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a b s t r a c t

Fuzzy quality function deployment (QFD) has been extensively used for translating cus-
tomer requirements (CRs) into product design requirements (DRs) in fuzzy environments.
Existing approaches, however, for rating technical importance of DRs in fuzzy environ-
ments are found problematic, either incorrect or inappropriate. This paper investigates
how the technical importance of DRs can be correctly rated in fuzzy environments. A pair
of nonlinear programmingmodels and two equivalent pairs of linear programmingmodels
are developed, respectively, to rate the technical importance of DRs. The developedmodels
are examined and illustrated with two numerical examples.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Quality function deployment (QFD) [1] is amethodology for translating customer requirements (CRs), i.e. the voice of the
customer (VoC), into product design requirements (DRs). In this translating process, a large number of subjective judgments
have to be made by both customers and QFD team members. Due to uncertainty and vagueness involved in subjective
judgments, fuzzy logic has been widely suggested for better capturing the relative importance of CRs and the relationships
between CRs and DRs as well as the correlations among DRs. As a result, fuzzy QFD has been developed, researched and
extensively applied [2–11].

For fuzzy QFD, one of the key issues is to derive the technical importance ratings of DRs in fuzzy environments
and prioritize them so that limited resources such as budget can be reasonably or optimally allocated within DRs in
terms of their priorities. Existing approaches for rating the technical importance of DRs in fuzzy environments are found
problematic, either incorrect or inappropriate. Therefore, there is a need to develop a correct methodology for rating the
technical importance of DRs. This paper investigates how the technical importance of DRs can be correctly rated in fuzzy
environments. A pair of nonlinear programming (NLP) models is developed to correctly rate the technical importance of
DRs in fuzzy environments, which is then broken down into two equivalent pairs of linear programming (LP) models for
solution.

The paper is organized as follows. Section 2 gives a brief introduction to fuzzy sets and fuzzy weighted average that are
or will be used in fuzzy QFD. Section 3 presents a literature review on the formulas and approaches for rating the technical
importance of DRs in fuzzy environments and points out their incorrectness or inappropriateness. Section 4 develops correct
NLP models for rating the technical importance of DRs. Section 5 shows how the NLP models can be simplified as two
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equivalent pairs of LP models for solution. The developed models, linear and nonlinear, are examined and illustrated with
two numerical examples in Section 6. The paper concludes in Section 7.

2. Fuzzy sets and fuzzy weighted average

Fuzzy sets were introduced by Zadeh [12]. A fuzzy set is a collection of elements in a universe of discourse, with each
element being assigned a value within [0,1] by a specified membership function. It can also be represented using α-level
sets. The α-level sets, Aα , of a fuzzy set Ã are defined as [13]

Aα =

x ∈ X |µÃ(x) ≥ α


=

min{x ∈ X |µÃ(x) ≥ α},max{x ∈ X |µÃ(x) ≥ α}


, (1)

where µÃ(x) is the membership function of Ã and X is the universe of discourse. Accordingly, the fuzzy set Ã can be
equivalently expressed as

Ã = ∪α α · Aα = ∪α α ·

(A)Lα , (A)Uα


, 0 < α ≤ 1. (2)

Fuzzy numbers are special cases of fuzzy sets, characterized by given intervals of real numbers. Themost commonly used
fuzzy numbers are triangular and trapezoidal fuzzy numbers, whose membership functions are, respectively, defined as

µÃ1
(x) =


(x − a)/(b − a), a ≤ x ≤ b,
(c − x)/(c − b), b ≤ x ≤ c,
0, otherwise,

(3)

µÃ2
(x) =


(x − a)/(b − a), a ≤ x ≤ b,
1, b ≤ x ≤ c,
(d − x)/(d − c), c ≤ x ≤ d,
0, otherwise.

(4)

For brevity, triangular and trapezoidal fuzzy numbers are often denoted as (a, b, c) and (a, b, c, d). Triangular fuzzy
numbers can also be expressed as a special case of trapezoidal fuzzy numbers.

Let Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) be two positive trapezoidal fuzzy numbers. Operations on the two fuzzy
numbers, which are often called fuzzy arithmetics, are defined as [13]

Fuzzy addition: Ã ⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4);
Fuzzy subtraction: Ã − B̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1);
Fuzzy multiplication: Ã ⊗ B̃ ≈ (a1b1, a2b2, a3b3, a4b4);
Fuzzy division: Ã ÷ B̃ ≈


a1
b4

,
a2
b3

,
a3
b2

,
a4
b1


.

