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Abstract. The generating function of the number of subpatterns of a DOL. sequence i shown to be
rational. The computation of the generating function is based on a recursion formula which
expresses this function by the generating functions of subpatterns of smalier length and by the
Magnus transform of the homomorphism.

1. Introduction

The goal of the analysis of algorithms is to be able to predict the behaviour of an
algorithm based on its description. Any-algorithm can be written in normal {orin as

while B(S) do S := f(S)

where S is a suitable state space and where f is a function expressible by conditional
statements and basic operators. A very basic problem is then to study the behaviour
of the sequence of states which is formed by iteration of a single function on this
state space. A DOL sequence is such a sequence where the space is the set of words
3* on a finite set 3, and where the function to be iterated is a homomerphism of
this state space with respect to concatenation. DOL sequences have been studied
extensively. A survey of L systems can be found in Rozenberg and Salomaa [6]. In
programming terms, this situation is a model of a simple macro expansion; the
homomorphism is a set of macros without arguments; a single application to a
string of letters is a one level macro expansion of this string, and the nth iterated
application is the complete n level macro expansion.

This paper studies the subpatterns of a DOL sequence. First it is shown how the
formal sum of subpatterns of a word can be expressed as the -esult of a simpie
algebraic transformation. Then the subpatterns of the homomorphic image of a
word are found from the subpatterns of the word. Finally the generatiag function of
a given subpattern is found from a recursion equation. The generating function is
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rational. As a corollary it is shown decidable if two DJL sequences passes the same
number of all subpatterns of length at most N.

For any subpattern. the coefficients of the generating funciion depend only on
the initial word and on the homomorphism. Formulas for the computation of the
coefficients are given.

During revision of the present paper the author learned that Ochsenschliger [4)
independently has found Theorem 4.1 and the Corollaries 3.13, 3.14 and 4.2.

2. Preliminaries

Let 3o, ..., ou} be a finite sct. Let A(S ) be the ring of polynomials vith integer
coefficients in the noncommuting variables of 2. Let the unit element be | and the
nall element 0. A monomial of degree n is a polynomial which consists of a single
term ca; ...a, where 4;€ X and where c is an integer. Lat P(X) be the ring of
formal powe; serics.

Z* can be considered a subset of A(Z) by identifying any word w with the
monomial 1 - w. The empty word A is identificd with 1.

Let Xn be the subring generated by all monomiils of degree greater than or
equal to N. Xy is an ideal. Denote the quotient ring A(X)/ Xn+1 by Av(Z). The
dimension of AN(Z)is

A(2}is avector space. A basis consists of ali monomials with coefficient 1. It can be
written 1U3 U XU - - - . To a ring homomorphism f corresponds a linear mapping
of the vector spacz. '

If f(Xn+1)< Xn+1 then a linear mapping is induced in the quotient space An(Z).
A basis of the vector space An(2) consists of {w + X1 : w is a monomial of degree
<N with coefficient 1}. w+Xy . is often denoted simply by w.

Example 2.1. Let

_ja->b
EZ W > avb+ab

and consider the induced map in A»(2). A basis of A,(X)is {1, a, b, aa, ad, ba, bb}.
Strictly speaking the basis is {1+ X3, a+ X3, b+X;, ..., bb+X3}.

The induced map is described by a matrix. The columns are the images of the
base vectors. The column index is the base vectors and the entries are the
coefficients of the base vectors occurring as row indices.
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b aa ab ba bb
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glab)=b(a + i +abk)= ba --bd mod X,
g(ba)=(a+b--ab)b =ab 1 bb mod X3,

g(bb)=(a+b+ab)a+b+ab)=au+ab+ba+bb mod X.

A monomial with coefficient 1 and degree #n is often called a tensor of degree n.
Often product is then denoted by ®. Let V be a vector space withbase B. V® V' is
defined as the vector space with base B2,

Ve ev.
is

——
n times
the vector spac: with B”,
Let f:U;~»{J; and g:V,;> V, be linear maps. fOg: U/, ® V,>U,® V; is
defined by f ® g(u, v)=f(u)® g(v). If U=U,, then f & f and

,®m=f®“':o_£

n times
is defined.

Example 2.2. Let Bbe{a,b}. V® V has basis {a®a,a® b, b®a, b® b}. Let f
be described by the matrix

a b
a (0 1)
b 11
f® f is described by the matrix
aa ab ba bb
aa [0 0 O 1
ab [0 0 1 1)
ba {10 1 0 1
bb \1 1 1 1

Here juxtaposition is used instead of ®.
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3. Subpatterns and the Magnus transform

The subpattern represeiitation of a word is defined. An algebraic transformation
from a word to its subpatiern representation is shown. The mapping which takes a
subpattern representation of its homomorphic image is found and it is shown how
to compute it.

