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Our aim in this article is to introduce and study the notion of weak and strong Schauder
bases in fuzzy normed spaces. Further, we introduce strong andweak fuzzy approximation
properties and set a relationship between these two new notions which may provide an
acceleration to the structural analysis of fuzzy normed spaces.
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1. Introduction

Let X be a Banach space and {xn}∞n=1be a sequence of elements of X . If for every x ∈ X , there exists a unique sequence
{an}∞n=1 of scalars such that

lim
n→∞

∥∥∥∥∥x− n∑
k=1

akxk

∥∥∥∥∥ = 0,
then {xn}∞n=1 is called a Schauder basis for X where ‖ · ‖ is the norm of X .
Schauder bases play an important role in the structural investigation of Banach spaces of infinite dimensions. It coincides

with the classical algebraic (Hamel) basis in finite dimensionswhile they are different in infinite dimensions. A Banach space
may not have a Schauder basis whereas it necessarily has a Hamel basis. However, Schauder bases are more important and
functional than Hamel bases in almost all investigations of infinite dimensional Banach spaces and of the operators acting
on them. They are especially important in applications to operator equations on Banach or Hilbert spaces modelling many
abstract family of problems in science. The solution of these problems in general consists of finding inverse of a given function
by means of an operator. This function, for instance, is usually known as the load function in differential problems. If the
Banach space of such functions has a Schauder basis one can easily construct an approximation of the load function by using
the element of the Schauder basis of the space. So, the solution of the problem in an operator equation is obtained as the
norm limit of a sequence of approximations (see, for example, [1]), and also one can establish an estimation of error.
By modifying his own studies on fuzzy topological vector spaces, Katsaras [2] first introduced the notion of fuzzy

seminorm and norm on a vector space. Then, Felbin [3] gave the concept of a fuzzy normed space (FNS, for short) by applying
the notion of fuzzy distance of Kaleva and Seikala [4] on vector spaces. Independently, Cheng and Mordeson [5] considered
a fuzzy norm on a linear space whose associated metric is of Kramosil and Michalek type [6]. Further, Xiao and Zhu [7]
improved slightly Felbin’s definition of fuzzy norm of a linear operator between FNSs. Recently, Bag and Samanta [8] has
given another notion of boundedness in FNS and introduced another type of boundedness of operators. With the novelty of
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their approach, they could introduce fuzzy dual spaces and some important analogues of fundamental theorems in classical
functional analysis [9]. Another important contribution to these results has come from Lael and Nourouzi [10] when they
have introduced and investigated fuzzy compact operators. We aim in this article to give a contribution to the studies on
FNSs by introducing weak and strong fuzzy basis notions.

2. Basic definition and results

C and Rwill denote the set of all complex and real numbers, respectively, in the context.

Definition 1 ([8]). A fuzzy subset N of X × R is called a fuzzy norm on X if the following conditions are satisfied for all
x, y ∈ X and c ∈ R;

(N.1) N(x, t) = 0 for all non-positive t ∈ R,
(N.2) N(x, t) = 1 for all t ∈ R+ if and only if x = 0,
(N.3) N(cx, t) = N

(
x, t
|c|

)
for all t ∈ R+ and c 6= 0,

(N.4) N(x+ y, t + s) ≥ min{N(x, t),N(y, s)} for all s, t ∈ R,
(N.5) N(x, ·) is a non-decreasing function on R, and supt∈R N(x, t) = 1.

The pair (X,N)will be referred to as a fuzzy normed space (FNS).

For some normed space (X, ‖ · ‖), the functions

N1(x, t) =

{ t
t + ‖x‖

, if t > 0

0, if t ≤ 0
and N2(x, t) =

{
1, if t > ‖x‖
0, if t ≤ ‖x‖

are fuzzy norms on X .

Definition 2 ([8]). Let (X,N) be a FNS and U ⊂ X . U is said to be fuzzy open if for each x ∈ U there exist some t > 0 and
some α ∈ (0, 1) such that B(x, α, t) ⊆ U where B(x, α, t) = {y : N(x− y, t) > 1− α}.

Theorem 1 ([8]). Suppose (X,N) is a FNS with the condition

(N.6) N(x, t) > 0 for all t ∈ R+ implies that x = 0.

Let ‖x‖α = inf{t > 0 : N(x, t) ≥ α}, for each α ∈ (0, 1). Then {‖ · ‖α : α ∈ (0, 1)} is an ascending family of norms on X. These
norms are called α-norms on X corresponding to fuzzy norm N.