Fuzzy sets are not easy to compare and often defuzzified for ranking purpose. Defuzzification is a transformation process
which converts a fuzzy set into a crisp value. The most commonly used method for defuzzification is the centroid method,
which is defined as [14]

x̄0(Ã) =


+∞

−∞
xµÃ(x)dx

+∞

−∞
µÃ(x)dx

, (5)

where x̄0(Ã) is the centroid. In the case that fuzzy sets are characterized by α-level sets without knowing their explicit
membership functions, their centroids can be computed by the following expressions [15]:∫

+∞

−∞

xµÃ(x)dx =
1
6n


(x)2Uα0

− (x)2Lα0


+

(x)2Uαn

− (x)2Lαn


+ 2

n−1−
i=1


(x)2Uαi

− (x)2Lαi



+
1
6n

n−1−
i=0


(x)Uαi

· (x)Uαi+1
− (x)Lαi

· (x)Lαi+1


, (6)

∫
+∞

−∞

µÃ(x)dx =
1
2n


(x)Uα0

− (x)Lα0


+

(x)Uαn

− (x)Lαn


+ 2

n−1−
i=1


(x)Uαi

− (x)Lαi


, (7)

where αi =
i
n , i = 0, . . . , n. In the case of (x)Lαn

= (x)Uαn
, the centroid can be computed by

x̄0(Ã) =
1
3

·


(x)2Uα0

− (x)2Lα0


+ 2

n−1∑
i=1


(x)2Uαi

− (x)2Lαi


+

n−1∑
i=0


(x)Uαi

· (x)Uαi+1
− (x)Lαi

· (x)Lαi+1



(x)Uα0

− (x)Lα0


+ 2

n−1∑
i=1


(x)Uαi

− (x)Lαi

 . (8)
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Fig. 1. The house of quality in fuzzy QFD.

Fuzzy weighted average (FWA) is a method for fuzzy multiple criteria decision analysis and is defined as [16]

ỹ =

n∑
i=1

w̃i ⊗ x̃i

n∑
i=1

w̃i

, (9)

where x̃1, . . . , x̃n are n positive fuzzy numbers and w̃1, . . . , w̃n are fuzzy weights. Fuzzy arithmetics are found not suitable
for calculating ỹ because of occurrence of the weight variables in both denominator and numerator simultaneously. Quite a
lot of research has been done onhow to compute ỹ. Themost common approach is to calculate ỹ by the principle of extension.
Let xiα = [(xi)Lα, (xi)Uα ], wiα = [(wi)

L
α, (wi)

U
α ] and yα = [(y)Lα, (y)Uα ] be the α-level sets of x̃i, w̃i and ỹ, respectively. Then,

yα = [(y)Lα, (y)Uα ] can be derived by the following pair of fractional programming models [17]:

(y)Lα = Min
w1(x1)Lα + w2(x2)Lα + · · · + wn(xn)Lα

w1 + w2 + · · · + wn
, (10)

s.t. (wi)
L
α ≤ wi ≤ (wi)

U
α , i = 1, . . . , n,

(y)Uα = Max
w1(x1)Uα + w2(x2)Uα + · · · + wn(xn)Uα

w1 + w2 + · · · + wn
, (11)

s.t. (wi)
L
α ≤ wi ≤ (wi)

U
α , i = 1, . . . , n,

which can be converted into a pair of LP models for solution. After obtaining the α-level sets yα = [(y)Lα, (y)Uα ], the fuzzy
weighted average, ỹ, can then be expressed as

ỹ = ∪α α · yα = ∪α α · [(y)Lα, (y)Uα ], 0 < α ≤ 1. (12)

3. Literature review and analysis

In fuzzy QFD as shown in Fig. 1, the relative importance weights of CRs, the relationships between CRs and DRs, and the
correlations among DRs could all be fuzzy numbers. For example, Zhou [18] described the influences of DRs on CRs by fuzzy
linguistic variables and calculated the technical importance ratings of DRs as the weighted aggregations of their influences
on CRs, namely, ṽj = (1/m)

∑m
i=1


wi ⊗ R̃ij


, j = 1, . . . , n, which were then defuzzified by using the maximizing set and

minimizing set approach, proposed by Chen [19], where the weights for aggregations were the relative importance of CRs
determined by using Saaty’s analytical hierarchy process (AHP) [20] and were assumed to be crisp numbers.

Wang [21] used fuzzy arithmetics to compute the technical importance of DRs, i.e. t̃j =
∑m

i=1 w̃i ⊗ R̃ij, j = 1, . . . , n, and
the fuzzy ranking approach based on possibility and necessity measures to prioritize DRs. Shen et al. [22] also employed
fuzzy arithmetics to calculate the technical importance ratings of DRs and defuzzified them using the Mean of Maxima
(MOM) method and the centroid defuzzification method, respectively.