A n-subpattern of the word w=a, ... anm, a; €2 is constructed by omitting m-n
occurrences of letters. There exists 2™ subpatterns of w each corresponding to a
particular choice of letters. The number of occurrences of v as subpattern in w is

denoted (:\. by Eilenbery [1, p. 238].

Example 3.i. w=abaa. ba is a 2-subpattern which can be constructed in two ways;
by omittir:g the first and last letters or by omitting the first and third letters.

b is a 1-subpattern.
a is a 1-subpattern.
a is a |-subpattern which occurs 3 times.

The subpattern representation of a word w is an element of A(2). The coefficient
of each subypiattern is the number of times that subpattern occurs in w. Thus the

. - w
subpattern representation of w can be expressed as )y, s« ( )v.
v

Example 3.2. The subpattern representation of baa equals 1+2a +b +aa + 2ba +
baa. The subpattern A occurs once: if all letters are omitted. It is denoted by the
unit element of A(Z).
Let M:A(2)-> A(X) be the ring homormorphism defined by M(o)=1+0c for
o€2. M s known as the Magnus transform. It is introduced in Magnus et al. [3].
The next lemma shows that the Magnus transform of a word equals its subpattern
representation.

Lemma 3.3 Ler w e X*. The coefficient of the monomial v in M(w) is (:)

Proof. Let w=a,...a, Then M(w)=(1+a,)...(1+a,). This product results in
asum of 2" terms. Each term is obtained by selecting either 1 or a; from the factor
(1+ a;) and so corresponds to the subpattern which omits the letters corresponding
to the factors where 1 has been selected.

Corollary 3.4. The subpattern representation of the product uv is the product of the
subpattern representations of u and v.
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Proof. M(uv)=M(u)NM{v).
Example 3.5.

M(baa)=(1+b)(t+a)1+a)=1+b+2a+aa+2ba+baa
which equals the subpattern representation of baa.
Lemma 3.6. The Magnus transform is a ring isomorphism.
Proof. The homomorphism

N:AZ)->AQ)

defined by N(o:)=0: — 1 has the property that MN (o:) = o; and MN(o;)=0;. The
lemma follows. N is the inverse of M.

Next the subpattern representation of the homomorphic image of a word is
characterized.

Notation 3.7. Let f be a homomorphism. Following Hall [2] we let f* denote
MfM ™. f™ therefore takes the subpattern representation of a word to the sub-
pattern representation of ihe hormomorphic image of that word. fM is shown in the
following diagram.

M

A(Z) A)
f [ lf”
ARG) —— A

Lemma 3.8 fM(0:)=M(f(c:)-1;i=1,2,... k.
Proof. f™(0:)= MfM\(0;)= Mf(o: — 1) = M(f(o:)— 1)= Mf(0:)— 1.

Example 3.9.

f=‘a—>b fM={a->b

b - ab b->a+b+ab

ba —M ___ 1+a+b+ba

f[ fml
abb M 1+a+2b+2ab+bb+abb
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By computation one verifies that

Md+a+b+ba)=MM"'(1+a+b+ba)
=1+4+a+2b+2ab+bb+abb.

Lemma 3.10. fM(Xn) © X

Proof. Let 3'={o €3 :f(c)=A}. Notice that if f(¢)= A, then f*(¢’)=0 by Lemma
3.8, if f(o')# A, then f™ (o) contains only monomials of degree ! or more. Let next
w be a monomial of degree n. If w contains letters from Z’, then Mw)=0
otherwise f'(w) contains only monomials of degree N or more.

Corollary 3.11. For all N, f™ induces a linear mapping f in the quotient vectorspace
An(2).

Let us look closer at the marix of f expressed in the bases ZUZ®*U ... U
2®N

5 be 232__. ‘___2®N_.
M, , all zeroes
M, ; M,
fN=
Mn, Mn,; My~ /

The column indices of M;; are the tensors of deiree j and the row indices are the
tensors of degree i. M is therefore a |X| X|Z|' matrix. Each column of M;; is the
coefficients of the i-subpatterns of the image under f™ of the tensor of degree j
which is the index of that column. By Lemma 3.10 f¥ is zero above the box-
diagonal. My, is all zeroes if N exceeds the maximal length of f(c) for all o€ 3.
For convenience let M;, be denoted by M;. M, for j > 1 is uniquely determined by
the first column o{ the matrices M;,,. The next lemmastates the explicit dependence
and Corollary 3.14 yields a recursion formula for the computation of M;;.

