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Abstract 
Traffic congestion in urban areas is a big issue for cities around the world. Thus, studying congestion 
and respective counter measures is of high importance for the increasing urbanization of society. 
Congestion analysis and forecast is most of the times done either on a link-wise network or on a network-
wide level. Though, due to bottlenecks in the infrastructure and similar commuting patterns by road 
users, usually the same parts of an urban traffic network get congested. The idea is to observe and 
investigate primarily these most vulnerable parts of the network, which are denoted as congestion 
clusters, as they are crucial to both, drivers and operators. A methodology for determining congestion 
clusters is described, which provides a significant amount of flexibility to be able to meet different needs 
for different applications or cities. Based on a five months set of Floating Car (FC) data, the suggested 
methodology is tested. First analyses are conducted to understand up to which degree these clusters are 
able to represent the congestion level of the entire network. Besides, correlations between the clusters 
are investigated on a statistical basis and conclusions are drawn. The results provide a basis for potential 
traffic estimation and forecast systems.  
 
Keywords: Probe data, network clustering, congestion analysis, traffic estimation, traffic prediction 

1 Introduction 
For traveller information systems as well as traffic control, it is fundamental to know where traffic 

jams occur and, in best case, to have reliable forecasts concerning their future development. Otherwise, 
neither can road users be informed adequately, nor can effective traffic management measures be 
executed to dissolve congestion.  

However, monitoring an entire traffic network and providing forecasts for any possible location is 
very costly and, since significant parts of the network are never congested, also not necessary. This is 
also the fundamental motivation for the proposed approach: Start with identifying areas in which 
connected pockets of congestion typically emerge and reside, and then analyse primarily them instead 
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of the whole road network. These congestion-prone areas will from here on be denoted as congestion 
clusters. The hope is that congestion clusters can be understood as "neuralgic points" of the network. As 
such, they are most relevant to drivers and traffic management and possibly allow drawing conclusions 
on the traffic status of the whole network. 

The paper is structured as follows: First, an overview on literature concerning urban traffic analysis 
and forecast will be provided. Then, the Floating Car (FC) data that are used to identify congestion 
clusters and the data preparation process are described. In a next step, it is explained which properties 
congestion clusters should show and how they can be computed algorithmically. Finally, a case study is 
executed. Munich (Germany) and its suburbs are used as test site for a five months period. The 
sensitivity of the cluster computation methodology on its input parameters is discussed. Then, the 
congestion in the clusters is analysed. First focus is laid on the typical congestion starts and ends, and 
second, the correlation between pairs of clusters is determined.  