4210 Y.-M. Wang, K.-S. Chin / Computers and Mathematics with Applications 62 (2011) 4207–4221

Chen and Weng [23] normalized the fuzzy relationships between CRs and DRs by the procedure proposed by
Wasserman [24], namely,

R̃
′

ij =

n∑
k=1

R̃ik ⊗ r̃kj

n∑
l=1

n∑
k=1

R̃ik ⊗ r̃kl
, i = 1, . . . ,m; j = 1, . . . , n, (13)

which were computed by using α-level sets rather than fuzzy arithmetics. As a result, they derived the following analytical
formulas for the α-level sets of the normalized fuzzy relationships R̃′

ij, which also appeared in Chen andWeng [25] and Chen
and Ko [26,27]:

(R′

ij)
L
α =

n∑
k=1

(Rik)
L
α(rkj)Lα

n∑
l=1
l≠j

n∑
k=1

(Rik)Uα (rkl)Uα +

n∑
k=1

(Rik)Lα(rkj)Lα

, i = 1, . . . ,m; j = 1, . . . , n, (14)

(R′

ij)
U
α =

n∑
k=1

(Rik)
U
α (rkj)Uα

n∑
l=1
l≠j

n∑
k=1

(Rik)Lα(rkl)Lα +

n∑
k=1

(Rik)Uα (rkj)Uα

, i = 1, . . . ,m; j = 1, . . . , n, (15)

where [(Rik)
L
α, (Rik)

U
α ](i = 1, . . . ,m; k = 1, . . . , n) and [(rkj)Lα, (rkj)Uα ](k, j = 1, . . . , n) are the α-level sets of R̃ik and r̃kj,

respectively. They then calculated fuzzy technical importance ratings of DRs as the weighted sum of the fuzzy normalized
relationships with a set of crisp importance weights of CRs, i.e. Ỹj =

∑m
i=1 wi · R̃′

ij, j = 1, . . . , n. In the case where the
relative importanceweights of CRswere characterized by fuzzy numbers, Chen andWeng [25] calculated the fuzzy technical
importance ratings of DRs as the fuzzy weighted average of the normalized fuzzy relationships, namely,

Ỹj =

m∑
i=1

w̃i ⊗ R̃′

ij

m∑
i=1

w̃i

, j = 1, . . . , n, (16)

which were computed by solving a pair of LP models for different α-levels.
Karsak [28] utilized fuzzy Delphi method to determine the relative importance of CRs and the normalization procedure

of Wasserman [24], i.e. Eq. (13), to normalize the fuzzy relationships between CRs and DRs, but the equation was solved
by using fuzzy arithmetics rather than α-level sets. The technical importance ratings of DRs were then calculated as
D̃j =

∑m
i=1 w̃i ⊗ R̃

′

ij, j = 1, . . . ,m.
Chen et al. [29] modified the fuzzy relationships between CRs and DRs by multiplying them by fuzzy correlations among

DRs, i.e.

R̃′

ij =

n−
k=1

R̃ik ⊗ r̃kj, i = 1, . . . ,m; j = 1, . . . , n, (17)

and then calculated fuzzy importance of DRs as ṽj =
∑m

i=1 w̃i ⊗ R̃′

ij =
∑m

i=1
∑n

k=1 w̃i ⊗ R̃ik ⊗ r̃kj, j = 1, . . . , n. Chen,
Fung and Tang [30] also calculated the fuzzy importance of DRs by using FWAwithout considering correlations among DRs,
i.e. Ỹj =

∑m
i=1 w̃i ⊗ R̃ij/

∑m
i=1 w̃i, j = 1, . . . , n. Fuzzy expected value operator, proposed by Liu and Liu [31], was then

utilized to rank or prioritize DRs.
Liu [32] considered the impacts of correlations among DRs by Eq. (17) and calculated the technical importance of DRs by

Eq. (16), i.e. FWA. Since the derived membership functions of the technical importance of DRs were not explicitly known, a
method that embeds the maximizing set and minimizing set approach of Chen [19] into FWA was devised to form a pair of
nonlinear programs for prioritizing DRs.