Proposition 1 ([10]). Let (X,N) be a FNS satisfying (N.6) and {xn} be a sequence in X. Then limN(xn − x, t) = 1 if and only if
limn→∞ ‖xn − x‖α = 0 for all α ∈ (0, 1).

Definition 3 ([9]). Let (X,N1) and (Y ,N2) be two FNSs and f : X → Y be a mapping.

(1) f is called weakly fuzzy continuous at x0 ∈ X if for given ε > 0 and α ∈ (0, 1), there exists some δ = δ(ε, α) > 0 such
that, for all x ∈ X ,

N1 (x− x0, δ) ≥ α implies N2 (f (x)− f (x0) , ε) ≥ α.

(2) f is called strongly fuzzy continuous at x0 ∈ X if, for given ε > 0, there exists some δ = δ(ε) > 0 such that, for all x ∈ X ,

N2 (f (x)− f (x0) , ε) ≥ N1 (x− x0, δ) .

(3) Let f be linear. f is called weakly fuzzy bounded on X if for every α ∈ (0, 1), there exists somemα > 0 such that, for all
x ∈ X ,

N1

(
x,
t
mα

)
≥ α implies N2 (f (x), t) ≥ α, ∀t > 0.

The set of all these operators is denoted by F ′(X, Y ) and it is a vector space.
(4) Let f be linear. f is called strongly fuzzy bounded on X if for every α ∈ (0, 1), there exists someM > 0 such that, for all
x ∈ X ,

N2 (f (x), t) ≥ N1

(
x,
t
M

)
, ∀t > 0.

The set of all these operators is denoted by F(X, Y ) and it is a vector space.

Theorem 2 ([9]). Let (X,N1) and (Y ,N2) be two FNSs and f : X → Y be a linear mapping. Then f is strongly (weakly) fuzzy
continuous if and only if it is strongly (weakly) fuzzy bounded.
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Following condition will be used in the context;

(N.7) For x 6= 0,N(x, ·) is continuous on R and strictly increasing on {t : 0 < N(x, t) < 1} .

Theorem 3 ([9]). Let (X,N1) and (Y ,N2) be two FNSs satisfying (N.6) and (N.7) and f : X → Y be a linear mapping. Then

(1) f is weakly fuzzy bounded if and only if it is bounded w.r.t. α-norms of N1 and N2, for each α ∈ (0, 1).
(2) f is strongly fuzzy bounded if and only if it is uniformly bounded w.r.t. α-norms of N1 and N2. That is, there exists someM > 0
(independent of α) such that ‖f (x)‖α ≤ M‖x‖α , for all α ∈ (0, 1).

3. Convergence and closure in FNSs

Definition 4. Let {xn} be a sequence in an FNS (X,N). Then

(1) It is said to be weakly fuzzy convergent to x ∈ X and denoted by
wf
−→ x iff, for every α ∈ (0, 1) and ε > 0, there exists

some n0 = n0 (α, ε) such that n ≥ n0 implies N (xn − x, ε) ≥ 1− α.

(2) It is said to be strongly fuzzy convergent to x ∈ X and denoted by xn
sf
−→ x iff, for every α ∈ (0, 1), there exists some

n0 = n0(α) such that n ≥ n0 implies N(xn − x, t) ≥ 1− α, for all t > 0.

Hence, the definitions of a sf(wf)-Cauchy sequence, sf(wf)-closure of a subset and a sf(wf)-complete FNS can be given in
a similar way as in classical normed spaces.

Proposition 2 ([11]). Let {xn} be a sequence in the FNS (X,N) satisfying (N.6). Then

(1) xn
wf
−→ x iff, for each α ∈ (0, 1),

lim
n→∞
‖xn − x‖α = 0.

(2) xn
sf
−→ x iff

lim
n→∞
‖xn − x‖α = 0 uniformly in α

where ‖ · ‖α are α-norms of N.

It is obvious that, if a sequence is sf-convergent then it is wf-convergent to the same point, but not conversely.

Example 1. Let X = C and consider the fuzzy norm

N(z, t) =


t − |z|
t + |z|

, if t > |z|

0, if t ≤ |z|

on X . We can find α-norms of N since it satisfies (N.6) condition. Thus,

N(z, t) ≥ α ⇔
t − |z|
t + |z|

≥ α ⇔
1+ α
1− α

|z| ≤ t.

