |(x)>$ for any x # (BR (C)"Br (C)) & D, where C=
(0, ..., 0, 1�2). Since as m � �, we have |{v� m |(x) � |{v� |(x) for any x #
(BR (C)"Br (C)) & D it follows that for m sufficiently large, all maximum
points of v� m are in Br (C). Since r is arbitrary, the conclusion follows. K

Collecting the results we have the following

Theorem 2.22. Given G satisfying (S1), there is a0>0 such that equation
(1) has a G-invariant solution u� a for any a�a0 . Moreover, this solution
satisfies

(i) Ea(u� a) � kS ( p+1)�( p&1), &u� a&2
Lp+1 � k2�( p+1)S 2�( p&1) as a � �.

(ii) There exists Pa # R l_[0] & 0a such that *GPa=k and the
set Qa=[x # 0a : u� a(x)=maxy # 0a

u� a( y)] is contained in balls with radius
tending to zero as a � �, centered at the points GPa .

(iii) u� a is concentrated around a G-orbit which contains k points in the
following sense that for any sequence am � � there is a subsequence
(denoted still (am)) and v a least energy solution of (10) such that

lim
am � � |

0am
}{ \u� am

& :
y # GPam

v( } & y)+ }
2

+ } u� am
& :

y # GPam

v( } & y) }
2

dx=0.

The assertion (i) follows from Propositions 2.16 and 2.18, (ii) and (iii)
from the proof of Proposition 2.21. Note that Theorem 1.1 is a conse-
quence of (i) when we take G1=Zk /O(2) and G2=O(1) and solutions
are distinquished by their energy.

3. EXACT SYMMETRY

3.1. Main Results

In order to discuss the exact symmetry of these solutions we are going
to strengthen the assumptions on G, besides (S1). We shall assume that G
is maximal with property (S1) in the sense that

(S2)
for any group O(n)�H�G with H{G we have

*H!>k for any ! such that *G!=k.
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For a>0 large, let u� a be the solution obtained in the previous section and
let us define the isotropy subgroup

7u� a
=[g # O(n) : gu� a=u� a]. (69)

Remark 3.1. 7u� a
is a closed subgroup of O(n).

Proof. Let (gi) i /7u� a
a sequence convergent to g # O(n). Since g iu� a=u� a

it follows gu� a=u� a , i.e. g # 7u� a
. K

Theorem 3.2. If G satisfies (S1) and (S2) then for sufficiently large a, we
have 7u� a

=G.

First we need the following

Lemma 3.3. For G satisfying (S1) and (S2), there is $>0 such that for
any closed subgroup O(n)�H�G and H{G we have H!"N$ (G!){<, for
any ! # Sn&1 with *G!=k.

Here N$ (G!) denotes the $ neighborhood of G! in Rn.

Proof. Let !1 ,..., !k a G-orbit of !1 , and let

$=min {1
8

d,
1

2 - n= , where d=min
:{;

dist(!: , !;). (70)

Suppose by contradiction that

H!1 / .
:=1, ..., k

N$ (!:). (71)

Observation 3.4. Let h� # H such that h� !: # N$ (!;). Then for any h # H,
h!: # N$ (!:) if and only if h� h!: # N$ (!;).

Indeed, if h!: # N$ (!:) then because H is a group of isometries we have

|h� h!:&!; |�|h� h!:&h� !: |+|h� !:&!; |=|h!:&!: |+|h� !:&!; |<2$. (72)

Since h� h!: # N$ (G!1), it follows h� h!: # N$ (!;). Conversely, the same argu-
ment and the inequalities

|h!:&!: |= |h� h!:&h� !: |�|h� h!:&!; |+|h� !:&!; |<2$ (73)

complete the proof of the observation.
We construct functions f i

: : H � [&1, 1], i=1, ..., n, :=1, ..., k given by

f i
:(h)={xi (h!:)

0
if h!: # N$ (!:)
otherwise

(74)
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where xi are the coordinate functions in Rn. It is not difficult to see that
because of (71), the functions f i

: are continuous. Also we have

:
n

i=1

( f i
:(h))2=1 or 0 (75)

according to h!: being in N$ (!:) or not.
Let h� # H such that h� !: # N$ (!;). Then for any h # H we have

xi (h� h!:)= :
n

j=1

h� i
j xj (h!:). (76)

Let g # G such that !:= g!; . By (74) and Observation 3.4 we conclude

f i
;(h� hg)= :

n

j=1

h� i
j f j

:(h), for any h # H i.e. ( f i
;) g

h� = :
n

j=1

h� i
j f j

: . (77)

Since H is closed subgroup of O(n) it is compact. This guarantees the exist-
ence of a bi-invariant measure on H ( the Haar measure, see [7]). That is,
there is a linear functional I: C(H) � R with the properties of the integral
(the Haar integral) such that if f # C(H), h # H, fh (x)= f (hx) and
f h (x)= f (xh) for any x # H then I( f )=I( fh)=I( f h). With h� # H such that
h� !: # N$ (!;), from (77) we now have