From the above literature review, it has been found that existing approaches and formulas for calculating technical
importance ratings of DRs exhibit some drawbacks. For example, formulas (14) and (15) derived by Chen andWeng [23,25]
are both incorrect because none of Rik (k = 1, . . . , n) can take two different values at the same time in numerator and
denominator, respectively. If lower bound values (Rik)

L
α are taken in numerator, then Rik should not take upper bound values

(Rik)
U
α in denominator. As such, if upper bound values (Rik)

U
α appear in numerator, then lower bound values (Rik)

L
α should

not been taken in denominator. In a word, Rik (k = 1, . . . , n) cannot take lower and upper bound values simultaneously. As
variables, each of them can only take one value at a time, either upper bound value or lower bound value or a value between
lower and upper bounds.
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The use of fuzzy arithmetics to perform fuzzy normalization or FWA is also inappropriate since fuzzy arithmetic
operations increase the fuzziness of normalized fuzzy relationships R̃′

ij and FWA, and make their support intervals much
wider than actual ones.

Existing approaches that do not normalize fuzzy relationships betweenCRs andDRs cannot be correct either. According to
Wasserman [24], the relationships between CRs and DRs need to be normalized; otherwise, the technical importance of DRs
cannot be correctly rated. This is also true for fuzzy relationships. Besides, from the point of view of AHP, CRs could be viewed
as evaluation criteria, DRs as decision alternatives, and their relationships or fuzzy relationships as local weights. Before the
aggregation of local weights into global weights, AHP requires the local weights to be normalized. This also verifies that the
relationships or fuzzy relationships between CRs and DRs need to be normalized before calculating technical importance
ratings of DRs.

In the next two sections, we investigate how the technical importance of DRs can be correctly rated in fuzzy
environments. A pair of NLP models based on α-level sets will be developed to rate the fuzzy technical importance of DRs.
We then show how the pair of NLP models can be simplified as two equivalent pairs of LP models for solution.

4. NLP models for rating technical importance in fuzzy environments

In conventional QFD, the relative importanceweights of CRs, the relationships between CRs and DRs, and the correlations
among DRs are all deterministic. The technical importance of DRs can be rated by the weighted average of the normalized
relationships R′

ij =

∑n
k=1 Rikrkj∑n

l=1
∑n

k=1 Rikrkl
, i = 1, . . . ,m; j = 1, . . . , n, namely,

Yj =

m∑
i=1

wiR′

ij

m∑
k=1

wk

=

m−
i=1

wi

n∑
k=1

Rikrkj

n∑
l=1

n∑
k=1

Rikrkl

 m−
k=1

wk, j = 1, . . . , n, (18)

which satisfies
∑n

j=1 Yj ≡ 1. That is, the technical importance ratings Yj(j = 1, . . . , n) are normalized.
In fuzzy QFD, since the weights w̃i (i = 1, . . . ,m), the relationships R̃ij (i = 1, . . . ,m; j = 1, . . . , n) and the correlations

r̃kj (k, j = 1, . . . , n) are all fuzzy numbers, the technical importance ratings Ỹj (j = 1, . . . , n) should be fuzzy numbers
either. Let [(wi)

L
α, (wi)

U
α ], [(Rij)

L
α, (Rij)

U
α ] and [(rkj)Lα, (rkj)Uα ] be the α-level sets of the fuzzy weights, fuzzy relationships and

fuzzy correlations, respectively. Then, the α-level sets of the fuzzy technical importance ratings Ỹj (j = 1, . . . , n) can be
correctly determined by the following pair of NLP models:

(Yj)
L
α = Min

m−
i=1

wi

n∑
k=1

Rikrkj

n∑
l=1

n∑
k=1

Rikrkl

 m−
k=1

wk, (19)

s.t. (wi)
L
α ≤ wi ≤ (wi)

U
α , i = 1, . . . ,m,

(Rik)
L
α ≤ Rik ≤ (Rik)

U
α , i = 1, . . . ,m; k = 1, . . . , n,

(rkl)Lα ≤ rkl ≤ (rkl)Uα , k, l = 1, . . . , n,

(Yj)
U
α = Max

m−
i=1

wi

n∑
k=1

Rikrkj

n∑
l=1

n∑
k=1

Rikrkl

 m−
k=1

wk, (20)

s.t. (wi)
L
α ≤ wi ≤ (wi)

U
α , i = 1, . . . ,m,

(Rik)
L
α ≤ Rik ≤ (Rik)

U
α , i = 1, . . . ,m; k = 1, . . . , n,

(rkl)Lα ≤ rkl ≤ (rkl)Uα , k, l = 1, . . . , n.