This shows that ‖z‖α = inf{t > 0 : N(z, t) ≥ α} = 1+α
1−α |z|. We now show that the sequence {zn} =

{ 1
n

}
is wf-convergent

but not sf. Since each ‖·‖α is equivalent to |·|, obviously, {zn} is wf-convergent to 0. However, this convergence is not uniform
in α. Indeed; for given ε > 0,

‖zn‖α =
1+ α
1− α

|zn| < ε⇔
1+ α
(1− α) ε

< n.

We cannot find desired n0 since 1+α
(1−α)ε →∞ as α→ 1.

Definition 5. The sf(wf)-closure of a subset B in a FNS (X,N) is denoted by
−s
B (
−w

B ) and defined by the set of all x ∈ X such

that there exists a sequence {xn} in B such that xn
sf (wf )
−−−→ x. We say that B is sf(wf)-closed whenever

−s
B (
−w

B ) = B.

It is easy to see that
−s
B⊆
−w

B . Let us present an example showing that this inclusion may be strict.
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Example 2. Let X be a normed space. Again consider the FNS in the Example 1. Let UX = {x ∈ X : ‖x‖ < 1}. Then
−w

UX =
BX = {x ∈ X : |x| ≤ 1}. Let us show this. For every x ∈ BX we must find a sequence {xn}∞n=1 ⊂ UX such that ‖xn − x‖α → 0,
as n→∞, for each α ∈ (0, 1). This is accomplished by taking xn =

(
1− 1

n+1

)
x since each xn ∈ UX and

‖xn − x‖α =
(
1+ α
1− α

)
‖xn − x‖

=

(
1+ α
1− α

)
‖x‖
n+ 1

→ 0, as n→∞, for each α ∈ (0, 1).

However,
−s
UX= UX . Indeed; if x ∈

−s
UX then there exists {xn}∞n=1 ⊂ UX such that ‖xn− x‖α → 0 uniformly in α as n→∞. This

means, given ε > 0, there exists an integer n0(ε) > 0 such that for n ≥ n0 and for every α ∈ (0, 1),

‖xn − x‖α < ε.

On the other hand,

‖x‖ ≤ ‖xn − x‖ + ‖xn‖ < ‖xn − x‖ + 1

=

(
1− α
1+ α

)
‖xn − x‖α + 1

<

(
1+ α
1− α

)
ε + 1, for n ≥ n0, and for every α ∈ (0, 1).

By letting ε → 0 we get ‖x‖ < 1. Note that, there is no danger of α → 1 as ε → 0 since changes on ε (via n0) does not

affect α. Hence,
−s
UX⊆ UX .

Definition 6 ([11]). A subset B in a fuzzy normed space (X,N) is called sf(wf)-compact if each sequence of elements of B has
a sf(wf)-convergent subsequence.

Definition 7 ([11]). Let (X,N1) and (Y ,N2) be two FNSs and f : X → Y be a mapping. Then f is called sf(wf)-compact if
for every fuzzy bounded subset B of X the subset f (B) is relatively sf(wf)-compact, that is, sf(wf)-closure of f (B) is sf(wf)-
compact.

Remark 1. We should note that weakly fuzzy compact operators or weakly fuzzy convergent sequences do not fuzzy
generalization of weakly compact operators or weakly convergent sequences in classical functional analysis. They have
absolutely different stories.

4. Strong and weak fuzzy bases

Definition 8. Let {xn}∞n=1 be a sequence in an FNS (X,N). Then

(1) It is said to be weak fuzzy (Schauder) basis (wf-basis, for short) of X iff, for every x ∈ X , there exists a unique sequence
{an}∞n=1 of scalars such that

n∑
k=1

akxk
wf
−→ x.

This means, for each α ∈ (0, 1) and ε > 0, there exists some n0 = n0(α, ε) such that n ≥ n0 implies

N

(
x−

n∑
k=1

akxk, ε

)
≥ 1− α.

In this case, it is called x has weak fuzzy representation

x =
∞∑
k=1

akxk.

(2) It is said to be strong fuzzy (Schauder) basis (sf-basis, for short) of X iff, for every x ∈ X , there exists a unique sequence
{an}∞n=1 of scalars such that

n∑
k=1

akxk
sf
−→ x.
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This means, for each α ∈ (0, 1), there exists some n0 = n0(α) such that n ≥ n0 implies

N

(
x−

n∑
k=1

akxk, t

)
≥ 1− α, for all t > 0.

In this case, it is called x has the strong fuzzy representation

x =
∞∑
k=1

akxk.