Lemma 3.12.

M= I M,®@M,® --®M,
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Proof. The lemma is proved by induction in j. For j=1 the lemma states that
M, =M, Assume the lemma true for j und consider M;;,(wo) where length
(wo)=j+1. M, ;.1(wo) equals the degree i component of f™ (wo). Since f™ (wor) =
Mw)M ),

M, j(wo)=M;_, ;(w)Mi(c)+M,_ ;(w)Ms(o)+ - “+My (WM (o).
The induction hypothesis finishes the proof.

Corollary 3.13. M, =MZ".

Corollary 3.14. The charqcter.istic polynomial of fN is the product of the ci.arac-
teristic polynomials of MY, i=1,2,...,N.

Corollary 3.15.
M, =0 for i >max,z s{|f(o)l}

M;j=M;-1; s OM_5; 1 OMy+---+M;_ ;.1 ® M-y

Proof. Follows from the proof of Lemma 3.12.

4. Application to iterated homomorphisms

In this section a recursion formula is found for the generating function of the
number of subpatterns in a sequence of iterated images by a homomorphism. First
a rational expression for the generating function is found in Theorem 4.1. Then the
N-subpatterr. equivalence problem is shown decidable. Finally a recursion formula
is found making use of the lower diagonal block form of fX. This result is formu-
lated as Theorem 4.3. An example finishes the section. It illustrates how the
generating functions can be computed knowing the characteristic vectors of m.

Let us proceed to find the generating function for the number of subpatterns of
length N. Let w € * and let uy be the canonical image of M(w) in An(2). Hence
uy is the formal sum of all subpatterns of w of length at most N, each subpattern v

with coefficient (:) Let Uy be the sequence of elements from An(Z)

M M
Un=un, fnun, ... ,'(fN)puN, e

(f,“q‘ Yuy is the formal sum of all subpatterns of f°(w), each with its subpattern
multiplicity as coefficient.

By the generating function of a sequence of vectors is simply meant the vector of
generating functions of the elements of the vector. With this understanding, the
generating function of Uy is the formal sum

uN'*'f%uNY"’” . +(fﬁf)’u~y"+- .
Let this formal sum be called Fn(y).
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Let E be the identity matrix and let A be any square matrix. Then the following
identity holds
(E-Ay) '=E+Ay+A%*+ - -+ APy +. -,
Applying the identity using A = fN permits us to state the next theorem.

Theorem 4.1. Let Fx(y) be the generating function of the sequence of vectors of
subpatterns of length at wiost N for the sequence

w,f(w),....ff(w),....
Then Fn(y)=(E ~ fXy) "un where un is the image of M(w) in An(Z).

In particular the generating function is rational.

Let f and g be two homomorphisms of I* into 2*. Let w € 3*, Let us define the
N-subpatiern equivalence problem : Consider the sequences

w,f(w),...,f’(w),...,
w,gw),...,g°w),....

Are the number of occurrences of all subpatterns of length at most N identical for
the two sequences?

Corollary 4.2. The N-subpattern equivalence problem is decidable.

Proof. The procedure simply is to find the generating functions and to decide if
(E~fNy) 'un = (E—gNy) un.

This can be done since both are rational: each is a quotient between two poly-
nomials.

P P . :
6((%_0'((};))- ifandonlyif P(y)Q'(y)=P'(y)Q(y).

The problem then reduces to the identity of two polynomials, which is a decidable
problem.

This result is a gencralization of the result by Paz and Salomaa [5] on the
decidability of the growth equivalence problem for DOL sequences.

Next a recursion formula for Fy(y) is found by exploring the particular simple
form of the matrix for fi.

First we observe that if a matrix can be writter: as a block matrix

(9



The numéer of subpatterns of a DOL sequence 65

with all zeroes in the upper right hand corner, then the inverse matrix is found by
the block matrix

A—:_(__P_“l___i_"_)

D'cB™! 'p™!
Applied to M (f)n+1 we may write
M [
0
PN N | S S N
(f)N+l MN+1,1|MN+1.2! e IMN+1,N : Mn 1N+

Here the vertical bar has been used to denote horizontal juxtaposition of matrices.