By solving the above pair of NLP models for each given α-level and each j = 1, . . . , n, the fuzzy technical importance
ratings of DRs can be correctly captured. According to Zadeh’s fuzzy extension principle, Ỹj can be expressed as Ỹj =

∪α α ·

(Yj)

L
α, (Yj)

U
α


for 0 < α ≤ 1 and j = 1, . . . , n, based on which the centroid defuzzification method based on α-

level sets, introduced in Section 2, can be applied to prioritize DRs.
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5. LP models for rating technical importance in fuzzy environments

It is seen from Eq. (16) that if the normalized fuzzy relationships R̃′

ij (i = 1, . . . ,m; j = 1, . . . , n) are known, then the
fuzzy technical importance of DRs can be formulated as a FWA and can be calculated by solving a pair of LP models. In this
section, we look into how the normalized fuzzy relationships can be correctly calculated using α-level sets.

We first rewrite fuzzy normalization equation (13) as

R̃′

ij =

n∑
k=1

R̃ik ⊗ r̃kj

n∑
l=1
l≠j

n∑
k=1

R̃ik ⊗ r̃kl +
n∑

k=1
R̃ik ⊗ r̃kj

, i = 1, . . . ,m; j = 1, . . . , n. (21)

Due to the reason that fuzzy relationships and fuzzy correlations appear in both numerator and denominator
simultaneously, the normalization above cannot be performed using fuzzy arithmetics. The equation, however, can be
equivalently characterized using α-level sets by the following pair of NLP models for each i = 1, . . . ,m and j = 1, . . . , n:

(R′

ij)
L
α = Min

n∑
k=1

Rikrkj

n∑
l=1
l≠j

n∑
k=1

Rikrkl +
n∑

k=1
Rikrkj

, (22)

s.t. (Rik)
L
α ≤ Rik ≤ (Rik)

U
α , k = 1, . . . , n,

(rkl)Lα ≤ rkl ≤ (rkl)Uα , k, l = 1, . . . , n,

(R′

ij)
U
α = Max

n∑
k=1

Rikrkj

n∑
l=1
l≠j

n∑
k=1

Rikrkl +
n∑

k=1
Rikrkj

, (23)

s.t. (Rik)
L
α ≤ Rik ≤ (Rik)

U
α , k = 1, . . . , n,

(rkl)Lα ≤ rkl ≤ (rkl)Uα , k, l = 1, . . . , n.
Let R′

ij be a deterministic function defined by

R′

ij =

n∑
k=1

Rikrkj

n∑
l=1

n∑
k=1

Rikrkl
=

n∑
k=1

Rikrkj

n∑
l=1
l≠j

n∑
k=1

Rikrkl +
n∑

k=1
Rikrkj

.

Due to the fact that

∂R′

ij

∂rkj
=

Rik

 n∑
l=1
l≠j

n∑
k=1

Rikrkl +
n∑

k=1
Rikrkj

−


n∑

k=1
Rikrkj


Rik


n∑

l=1,l≠j

n∑
k=1

Rikrkl +
n∑

k=1
Rikrkj

2

=

Rik


n∑

l=1,l≠j

n∑
k=1

Rikrkl




n∑
l=1,l≠j

n∑
k=1

Rikrkl +
n∑

k=1
Rikrkj

2 > 0, k = 1, . . . , n,

and that

∂R′

ij

∂rkl
= −


n∑

k=1
Rikrkj


Rik

n∑
l=1,l≠j

n∑
k=1

Rikrkl +
n∑

k=1
Rikrkj

2 < 0 for k, l = 1, . . . , n; l ≠ j,
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R′

ij is therefore an increasing function of rkj (k = 1, . . . , n), but decreases with rkl (k, l = 1, . . . , n; l ≠ j). Based upon this
conclusion, NLP models (22) and (23) can be simplified as

(R′

ij)
L
α = Min

n∑
k=1

Rik(rkj)Lα

n∑
l=1
l≠j

n∑
k=1

Rik(rkl)Uα +

n∑
k=1

Rik(rkj)Lα

, (24)

s.t. (Rik)
L
α ≤ Rik ≤ (Rik)

U
α , k = 1, . . . , n,

(R′

ij)
U
α = Max

n∑
k=1

Rik(rkj)Uα

n∑
l=1
l≠j

n∑
k=1

Rik(rkl)Lα +

n∑
k=1

Rik(rkj)Uα

, (25)

s.t. (Rik)
L
α ≤ Rik ≤ (Rik)

U
α , k = 1, . . . , n.

Theorem 1. The pair ofmodels (24) and (25) produces narrower intervals than the formulas (14) and (15) of Chen andWeng [23],
reducing the fuzziness and uncertainties of normalized fuzzy relationships.