We can better understand the definition whenever the fuzzy norm satisfies the condition (N.6) as the next proposition
shows. The proof is similar to that of Proposition 2.

Proposition 3. Let {xn} be a sequence in an FNS (X,N) satisfying (N.6). Then
(1) {xn}∞n=1 is a wf-basis of X iff, for every x ∈ X, there exists a unique sequence {an}

∞

n=1 of scalars such that, for each α ∈ (0, 1),

lim
n→∞

∥∥∥∥∥x− n∑
k=1

akxk

∥∥∥∥∥
α

= 0.

(2) {xn}∞n=1 is a sf-basis of X iff, for every x ∈ X, there exists a unique sequence {an}
∞

n=1 of scalars such that,

lim
n→∞

∥∥∥∥∥x− n∑
k=1

akxk

∥∥∥∥∥
α

= 0 uniformly in α

where ‖ · ‖α are α-norms of N.

Definition 9. By the notations in the Definition 8, a mapping

fn : X → R, fn(x) = fn

(
∞∑
k=1

akxk

)
= an

and

Pn : X → X, Pn(x) = Pn

(
∞∑
k=1

akxk

)
=

n∑
k=1

akxk, n = 1, 2, . . .

are called coordinate functionals and natural projections, respectively, associated with the wf(sf)-basis {xn} in X .

Proposition 4. Let {xn} be a basis in a wf-complete FNS (X,N) satisfying (N.6). Then each fn and Pn is wf-continuous.

Proof. By Proposition 3, {xn} is also a Schauder basis in the Banach space (X, ‖ · ‖α) for each α ∈ (0, 1). So,

fn : (X, ‖ · ‖α)→ R, fn(x) = fn

(
∞∑
k=1

akxk

)
= an and

Pn : (X, ‖ · ‖α)→ (X, ‖ · ‖α) , Pn (x) = Pn

(
∞∑
k=1

akxk

)
=

n∑
k=1

akxk

are continuous. This means the mappings are wf-continuous for each n. �

It is obvious that, if {xn}∞n=1 is a sf-basis of X then it is wf-basis of X , but not conversely.

Example 3. Consider classical Banach space c0 with the norm ‖x‖∞ = sup ‖xn‖where x = {xn} and define

N(x, t) =


t − ‖x‖∞
t + ‖x‖∞

, if t > ‖x‖∞

0, if t ≤ ‖x‖∞

on c0 as a fuzzy norm. We know from the former example that α-norms of N are ‖x‖α = 1+α
1−α ‖x‖∞. The sequence e1 =

(1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . . is a wf-basis for the FNS (c0,N). Let us show this. In fact, this is obvious by Proposition 3
since

lim
n→∞

∥∥∥∥∥x− n∑
k=1

anxn

∥∥∥∥∥
α

=
1+ α
1− α

lim
n→∞

∥∥∥∥∥x− n∑
k=1

anxn

∥∥∥∥∥
∞

= 0,
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for each α ∈ (0, 1). However, this convergence is not uniform in α since

1+ α
(1− α) ε

→∞ as α→ 1.

This actually proves that no sequence in (c0,N) can be a sf-basis.
However if we put

N1(x, t) =
{
1, if t > ‖x‖∞
0, if t ≤ ‖x‖∞

on c0, then (c0,N1) is a FNS satisfying (N.6) and {en}∞n=1 is a sf-basis for c0 since ‖x‖α = ‖x‖∞ for each α ∈ (0, 1).

Remark 2. In finite dimensional FNSs the definition of a basis is independent of the fuzzy norm and hence coincides with
the classical definition of a basis (Hamel basis) in vector spaces.

It is classical in the basis theory that a normed space having a basis is separable. Let us now investigate fuzzy analogue
of this result. We know that every fuzzy normed space induces a topology τ such that, for some A ⊂ X, A ∈ τ if and only if
for every x ∈ A there exist t > 0 and 0 < α < 1 such that B(x, α, t) ⊂ Awhere B(x, α, t) = {y : N(x− y, t) ≥ 1− α} [9].

Proposition 5. τ is a vector topology for X, that is, the vector space operations are continuous in this topology.

Proof. Since the family
{
B
(
x, 1n ,

1
n

)
: n = 1, 2, . . .