2 Related Work 
Traffic forecasts provide valuable information for traveller as well as traffic management and 

control. With the rapid spread of mobile sensors the availability of traffic data increased dramatically 
and new method are developed that apply this type of data to problems such as traffic estimation and 
prediction (Corrado de Fabritiis, 2008), (Herring, Abbeel, Hofleitner, & Bayen, 2010). Short-term traffic 
prediction has been subject of many works. In (Vlahogianni, Karlaftis, & Golias, 2014) there is a 
detailed review of current approaches. Usually the methods are classified into parametric and non-
parametric approaches. Parametric approaches define a model and fit the parameters of the model to the 
data. Non-Parametric approaches on the other hand have a flexible structure and a variable number of 
parameters. (Lippi, Bertini, & Frasconi, 2013) (Karlaftis & Vlahogianni, 2011)  present comparisons of 
different methods and their accuracy in traffic forecasting. In (Vlahogianni, Karlaftis, & Golias, 2014) 
10 mayor challenges for upcoming research are pointed out. One is to focus on network level spatio-
temporal approaches. In the past year several works regarding that have been published. To mention a 
few, (Min & Wynter, 2011) apply a multivariate spatial-temporal autoregressive model on a sample 
network with different road categories. (Kamarianakis & Prastacos, 2005) model the traffic flow in 
space and time using a Space-Time Autoregressive Integrated Moving Average (STARIMA) model. 
(Yue & Yeh, 2008) analyse the spatio-temporal characteristics of flow on highways. (Cheng, Haworth, 
& Wang, 2012) compute correlations between links in the London traffic network in order to analyse 
required model complexities for models such as STARIMA. Most of the literature is based on small to 
medium sized networks that model dependencies between road links. For bigger networks, the 
computational expense increases dramatically to compute the correlations between all links. In order to 
deal with the computational costs, Neighbourhood Selection Techniques (STN) haven been developed. 
(Gao, Sun, & Shi, 2011) apply a graphical Lasso approach.  (Haworth & Cheng, 2014) give a comparison 
about different techniques. However, those are still based on a link level approach. Road networks of 
bigger cities consist of a huge number of links. Furthermore, the traffic state at each time and each 
segment is often perturbed by nonlinear dynamics. Therefore, another approach is to analyse a traffic 
network from a macroscopic perspective. (Ji & Geroliminis, 2012) (Ji, Luo, & Geroliminis, 2014) 
partition a road network into clusters with similar properties in order to (1) determine a macroscopic 
fundamental diagram and (2) to observe congestion propagation in urban networks. The present work 
combines both approaches, which, to our knowledge, has not been done yet. First a network is 
partitioned into frequently congested clusters, followed by a spatio-temporal congestion analysis 
between the clusters. The aim is to show that the resulting clusters that simplify the complex network 
allow computing congestion estimations and predictions in a road network. 
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3 Description and Preparation of Available Traffic Data 
As test site, the city of Munich (Germany) is chosen (see Figure 2). FC data form the data basis for 

the following analysis. The FC data are collected by a fleet of private vehicles that frequently report 
their GPS positions. An internal logic in the vehicle compares the current velocity with an assumed free-
flow speed that depends on the current location. If both differ, then the current position is sent to a 
server. The fleet delivers approximately 25,000 traces (sequences of GPS positions, one for each 
recorded trip) each day for Munich. The collected GPS positions are matched onto a digital map 
(describing the map-matching extents the scope of this paper. Please refer to (Quddus, Ochieng, & 
Noland, 2007) for details regarding usual map-matching procedures) and speeds are computed from the 
travel time between the positions. This digital map represents the considered part of the road network 
and can be understood as (directed) graph . The set of nodes  represents intersections and 
the set of edges  represents road segments. Here, it is only stated that at the end, a huge collection of 
link and time related driving speeds  is obtained for  and  denoting a specific 
point in time for each . These data are aggregated for each edge and discretized over time with a 
resolution of one minute. In other words: Each considered day is separated into  time 
intervals. Each time interval describes a timespan of one minute. For each link and each time interval, 
all available driving speeds are averaged arithmetically. The resulting aggregated speeds are denoted by 

. Thereby,  is understood as a function that returns for any  and any time  the 
corresponding driving speed. Note that recorded driving speeds  are not available for each link 
and each time interval. However, for the further proceeding, it is necessary to have one unique estimation 
of speed for any point in time and any link in the network. Consequently, to fill the gaps, the existing 
data are extrapolated in time. This means that for each time interval, for which no recorded speed is 
available, the last measured speed is used. Certainly, this is only done if the timespan between last 
measurement and the considered point in time is not too long. For the described research, this timespan 
was set to  minutes. To fill the remaining gaps, one assumes free-flow traffic conditions. This is 
critical, since it is not possible to decide whether there is no car on-site or cars move with free-flow 
speed and simply do not report it. However, this is the typical proceeding in literature (Ji, Luo, & 
Geroliminis, 2014) (Saeedmanesh & Geroliminis, 2015), as it is the probably the best one can do. 

4 Methodology: Congestion Cluster Identification 
For the considered road network of Munich, as supposedly for many others, pockets of congestion 

typically appear in different regions. Here, a congestion pocket is basically defined as a connected part 
of the road network which consists (at a certain time) solely of congested segments. 