Fnai(p)=(E —fNw1y) una

( (E—fNy)! ‘
(E-Mnaine1y) ' Maaral* - IMusan)y(E —fay) ™

We next define v, = u, and for N=1, vn., is the vector in IZIQ)N *! such that
un+1 = (un, vn+1). In this way the vector un., is split into the vector of homo-
geneous components ~

un = (o1, ..., On+1).
Substituting un+1 = (Un, ON+1) WeE get
(E-fny) 'un
(E‘MN+1.N+1}’)—1(MN+1.1| T |MN+1.N))’(E“'f?v4Y)_luN
+(E_MN+1.N+1)’)—1UN+1)

Fn+(y)= (

FN+1(Y)=(FN(y) ON+1_\~1 ®N+1_\~1 )
(E-MPV'y) '\ (Mysra] s - M n)YFn () H(E-M777y) onva

An alternative way to express the recursion is found by splitting the vector Fy .1
() of generating functions into the vectors gi(y) of generating functions for sub-
patterns of degree /.

Fna(y)=(@(y), . ... gnv+1(y))

This result is formulated as a theorem:

Theorem 4.3. Let gi(y) be the generating function of the sequence of vectors of
subpatterns of length i for the sequence

w,f(w),....f'(w),...



66 P. Johansen

Let v; be the vector of subpatterns of length i of M(w). Then
gve1(0)=(E-MTP""'y) (My111y81(0)+ *  + Mno1.nygn (y)+ Oner).

So far the basis, in which f¥ has been expressed, has been $ U 3®%y -+ - U ZE",
For the computation of the generating functions it is, however, more convenient to
use another basis in order to make the matrix inversion as easy as possible. Let
therefore B be the basis in which f}' is in rational canonical form. As a special case,
if £} has distinct characteristic values, then B can be chosen as the set of associated
characteristic vectors. If X is expressad in the basis BUB®2U - -+ UB®V, then
the matrices (E — M?"*'y) are much easier to invert. In the mentioned special case,
all matrices arc diagonal matrices.

Example 4.4. Let us consider the computation of the generating functions for

subpatterns of length 1 and 2 for the homomorphism f = {: : b and w = ba. f3' is

ab
the homomorphism of Example 2.1 from which M,;, M,, and M, is read. To
choose a basis, let us compute the characteristic values of f1".

_M— z 1 =
£ =] 2, Ly|mre-n-1=22-2
=(z—{)z-p) where{, u=3+3V5.

e1=(1,{)and e2 = (1, u) are characteristic vectors and constitute B.
1 1 - 1 n 1
o=(, ) e'=—=(* )
{ w p=¢\-¢ 1
gi1(y)=—(E-My)'v,.

In basis B, v; has the coordinates Q"(i) and M, is a diagohal matrix with

diagonal entries ¢ and wu.

oo -1 1-¢y 0 1 (1+u
SO T —n| o __1_2'—"2(1—:)
L-py/
1+p,
—1 1 =y
Tw-0) - ¢y)1—pny) 1 -{
1-py/

In order to get the function in base 3 one just has to postmultiply by Q.
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Written formally we have
giy)=—(E-My) 'v,;=-Q - Q" '(F-My)'Q - Q7 'v,
=-Q-(E-Q7'M1Qy)'Q7'v,.

If we include tensors of degree 2 the basis becomes B U B ® B. The coordinate
transformations are

P=(Q 0 ) and P“=(Q_l 0 ).

O Q®Q 0 (Q®0)"
‘The transformed homomorphism is
-1a4d
p! lzwp___( Q A’{‘:O . 0 )
Q®Q) MG (Q®Q) (M, ®OM)Q®Q)’

g2(y)=(E—M; ® My) ™ (M2.1yg1(y)—v2).
In order to avoid the inversion we transform as before:
2:(y)=(Q®Q)- (E-(Q® Q)M ® M)
X(Q®Q)) - (Q®'Q)'M1yQ0Q 'gi(y)-(Q® Q) 'va).

Here we only have to invert a diagonal matrix as well as Q ® Q. By the properties
of a tensor product (Q® Q) '=Q'® Q. gx(y) can now be found using tensor
product, matrix multiplicatior. and difference. The calculations are straightforward
and are not shown.

§. Conclusion

The transform of a homomorphism induced by the Magnus transform is intro-
duced. The first basic observation of this paper is expressed by Lemma 3.10 which
says that the transform of a homomorphism never decreases the length of a word
except possibly to zero. A consequence is that the transform can be described by a
lower diagonal block matrix. Using matrix techniques the structure of this matrix is
exhibited in Lemma 3.12 and Corollary 3.15. The second basic observation is the
exploitation of the lower diagonal block matrix form to deduce thke recursion
formula of Theorem 4.3 for the generating function of a subpattern.
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