I( f i
;)=I(( f i

;) g
h� )=I \ :

n

j=1

h� i
j f j

:+= :
n

j=1

h� i
jI( f j

:). (78)

We claim that the vectors I( f:) # Rn with components I( f i
:), i=1, ..., n are

nonzero. Since �n
i=1 (xi (!:))2=1 we have that

|xj (!:)|�
1

- n
(79)

for at least one j. If h!: # N$ (!:) then | f j
:(h)&x j (!:)|<$ and from (70)

and (79) we get

| f j
:(h)|�

1

2 - n
for any h # H such that h!: # N$ (!:). (80)

We now show that the set H:=[h # H : h!: # N$ (!:)] has nonzero
measure which proves the claim that I( f:) are nonzero (at least one com-
ponent is the integral of a constant sign function on a nonzero measure
set). If \: H_Rn � Rn is the action of H, let

\: : H � Rn to be \: (h)=\(h, !:).
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Because \: are continuous, it follows H: are open sets. Hence V=
�:=1, ..., k H: is open in H. Since H is compact any open neighborhood V
of e has nonzero measure. Otherwise one can extract a finite open cover
from translates of V which implies the Haar measure of H is 0. Therefore
we can consider the vectors ': # S n&1 obtained by normalizing to unit
length the vectors I( f:). From (78) it follows that H'1=['1 , ..., 'k]. We
have *G'1�k and because G/H, it follows *G'1=k. This contradicts
(S2). The proof of the lemma is complete. K

Corollary 3.5. Under the hypotheses of Lemma 3.3, there is $$>0 such
that H'"N$$ (G!){<, for any ', ! # S n&1 with *G!=k.

Proof. Take $$=$�2. Suppose H' # N$$ (G!). Since *G!=k, by
Lemma 3.3, there is h # H such that dist(h!, G!)>$. Therefore

$$>dist(h', G!)�dist(h!, G!)&dist(h', h!)>$&dist(', !)>$$,

contradiction. K

Proof of Theorem 3.2. Assume 7u� am
{G for a sequence am � �. Since

u� m=u� am
are solutions of (1), by maximum principle we have

u� m (x0)>1 for any x0 local maximum point of u� m . (81)

Let xm # 0am
be any local maximum of um . For =>0 sufficiently small and

R as in the Remark 2.20, estimate (68), implies

xm # .
k

i=1

BR ( ym, i), i.e. dist(xm , Gym, 1)<R. (82)

The vectors 'm=xm � |xm | and !m, 1= ym, 1 � | ym, 1 | are on the unit sphere.
By Remark 3.1 and Corollary 3.5, it follows that there is hm # 7u� am

such
that

dist(hm'm , G!m, 1)>$$.

Therefore, dist(hmxm , Gym, 1)>am$$. By symmetry hmxm is also a local
maximum of um . For am�R�$$, this contradicts (82). K

3.2. Examples

We consider the condition

(S$2) {G1 acts irreducible on Rl and for any G1�H1�O(l ),
H1 {G1 we have *H1!>k for any ! with *G!=k.

It is not difficult to see that if G=G1 _O(n&l ) and G1 satisfies (S$2), then
G satisfies (S2).
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In the following we shall consider G=G1_O(n&l ), where G1 acts
irreducible on Rl. Our examples of groups that act irreducible on Rl come
from [6]. We shall take G1 to be a Coxeter group (finite group generated
by reflections about hyperplanes in Rl). The classification of all irreducible
such groups is given in [6] in terms of Coxeter graphs.

We have the following

Remark 3.6. For sufficiently large a, problem (1) has solutions with
exact symmetry G=G1_O(n&l ) where:

v for l=2 we have the dihedral groups G1=Dk for k�3 (corres-
ponding to the graphs H k

2).

v for l�3, there are at least two possibilities for G1 : the group that
leaves invariant the regular simplex (tetrahedron) in which case k=l+1
(corresponds to the graph Al), and the group that leaves invariant the
cube, for which k=2l (corresponds to the graph Bl).

v for l=3, besides the two above there is another choice for G1 : the
group that leaves invariant the dodecahedron (icosahedron) for which
k=12 (corresponds to the graph I3).

v for l=4, G1 is denoted F4 , is a finite group larger than the group
of the cube.

In all cases above, G1 satisfies (S$2). In the case G1 is the symmetry group
of the cube or F4 see the arguments in [14]. For G1 the symmetry group
of the regular simplex, it is not difficult to see that there are only two orbits
having l+1 points each, and if ! # S l&1 is a point with l+1=*G1! then
&! generates the other orbit with l+1 points. Therefore, if H1 is a sub-
group of O(n) containing strictly G1 , then

min
! # Sl&1

*H1!>l+1.