These pockets change their shape over time as they propagate through the network, split up or merge 
with other pockets. Thereby, the critical areas, i.e., the parts of the road network where these pockets 
occur and reside, often remain the same. This regularity is a consequence of similar origin-destination 
relations among road users and the static nature of road networks (and their capacities). 

The goal is to identify such areas, which are denoted as congestion clusters. Clusters are intended to 
fulfil three fundamental properties. First, it is postulated for congestion clusters that they are static, i.e., 
their shape does not change over time. This is a contrast to former work (Ji, Luo, & Geroliminis, 2014) 
(Saeedmanesh & Geroliminis, 2015), where congestion clusters are considered as dynamically changing 
parts of the network. Keeping them static will lead to issues concerning their computation. At the same, 
this property is fundamental from a practical perspective: Dynamically changing parts of the road 
network can hardly be observed steadily. 
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Second, congestion cluster need to span often congested parts of the network. This means that solely 
such road segments can be assigned to clusters that are frequently congested. The last property is 
compactness or connectivity of all edges belonging to the same cluster. 

Other or further criteria are also possible. In (Ji, Luo, & Geroliminis, 2014) for instance, clusters are 
intended to achieve a high "intra-cluster similarity". This means that all segments belonging to the same 
cluster are intended to show a similar development of driving speeds over time. If one thinks of 
prediction procedures, it seems reasonable to demand high intra-cluster similarity. In this case, one could 
reduce prediction approaches to a cluster level (i.e., predictions are solely made for clusters and not on 
a link-level) without losing too much information, since all edges of the same cluster behave similarly. 

It may also be interesting to check up to which degree the entire network can be represented by the 
union of all clusters. Especially for traffic management purposes, it would be very helpful to be able to 
concentrate observation on only a small part of the road network and, at the same time, to be able to 
draw conclusions on the entire network (or at least on the most critical parts of the remaining network). 

The cluster computation is supposed to fulfil all these cluster properties. The algorithm is depicted 
in Figure 1. Other, potentially interesting cluster properties (intra-cluster similarity, the ability to 
represent additional parts of the entire network) are also ensured by the suggested approach - at least up 
to some degree. Certainly, especially these additional properties strongly depend on parameters that are 
applied within the approach. A corresponding analysis will be given in section 5.1. The understanding 
of the authors thereby is that the list of desired properties depends on the intended purpose (for instance, 
use cluster analysis as basis for forecasts or monitoring) and should not generally be predetermined. 

4.1 Dynamic Congestion Pockets 

Before describing the clustering procedure, first a formal definition of congestion pockets is given. 
Let for some time  and each edge   a recorded driving speed  be given. It is assumed 
that a free-flow driving speed  is available for any edge . Then, relative driving speeds are 
defined as 

 (1) 

 
The definition of relative driving speeds is necessary to describe under which conditions an edge is 

interpreted as congested. For this purpose, let a parameter  be given that defines up to 
which relative driving speed an edge  is seen as congested. Furthermore, let with  ("J" for "jam") a 
function be denoted that assigns for any time  the value of  to an edge  if and only if this edge is 
congested at time : 

       

Figure 1: Flowchart and schema describing the methodology of computing congestion clusters 
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(2) 

 
A similar definition of congested edges can be found in (Ji, Luo, & Geroliminis, 2014). It allows 

providing a formal introduction of congestion pockets: For some time  and a congested edge , a 
congestion pocket  is defined as the set of all edges  that have the subsequent properties: 

1.  
2. Either there exists a path from to  on  or a path from to  on  that consists solely of 

edges to which  assigns a value of one. 