}
is a countable local basis at x, τ is a first countable topology for X . Hence

it is sufficient to show only that the vector space operations are sequentially continuous in τ . Suppose xn → x and yn → y
in the topological space (X, τ ). This means µ(xn − x, t/2)→ 1 and µ(yn − y, t/2)→ 1 as n→∞, for every t > 0.
Now

µ (xn + yn − (x+ y) , t) ≥ min {µ (xn − x, t/2) , µ(yn − y, t/2)}
→ min {1, 1} = 1, as n→∞.

Further, if λn → λ in K = R or C, the scalar field of X , then

µ (λnxn − λx, t) = µ (λnxn − λxn + λxn − λx, t)
= µ ((λn − λ) xn + λ (xn − x) , t)

≥ min
{
µ

(
xn,

t
2 |λn − λ|

)
, µ

(
xn − x,

t
2 |λ|

)}
→ min {1, 1} = 1, as n→∞.

Here µ
(
xn, t

2|λn−λ|

)
→ 1 since t

2|λn−λ|
→∞ as n→∞ by the last condition on µ. This completes the proof. �

Theorem 4. Let (X,N) be an FNS having a wf-basis {xn}. Then the topological space (X, τ ) is separable.

Proof. Let E denotes the set of all finite linear combinations
∑n
k=1 bkxk where each bk is (real or complex) rational number.

Obviously, E is countable and let us show that it is dense in τ . Suppose x ∈ X is arbitrary. There exists a unique sequence
{an}∞n=1 of scalars such that, for each α ∈ (0, 1) and ε > 0, we can find some integer n0 = n0(α, ε) such that n ≥ n0 implies

N

(
x−

n∑
k=1

akxk, ε

)
≥ 1− α.

That is, for all n ≥ n0,
n∑
k=1

akxk ∈ B (x, α, ε) .

On the other hand, one can constitute a sequence
(
bik
)∞
i=1 of scalars converging to ak for each k. Hence the sequence(∑n

k=1 b
i
kxk
)∞
i=1 converges to

∑n
k=1 akxk in τ by the continuity of vector space operations. This implies every x-centered

τ -open sphere B (x, α, ε) includes an element
∑n
k=1 b

i
kxk of E. �

Theorem 5. Let (X, ‖ · ‖) be a normed space and {xn} be a basis in X. Then {xn} is a wf-basis for FNS (X,N) where

N(x, t) =

{ t
t + ‖x‖

, if t > 0

0, if t ≤ 0.
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Proof. By the hypothesis, for each x ∈ X , there exists a unique sequence {an} of scalars with
∑n
k=1 akxk → 0 in the norm

topology as n→∞. Explicitly, for each δ > 0, there exists some integer n0 = n0(δ) such that n ≥ n0 implies∥∥∥∥∥x− n∑
k=1

anxn

∥∥∥∥∥ ≤ δ.
Now, for each α ∈ (0, 1) and ε > 0, take δ = αε

1−α in this inequality. So, there exists some integer n0 = n0(δ) = n0(α, ε)
such that n ≥ n0 implies∥∥∥∥∥x− n∑

k=1

anxn

∥∥∥∥∥ ≤ αε

1− α

if and only if

N

(
x−

n∑
k=1

akxk, ε

)
=

ε

ε +

∥∥∥∥x− n∑
k=1
anxn

∥∥∥∥ ≥ 1− α. �

An important topics in the structural investigation of classical normed spaces, especially, of Banach spaces is
approximation property. We want to introduce this fundamental topics in FNSs.

Definition 10. (1) A wf-complete FNS (X,N) is said to have weak fuzzy approximation property, briefly wf-AP, if for every
wf-compact set K in X and for each α ∈ (0, 1) and ε > 0, there exists an operator Tα : X → X of finite rank such that

N (Tα(x)− x, ε) ≥ 1− α

for every x ∈ K .
(2) A sf-complete FNS (X,N) is said to have strong fuzzy approximation property, briefly sf-AP, if for every sf-compact set
K in X and for each α ∈ (0, 1), there exists an operator T : X → X of finite rank such that

N (T (x)− x, t) ≥ 1− α, ∀t > 0,

for every x ∈ K .

Remark 3. The operator T in wf-AP depends both on α ∈ (0, 1) and ε > 0 whereas it depends only on ε > 0 in sf-AP. Of
course, T depends on the set K in both situation.

Proof of the following Proposition can be derived as similar to that of Proposition 2.