The proof is trivial due to the inequalities:
n∑

k=1
Rik(rkj)Lα

n∑
l=1
l≠j

n∑
k=1

Rik(rkl)Uα +

n∑
k=1

Rik(rkj)Lα

≥

n∑
k=1

(Rik)
L
α(rkj)Lα

n∑
l=1
l≠j

n∑
k=1

Rik(rkl)Uα +

n∑
k=1

(Rik)Lα(rkj)Lα

≥

n∑
k=1

(Rik)
L
α(rkj)Lα

n∑
l=1
l≠j

n∑
k=1

(Rik)Uα (rkl)Uα +

n∑
k=1

(Rik)Lα(rkj)Lα

and
n∑

k=1
Rik(rkj)Uα

n∑
l=1
l≠j

n∑
k=1

Rik(rkl)Lα +

n∑
k=1

Rik(rkj)Uα

≤

n∑
k=1

(Rik)
U
α (rkj)Uα

n∑
l=1
l≠j

n∑
k=1

Rik(rkl)Lα +

n∑
k=1

(Rik)Uα (rkj)Uα

≤

n∑
k=1

(Rik)
U
α (rkj)Uα

n∑
l=1
l≠j

n∑
k=1

(Rik)Lα(rkl)Lα +

n∑
k=1

(Rik)Uα (rkj)Uα

.

Since Rik(k = 1, . . . , n) are all treated as decision variables, none of them can take two different values in both numerator
and denominator simultaneously, correcting the mistakes in the formulas (14) and (15) of Chen and Weng [23].

Theorem 2. If there is some DRj which is not correlated to any other DRs, namely, rjk ≡ 0 for k = 1, . . . , n but k ≠ j, then

(R′

ij)
L
α =

(Rij)
L
α(rjj)Lα

n∑
l=1
l≠j

(Ril)Uα (rll)Uα + (Rij)Lα(rjj)Lα

, i = 1, . . . ,m, (26)

(R′

ij)
U
α =

(Rij)
U
α (rjj)Uα

n∑
l=1
l≠j

(Ril)Lα(rll)Lα + (Rij)Uα (rjj)Uα

, i = 1, . . . ,m. (27)

Proof. In the case that DRj is not correlated to any other DRs, there exist
∑n

k=1 Rik(rkj)Lα = Rij(rjj)Lα and
∑n

l=1,l≠j∑n
k=1 Rik(rkl)Uα =

∑n
l=1,l≠j Ril(rll)Uα . Accordingly, model (24) becomes minimizing Rij(rjj)Lα∑n

l=1,l≠j Ril(rll)
U
α +Rij(rjj)Lα

, which achieves
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the minimum value at Rij = (Rij)
L
α and Ril = (Ril)

U
α (l = 1, . . . , n; l ≠ j). The resultant minimum value is (R′

ij)
L
α =

(Rij)Lα(rjj)Lα∑n
l=1,l≠j(Ril)

U
α (rll)Uα +(Rij)Lα(rjj)Lα

, which holds for all i = 1, . . . ,m.

As such, in the case that DRj is not correlated to any other DRs, there still exist
∑n

k=1 Rik(rkj)Uα = Rij(rjj)Uα and
∑n

l=1,l≠j∑n
k=1 Rik(rkl)Lα =

∑n
l=1,l≠j Ril(rll)Lα . As a result, model (25) becomes maximizing Rij(rjj)Uα∑n

l=1,l≠j Ril(rll)
L
α+Rij(rjj)Uα

, which achieves the

maximum value at Rij = (Rij)
U
α and Ril = (Ril)

L
α (l = 1, . . . , n; l ≠ j). The corresponding maximum value is (R′

ij)
U
α =

(Rij)Uα (rjj)Uα∑n
l=1,l≠j(Ril)

L
α(rll)Lα+(Rij)Uα (rjj)Uα

, which holds for all i = 1, . . . ,m. �

Formulas (26) and (27) are only applicable to the DRs that are independent and not correlated to the other DRs, but
cannot be used to normalize the fuzzy relationships among the DRs that are correlated to each other. So, there is a need to
develop a universal solution procedure for models (24) and (25). Let

t =
1

n∑
l=1
l≠j

n∑
k=1

Rik(rkl)Uα +

n∑
k=1

Rik(rkj)Lα

and zik = tRik for k = 1, . . . , n, (28)

s =
1

n∑
l=1
l≠j

n∑
k=1

Rik(rkl)Lα +

n∑
k=1

Rik(rkj)Uα

and uik = sRik for k = 1, . . . , n. (29)