To be able to differentiate between pockets, they are associated with single edges. Each pocket could 
be associated with any of the edges that belongs to it. An edge, on the other hand, always belongs solely 
to one pocket. Note that pockets are defined dynamically, i.e., they depend on time. This is their main 
difference to congestion clusters, which will be constructed as time-independent (i.e., static) parts of the 
road network. The definition of congestion pockets as connected subgraphs of  is rather intuitive. 
However, when considering real traffic data, the number of congestion pockets can become very high. 
An often occurring problem is that areas, which visually seem to belong to the same congestion pocket, 
are separated by single, non-congested edges. In many cases, this is rather a lack of data than a real 
separation between congestion pockets. Hence, a spatial smoothing is carried out as it suggested in (Ji, 
Luo, & Geroliminis, 2014). There, after determining the set of congested edges for some time , all 
edges which have more congested neighbours than non-congested neighbours are understood as 
congested edges, too. This means that function  is redefined as stated below: 

 

 (3) 

 
Thereby,  denotes the cardinality of set  and  denotes the neighbourhood of , i.e., the set 

of all edges in  that share at least one node with  (except for edge  itself). Having function  adjusted, 
the definition of congestion pockets remains basically the same. 

4.2 Construction of Static Congestion Clusters 
To generate static congestion clusters, one proceeds as follows: First, information on driving speeds 

depending on time and location is prepared (as it is sketched in section 3). This information is again 
represented by . In a next step, relative driving speeds  are computed and a critical relative 
threshold  speed is defined. Based hereon, congestion pockets are computed for each time  as 
explained in section 4.1. Thereby,  describes the set of all time intervals for which traffic data are 
available. Now, the actual cluster computation can take place. It starts with computing for each pair of 
edges  the number of times  ("D" for duration) for which these edges were part of 
the same congestion pocket: 

 (4) 

 
The more often two edges are part of the same pocket, the more similar their congestion behaviour 
typically is. Besides, being often part of the same congestion pocket ensures also spatial proximity. 
Afterwards, one assigns edges that are often part of the same pocket to the same cluster. Thereby, one 
proceeds iteratively. In each iteration, the pair of edges  is considered that shows the highest -
value, i.e.: 
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Both edges are then assigned to the same cluster. If exactly one of both edges has already been 
assigned to a cluster, then the other edge is assigned to this cluster, too. If none of both edges is assigned 
to a cluster, a new cluster is generated. It consists at that time solely of  and . If both edges have 
already been assigned to clusters (and not to the same cluster), then a new cluster is generated by fusing 
both existing clusters. At the end of each iteration, in order to exclude this pair of edges from further 
considerations, the corresponding value  is set equal to zero. To assign only frequently 
congested edges to clusters, a minimum congestion duration  is introduced for this 
iterative procedure. This means that one stops the iteration as soon as the highest remaining -value 
falls below . Consequently, in the end one receives a set of clusters that contains exactly the set of 
edges for which another edge exists that shared at least time periods within the same congestion 
pocket: 

 (6) 

 
Here,  denotes the number of computed clusters and  with  denotes the -th 
cluster. For practical use, the parameter  is introduced that chooses  (independent of ) 
as the   - quantile of all : 
 

 (7) 

 
The suggested clustering approach is designed in such a way that the three fundamental cluster 
properties can be expected. The suggested method obviously ensures that any of the computed clusters 
is static. Furthermore, high congestion rates of all edges belonging to clusters are guaranteed by an 
appropriately chosen value  (or , respectively) and step E. Note that connectivity of clusters 
cannot be guaranteed by the described proceeding. However, for the analysis which is described in 
section 5 this turned out to be no issue. Steps C and D indirectly achieved cluster connectivity in almost 
all cases. 
 