Proposition 6. (1) A wf-complete FNS (X,N) satisfying (N.6) has wf-AP if and only if for every wf-compact set K in X and for
each α ∈ (0, 1) and ε > 0, there exists an operator Tα : X → X of finite rank such that

‖Tα(x)− x‖α < ε

for every x ∈ K.
(2) A sf-complete FNS (X,N) satisfying (N.6) has sf-AP if and only if for every sf-compact set K in X and for each ε > 0, there
exists an operator T : X → X of finite rank, independent of α ∈ (0, 1), such that

‖T (x)− x‖α < ε

for every x ∈ K.

Theorem 6. Let (X,N) be an FNS possessing a wf-basis {xn}. Then X has the wf-AP.

Proof. Let K ⊂ X be a wf-compact subset of X and α ∈ (0, 1) and ε > 0 be arbitrary. By the hypothesis, for some x ∈ K ,
there exists a unique sequence {an}∞n=1 of scalars such that

Pn(x) =
n∑
k=1

akxk
wf
−→ x, as n→∞.

This means there exists some n0(α, ε) such that

N (Pn(x)− x, ε) ≥ 1− α

for n ≥ n0. Further, each Pn has finite rank in the linear space X since dim Pn(X) = n. Hence, each Pn such that n ≥ n0 can
be taken as desired finite rank operator in the definition. �
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One can show with a similar proof that every FNS having a sf-basis has the sf-AP.
The converse of the above theorem may not be true.

Example 4. Let us consider Banach space `∞ with its usual sup-norm ‖x‖∞ = supn |xn|. Also, ‖x‖0 = supn
∣∣ xn
n

∣∣ is another
norm on `∞. Now let us define

N(x, t) =

{1, if t > ‖x‖∞
1/2, if ‖x‖0 < t ≤ ‖x‖∞
0, if t ≤ ‖x‖0.

It is proved in [9] that N is a fuzzy norm on `∞ satisfying the condition (N.6) and its α-norms are

‖x‖α = ‖x‖∞ for 1 > α >
1
2

‖x‖α = ‖x‖0 for 0 < α ≤
1
2
.

(`∞,N) cannot have a wf (hence sf)-basis since the Banach space (`∞, ‖ · ‖α), for 1 > α > 1
2 , is not separable. However, let

us show that (`∞,N) has sf-AP. Recall that a partition of natural numbers N is a finite family p = (β1, β2, . . . βn) of subsets
of N together with a distinguished point hi ∈ βi if βi 6= ∅, where 1 ≤ j ≤ n, such that βi ∩ βj = ∅(i 6= j) and

⋃n
j=1 βi = N.

The set D of all partitions of N is a directed set by the relation p � p′ which means each βi ∈ p included in some β ′j ∈ p′,
where p = (β1, β2, . . . βn) and p′ = (β ′1, β

′

2, . . . β
′
n) are two arbitrary partitions ofN. Now, for each p = (β1, β2, . . . βn) ∈ D,

write

Λp(x) =
n∑
i=1

xhi .χβi , for x ∈ `∞

where hi is the distinguished point in βi and χβi is the characteristic function of βi for 1 ≤ i ≤ n. ThenΛp is a projection on
`∞ of finite rank. It is well known that the net (Λp(x),D) converges to x in the Banach space (`∞, ‖ · ‖∞) (see, [12, pp. 25,
prob. 117]). Let K ⊂ `∞ be sf-compact, x ∈ K and ε > 0 be given. Then there exists a partition p0(ε) such that, for p0(ε)� p∥∥Λp(x)− x

∥∥
∞
< ε.

But, since ‖x‖0 ≤ ‖x‖∞ for every x ∈ `∞,∥∥Λp(x)− x
∥∥
0 < ε

for p0(ε)� p. That is; for every α ∈ (0, 1),∥∥Λp(x)− x
∥∥
α
< ε, (p0(ε)� p) .

Hence any projection operatorΛp (p0 � p) meets all requirements for sf-AP by Proposition 6.

5. Conclusion

We introduce a useful property in applications, namely approximation property for FNSs and a basis notion depending
on the fuzzy norm for infinite dimensional FNSs. We hope that wf(sf)-bases may provide some necessary tools for structural
analysis of FNSs. One can also use to determine strong and weak fuzzy continuous dual spaces of some important infinite
dimensional FNSs by using wf(sf)-bases. The representation of functionals and operators between FNSs has a key role in
fuzzy analysis. It is performed by a basis and gives exact resolution of the operator. Further, wf(sf)-bases give countable
finite dimensional decomposition of the FNS so that one can approximate to the space by some finite dimensional space
which is more understandable. Many kinds of approximation techniques can be introduced, in two ways as strong and
weak, into families of equations of these operators.
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