Through the above transformations, (24) and (25) can finally be converted into the following pair of LP models for
solution:

(R′

ij)
L
α = Min

n−
k=1

zik(rkj)Lα, (30)

s.t.
n−

k=1

zik

(rkj)Lα +

n−
l=1
l≠j

(rkl)Uα

 = 1,

(Rik)
L
α · t ≤ zik ≤ (Rik)

U
α · t, k = 1, . . . , n, t > 0,

(R′

ij)
U
α = Max

n−
k=1

uik(rkj)Uα , (31)

s.t.
n−

k=1

uik((rkj)Uα +

n−
l=1
l≠j

(rkl)Lα) = 1,

(Rik)
L
α · s ≤ uik ≤ (Rik)

U
α · s, k = 1, . . . , n, s > 0,

where t, s, zik and uik for k = 1, . . . , n are decision variables. By solving this pair of LP models for each given α-level, each
i = 1, . . . ,m and each j = 1, . . . , n, the normalized fuzzy relationship matrix R̃′

= (R̃′

ij)m×n can be obtained. Once the
normalized fuzzy relationships are generated, the technical importance ratings of DRs can then be formulated as a FWA, as
shown in Eq. (16). By using α-level sets, the fuzzy technical importance ratings of DRs can be determined by

(Yj)
L
α = Min

w1(R′

1j)
L
α + w2(R′

2j)
L
α + · · · + wm(R′

mj)
L
α

w1 + w2 + · · · + wm
, (32)

s.t. (wi)
L
α ≤ wi ≤ (wi)

U
α , i = 1, . . . ,m,

(Yj)
U
α = Max

w1(R′

1j)
U
α + w2(R′

2j)
U
α + · · · + wm(R′

mj)
U
α

w1 + w2 + · · · + wm
, (33)

s.t. (wi)
L
α ≤ wi ≤ (wi)

U
α , i = 1, . . . ,m,

which can be converted through variable transformations into the following pair of LP models for solution:

(Yj)
L
α = Min v1(R′

1j)
L
α + v2(R′

2j)
L
α + · · · + vm(R′

mj)
L
α, (34)

s.t. v1 + v2 + · · · + vm = 1,
z · (wi)

L
α ≤ vi ≤ z · (wi)

U
α , i = 1, . . . ,m, z ≥ 0,
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(Yj)
U
α = Max v1(R′

1j)
U
α + v2(R′

2j)
U
α + · · · + vm(R′

mj)
U
α , (35)

s.t. v1 + v2 + · · · + vm = 1,
z · (wi)

L
α ≤ vi ≤ z · (wi)

U
α , i = 1, . . . ,m, z ≥ 0.

By solving the above pair of LP models (34) and (35) for each given α-level and each j = 1, . . . , n, the fuzzy technical
importance ratings of DRs can finally be generated as Ỹj = ∪α α ·


(Yj)

L
α, (Yj)

U
α


, 0 < α ≤ 1, and j = 1, . . . , n.

In summary, in order to correctly rate the technical importance of DRs in fuzzy environments, we need to solve two pairs
of LPmodels, (30)–(31) and (34)–(35), for each given α-level. The following theorem shows the equivalence of the two pairs
LP models and the pair of NLP models in Section 4. One can choose either of them for use.

Theorem 3. The pair of LP models (34) and (35) and the pair of NLP models (19) and (20) are equivalent to each other.

Proof. Let w∗

i (i = 1, . . . ,m), R∗

ik (i = 1, . . . ,m; k = 1, . . . , n), r∗

kl (k, l = 1, . . . , n) and (Y ∗

j )Lα be, respectively, the optimal
solution and optimum objective value of model (19). Then, w∗

i (i = 1, . . . ,m) are a feasible solution to model (32) and
R∗

ik (i = 1, . . . ,m; k = 1, . . . , n) and r∗

kl (k, l = 1, . . . , n) are a feasible solution to model (22). Denote by (R
′
∗

ij )
L
α and (Y ∗∗

j )Lα
the optimum objective values of models (22) and (32), respectively. Then, there exist

(R
′
∗

ij )
L
α ≤

n∑
k=1

R∗

ikr
∗

kj

n∑
l=1
l≠j

n∑
k=1

R∗

ijr
∗

kl +
n∑

k=1
R∗

ikr
∗

kj

=

n∑
k=1

R∗

ikr
∗

kj

n∑
l=1

n∑
k=1

R∗

ikr
∗

kl

and

(Y ∗∗

j )Lα ≤
w∗

1(R
′
∗

1j)
L
α + w∗

2(R
′
∗

2j)
L
α + · · · + w∗

m(R
′
∗

mj)
L
α

w∗

1 + w∗

2 + · · · + w∗
m

≤

m−
i=1

w∗

i

n∑
k=1

R∗

ikr
∗

kj

n∑
l=1

n∑
k=1

R∗

ikr
∗

kl

 m−
k=1

w∗

k = (Y ∗

j )Lα.