The congestion probability of the clusters can be regulated by adjusting  accordingly. Returning to the 
two "optional" cluster properties, it can be observed that a certain level of intra-cluster similarity is 
implicitly achieved by the suggested methodology. Edges within the same cluster are in most cases 
frequently part of the same congestion pocket and hence need to be congested during the same time 
periods. The idea that clusters may be used to represent larger parts of the road network, on the other 
hand, seems not to be mirrored by the design of the suggested procedure. With  and , however, 
two degrees of freedom exist within the clustering approach. One could use them to achieve or 
strengthen additional properties. For this purpose, indices that allow quantifying up to which degree a 
specific set of clusters fulfils these properties are introduced. Intra-cluster similarity, for instance, can 
for each cluster  be quantified by its counterpart, the dissimilarity: 

 
(8) 

 
This measure of dissimilarity is oriented on the one that was introduced in (Ji & Geroliminis, 2012). 
However, here a temporal component has been included, whereas in (Ji & Geroliminis, 2012) speeds 
for a single point in time have been considered. High -values indicates low intra-cluster similarity.  
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One possibility to quantify the ability of a set of clusters   to represent the traffic situation of 
the entire network is the so-called Pearson correlation: 

 (9) 

 (10) 

 
where   is the length of edge ,  is the total length of all edges in an edge set ,  is the 

covariance and  are the standard deviations of functions  and  over time , 
respectively. Thus,  describes up to which extend all clusters  combined are congested at time 
.  correspondingly describes the overall congestion percentage of the network. Then,  

describes how strong the level of congestion inside the clusters  correlates with the level of congestion 
in the entire network. 

5 Case Study: The Munich Road Network 
The clustering algorithm is fed with traffic data that are available for the Munich road network. The 
traffic in Munich is dominated by commuters that head towards the city in the morning and leave the 
city in the evening. This increased demand causes congestion on a very regular basis. The goal is to 
identify these regularities and find patterns regarding congestion states in everyday traffic. Therefore, 
we first present the results of the clustering algorithm based on different parametrizations. 
Afterwards, we analyse the behaviour of an exemplary set of clusters for a duration of 5 months. 
Thereby, all "non-typical" days will be excluded from consideration to minor scatter. 

5.1 Static Clusters in Munich Road Network 
To generate clusters, the cluster generation procedure is executed on a basis of four weeks of data 

from the 3rd of November 2014 to the 30th, a time without vacation.  is kept fix with a value of  
and several different values for  are tested ( ,  and ). Besides, the data is split up into a 
morning period (0 - 12am) and an evening period (12am - 12pm). This is up to some degree a 
contradiction to the idea of static clusters, but the suggested methodology does not allow an edge to be 
part of two different clusters. If the data was not split, the location and size of many clusters would blur, 
since the congestion behaviour of many edges prompts that they are part of a morning and an evening 
cluster. Another important observation is that the number of the resulting cluster becomes very high 
(more than 100). To counter this, only the biggest cluster in terms of covered length are chosen for 
further considerations. For the described analysis, their number was reduced to ten. All other clusters 
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were discarded. For each of the three example parametrizations, the aforementioned intra-cluster 
similarity and the Pearson correlation are computed. 

 
Figure 2: Static clusters of morning and evening traffic depending on different parameters . The 
number of clusters is set to 10 and the threshold  to 0.5. 

Figure 2 shows the resulting morning and evening clusters for different parametrisations. Moreover, 
also the corresponding Pearson correlation  of the edges inside the clusters  and the entire 
network   as well as the averages of all for  are displayed.  

It can be observed that  has a significant influence on the appearance of the clusters. The higher 
the value of , the smaller the clusters get. Furthermore, it can be observed that together with , also 
the intra-cluster dissimilarity  increases. (With one exception for  for the evening clusters). 
The Pearson correlation, on the contrary, gets reduced. That shows that smaller the clusters are less 
sensitive to changes of congestion in the entire network. Different values for  have a comparably 
strong influence, but this won't be considered here. 

5.2 Distinguishing between Regular and Irregular days 
The sets of morning and evening clusters that result when setting  equal to  are from here on 

considered. The behaviour of these clusters will be analysed in the following for a time period of five 
months, from August 1st, 2014 until December 31st, 2014. To reduce scatter, only "regular" days will 
be considered. Thereby, a day is denoted as regular if the set of clusters shows an average congestion 
behaviour with regard to the corresponding weekday. 