Proof of Theorem 1.2. Consider G=Dk _O(n&2). By Theorem 2.22
we have solutions for each k�2 distinguished by their energy level.
Moreover, by Theorem 3.2 the isotropy of any such solution is G. K

For the existence part (Theorem 2.22), condition (S1) is sufficient. In this
case there are numerous possibilities of splitting Rl in a direct sum of
orthogonal subspaces, invariant under the action of G1 . The number k
(implicitly the energy level) distinguishes between solutions corresponding
to different groups.

Remark 3.7. We give an example in which (S2) is not satisfied and the
exact symmetry result (Theorem 3.2) fails to hold. This partially indicates
certain necessity of our condition (S2) for G being prescribed symmetry.
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Consider n=2 and G1=G=Zk . Then it is easy to see (S2) is not satisfied.
By the result of Coffman [3] (or applying Theorem 2.22 in this paper) we
still get many rotationally non-equivalent solutions uk for a large. Then
Kawohl in [8] examined the exact symmetry of these solutions and
showed that 7uk

=Dk , which is larger than Zk , i.e., 7uk
{Zk .

We believe that only under (S1) and (S$2), the solutions obtained in
Section 2 must have the isotropy group exactly G1_O(n&l ).

4. CONCLUDING REMARKS

4.1. Least Energy Solutions

In the case l=n,

P: Rn � Rn

is just the identity map, so a�|Px|�a+1 for any x # 0a . This implies as
a � �, #a(u) � 1 for any u # MG, a . For a sufficiently large, MG, a=K_

G, a ,
i.e. the minimizers of the energy in K_

G, a are global minimizers in MG, a . So
by a different method we recover the known results; namely we have the
following

Theorem 4.1. For n=2 or n�4, as a � � the number of rotationally
nonequivalent solutions of problem (1) tends to infinity.

Moreover, suppose G=G1_G2 , and k1=minx # S l&1 *G1 x and k2=
minx # S n&l&1 *G2x. Theorem 2.22 is applicable with k=min[k1 , k2], and
gives precise information on the energy level and the concentration of these
solutions.

For n=3 the global minimizers of the energy are discussed in [15]. As
a � � solutions can concentrate:

v at one point under symmetry G=[e]_O(2), (axially symmetric
solutions),

v at two points under symmetry G=Z2 _O(2), (axially symmetric
solutions),

v at four points with G the group leaving a regular tetrahedron
invariant,

v at six points with G the group leaving a cube invariant (solutions
concentrate at the vertices of an octahedron-dual to the cube),

v at twelve points with G the group leaving invariant an icosahedron
(or the dual dodecahedron),

v there is a rotationally invariant solution for G=O(3) whose energy
tends to infinity as a � �.
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By arguments similar to those in Section 3, now we can show that for
n=3 there are G-invariant least energy solutions having exact symmetry G,
when G is one of the following: [e]_O(2), Z2_O(2), the tetrahedral sub-
group, the cube subgroup, the icosahedral subgroup, and O(3). However,
the solutions having exact symmetry Dk_O(1) (k�3) from Theorem 1.2
cannot be global minimizers.

4.2. Extensions

With almost no changes of our proof, we may consider the following

&2u+*u=u p

in 0a{ u>0, (83)

u=0, on �0a

where *> &?2 is a constant. Then all conclusions for (1) hold for (83) for
a large. We only point out that for a large �0a

( |{u|2+*u2) dx is a norm for
H 1

0(0a). This is due to the fact *1 (&2), the first eigenvalue with respect to
0a converges to ?2, the first eigenvalue on D (e.g., [11]). One may also
consider more general elliptic operators than the Laplacian. For a more
general nonlinear term f (u) instead of u p, one may use the Nehari manifold
approach (e.g., [15] [22]).

Finally we want to point out that with minor changes, our method
applies to more general expanding domains with symmetries. Consider C
being a smooth hypersurface in Rn diffeomorphic to S n&1. Let G satisfying
(S1) and suppose C is G invariant. For a>0 denote

Ca=[x # Rn : x�a # C].

We take 0a to be

0a=[x+*&(x) # Rn : x # Ca , * # (0, 1)],

where &(x) is the exterior unit normal at x # Ca .
We have the following

Remark 4.2. For Problem (1) where the domain 0a is as above,
Theorem 2.22 still holds.

Without loss of generality we can assume

dist(0, C)=1, where 0 is the origin in Rn.
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We keep the same notations for HG, a , MG, a and K_
G, a . The only major

change is in the construction of the operators

T: H 1
0(0a) � H 1

0(D) and T� : H 1
0(D) � H 1

0(0a).

This can be done using diffeomorphisms 8: C � S n&1; around any point
x # C for a sufficiently small neighborhood there is a diffeomorphism 8
which restricted to this neighborhood is close to a rigid transformation in
Rn. Proposition 2.16 holds with the same value for _, and so Theorem 2.22
holds. Roughly speaking, for a minimizing sequence in K_

G, am
the concen-

tration in [0]_Rn&l & 0am
is prohibited by the requirement #am

(um)>_,
and the concentration at points that are neither in [0]_Rn&l nor in
Rl_[0] cannot happen because the G orbit of such a point contains more
than k elements.
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