For the described study, altogether 20 weeks (  is used as index for weeks) of data are considered to 
analyse the behaviour of the aforementioned set of clusters. The weekdays are encoded via an index 

                 
(a) Clustering with for morning traffic, resulting in  and 

 

                 
(a) Clustering with for morning traffic, resulting in  and 
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, where  encodes Mondays,  encodes Tuesdays and so on. Furthermore, it is assumed that  
denotes the considered minute of day, i.e., . Then,  encodes the -th 
minute for the -th weekday in the -th week. Hence,  encodes the time span 06:59 - 07:00 on the 
Tuesday of the fifth week. Based hereon,   is defined as the median congestion percentage over 
all clusters at time  for weekday . The median is here used instead of the arithmetic average to achieve 
robustness against outliers. 

Figure 3 illustrates the median of each weekday over time. We can see that in median case the 
weekdays Monday-Thursday show a very similar congestion state having peaks at approximately 8am 
and 6pm. Fridays have lower peaks and the congestion level is higher in the early hours of afternoon 
than on any other day. Saturdays and Sundays show low median congestion. These results match with 
the commuting behaviour in the city: For most workers Monday-Thursdays are similar days, on Friday 
fewer people commute to work, plus, the leave work earlier than on the other days. 

We define a day  as regular if the following regularity index does not exceed the threshold 
: 

 (11) 

 
The resulting set of  regular days is denoted by . From the originally 153 days in the period of 

5 month, a total of 32 was filtered out using the regularity index. The analysis of the filtered days 
revealed the most probable reasons for irregular congestion behaviour: missing data due to technical 
issues, official holidays on weekdays and winter vacation.   

5.3 Cluster Congestion Analysis 

Subsequently, typical times when clusters usually get congested and when congestion dissolves 
intra-day are analysed. For this purpose, the level of congestion  is computed for each 

cluster separately for all regular days. To remove perturbations and transform the time series  
into a binary signal, we introduce two thresholds:  and  and perform a hysteresis-based 

processing of  into the states  (not congested) and  (congested). Thus, a cluster  can only 

change its status from zero to one if . The other way round, it can only switch to status 

zero if . Besides, a minimal duration of states is postulated to smooth peaks and drops 
in the signal. This means that if a cluster is congested for less than  consecutive one-minute time 
intervals, then its status is set back to zero throughout this period. In a second step, all non-congested 
states that persist less than  minutes are set to congested. The influence of this process can be seen 

Figure 3: Hourly median total congestion level for each weekday (left), individual congestion level of 
each cluster for half a day (mid), binary congestion level of each cluster after hysteresis-filtering (right). 
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exemplarily in the middle and the right part of Figure 3 for the morning traffic of one day. On the x-
axis, the ten clusters are listed and the y-axis contains the time. In the middle figure, red areas indicate 
time intervals for which the congestion percentage of a cluster  is close to one at that specific 
time, green areas correspondingly indicate low percentages. In the right figure, the congestion states 
(white means state zero, colour means state one) that result from the smoothing process for one example 
are shown.  

The starting time  of the congestion in cluster  for the morning data is defined by the first 

time, for which cluster  reaches state one (congested) on that half-day. The ending time  
correspondingly is the last time (up to 12am for the morning period) for which state congested is 
obtained. In case no congestion happened on that day, the values are set to zero. The times  and 

analogously denote the starting and ending times of congestion in the evening clusters, i.e., for 
the second half of the day.  

Figure 4 shows the distributions of the variables  and  based on data collected on 
regular days and sorted in descending order by the distance to the city centre from the left to the right. 
We observe several things: (1) The starting times of congestion in the morning depends on the distance 
to the city centre. Especially clusters 1 and 3 emerge early, while clusters 2, 5 and 9, which are part of 
the city centre, get congested comparably late. (2) The congestion in all evening clusters dissolves 
without exception at around 7pm. (3) The spread of congestion starting times in the morning and 
congestion ending times in the evening is considerably smaller for all clusters than for congestion ends 
in the morning and congestion starts in the afternoon. 

The preceding analysis shows the behaviour of individual clusters. However, also the relations 
between different clusters could reveal spatio-temporal characteristics of congestion in an urban 
network. For this purpose, we define the cluster correlation between cluster  and  as: 

 (12) 

 (13) 

Figure 4: Distributions of starting and ending times for each cluster in the morning (left) and in the 
evening (right). The boxes describe the  and  75 percentiles of the data, the whiskers include 
all data in the range of  

The index  thereby indicates that the corresponding quantities are computed for morning periods 
and can analogously be computed for evening periods. describes the probability that two 
clusters behave similar during the morning period of a day. "Similar" in this context means that there 
exists either a time in the morning where the two clusters are congested (condition two in equation 
(13) ), or both clusters are inactive for the complete morning (condition 1). 
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The correlation reveals several cluster combinations that correlate well. Figure 5a) shows the 
starting and ending times of clusters 2 and 5, which have a strong correlation ( ). Since both of 
them are located in the city centre, a high correlation is very likely. The data are mostly located right of 
the bisecting line. This means that in most cases cluster 2 got congested later than cluster 5.  

Another example, where the spatio-temporal dependency is more distinctive, is given in Figure 5b). 
It shows how cluster 1 (motorway) and 5 (city centre) behave. There is a high data density around (7am, 
8am), several data points are on the y-axis, there are many days without any congestion (counted by the 
number at the bottom left of the scatter plot) and two days where there was only congestion in cluster 1 
but not cluster 5 (this is indicated by the two triangles on the bottom of the scatter plot; remember that 

 is equal to zero if no congestion occurred for cluster 5 on day ). Thus, on all days (except 
2) it holds that if cluster 1 got congested, also cluster 5 got congested, but approximately one hour later.  

The reason for this dependency is probably the fact that commuters heading towards the city centre 
cause first a high demand and thus congestion on the motorways leading and later reach the city centre 
causing congestion there.  

Applying findings like these in an online traffic forecast means to observe the congestion state of 
each cluster. In the case one cluster gets congested, the dependencies with other clusters are checked. If 
there is a high correlation between them, it is probable that the other cluster will get congested, too. The 
analysis of the distribution of samples possibly allows predicting the approximate time of congestion in 
other clusters. However, for an online prediction system, the presented methodology has to be adapted, 
in order to identify irregular days in real-time. 

6 Conclusion and Outlook 
Traffic congestion in urban areas is an increasingly severe problem for major cities. Estimating 

historic, current and prospective traffic is crucial to take measures against traffic jams in road networks. 
The quick spread of mobile traffic sensors allows to gather network-wide traffic data und thus, allows 
to analyse traffic congestion on a wider scale and in more detail than it has been possible before.  

In this paper, we first presented an algorithm to reduce a complex traffic network to the parts that 
are most frequently congested (clusters). The clustering method has been applied to the city Munich, 
where the traffic conditions can be estimated using a huge set of FC data over five months. The 
subsequently applied analyses of the congestion behaviour of the resulting clusters allows (1) identifying 
weekdays that do not behave regularly and, thus, can be classified as outliers, (2) estimating the times 
and variances of the congestion in each cluster and (3) quantifying how strong different clusters correlate 
with regard to their congestion behaviour. Applications of the methods and results can be used to control 

Figure 5: Congestion starts for the clusters with the highest correlation (left); Congestion starts for a 
motorway cluster (1) and a cluster in the city center (5). 
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urban traffic in order to avoid or reduce the negative effects of congestion. Furthermore, the statistical 
results can be used as traffic forecasts for road users such that they can react and take other routes, drive 
at other times or take other transportation modes.  

Among the presented, more experiments can be and should be done. For now, the clustering has only 
been tested on the network of Munich but needs to be applied to other cities that may have differing 
traffic patterns. Finally, the obtained results provide a promising basis for traffic forecasts, but developed 
method still need to be implemented and tested in an online traffic forecast system. 
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