Similarly, let w∗∗

i (i = 1, . . . ,m) and (Y ∗∗

j )Lα be the optimal solution and optimum objective value of model (32), R∗∗

ik

(i = 1, . . . ,m; k = 1, . . . , n), r∗∗

kl (k, l = 1, . . . , n) and (R
′
∗

ij )
L
α be the optimal solution and optimum objective value of

model (22), respectively. It is easy to see thatw∗∗

i (i = 1, . . . ,m), R∗∗

ik (i = 1, . . . ,m; k = 1, . . . , n) and r∗∗

kl (k, l = 1, . . . , n)
are a feasible solution of model (19). Denote by (Y ∗

j )Lα the optimum objective value of model (19). Then, there exist

(R
′
∗

ij )
L
α =

n∑
k=1

R∗∗

ik r
∗∗

kj

n∑
l=1
l≠j

n∑
k=1

R∗∗

ij r
∗∗

kl +

n∑
k=1

R∗∗

ik r
∗∗

kj

=

n∑
k=1

R∗∗

ik r
∗∗

kj

n∑
l=1

n∑
k=1

R∗∗

ik r
∗∗

kl

and

(Y ∗

j )Lα ≤

m−
i=1

w∗∗

i

n∑
k=1

R∗∗

ik r
∗∗

kj

n∑
l=1

n∑
k=1

R∗∗

ik r
∗∗

kl

 m−
k=1

w∗∗

k =

m∑
i=1

w∗∗

i (R
′
∗

ij )
L
α

m∑
k=1

w∗∗

k

= (Y ∗∗

j )Lα.

From (Y ∗∗

j )Lα ≤ (Y ∗

j )Lα and (Y ∗

j )Lα ≤ (Y ∗∗

j )Lα , it can be concluded that (Y ∗

j )Lα ≡ (Y ∗∗

j )Lα . So, models (32) and (19) are
equivalent to each other. As such, models (33) and (20) can also be proved equivalent to each other in the same way. Since
the pair of (34) and (35) and the pair of (32) and (33) are equal, the pair of LP models (34) and (35) is thus equivalent to the
pair of NLP models (19) and (20). This completes the proof. �

6. Numerical examples

In this section, we examine two fuzzy QFD examples using the proposed NLP or LP models to illustrate their applications
and implementation processes.

Example 1. Consider the fuzzy QFD example investigated by Chen and Weng [25], which involves four CRs and five
engineering DRs. The relative importance of the four CRs, the relationships between the four CRs and the five DRs, and
the correlations among the five DRs are all described by linguistic terms, whose membership functions are defined in
Fig. 2, where the linguistic terms for describing the technical importance of the CRs such as Very important, Important, Fairly
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Table 1
Fuzzy relationships and fuzzy correlations for fuzzy QFD in Example 1.

Fig. 2. Membership function of linguistic terms for relationships and correlations.

important, Medium, Fairly unimportant, Unimportant and Very unimportant share the same membership functions as those
for describing relationships and correlations. Table 1 shows the relationship matrix and the correlation matrix of this fuzzy
QFD example.

For this numerical example, we set α-level as 0, 0.1, . . . , 1, respectively, and write the α-level sets of the fuzzy weights,
fuzzy relationships, and fuzzy correlations for each given α-level as below:

w1α = [0.1 + 0.1α, 0.3 − 0.1α],

w2α = w4α = [0.4 + 0.1α, 0.6 − 0.1α],

w3α = [0.5 + 0.1α, 0.8 − 0.1α],

R11α = R22α = R32α = [0.4 + 0.1α, 0.6 − 0.1α],

R31α = R41α = [0.1 + 0.1α, 0.3 − 0.1α],

R14α = R23α = R25α = R33α = R35α = R44α = [0.8 + 0.1α, 1],
R12α = R13α = R15α = R21α = R24α = R34α = R42α = R43α = R45α = 0,
r11α = r22α = r33α = r44α = r55α = r53α = r35α = [0.8 + 0.1α, 1],
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Table 2
Normalized fuzzy relationships for different α-levels in Example 1.

α (R′

11)α (R′

14)α (R′

22)α (R′

23)α (R′

25)α (R′

31)α (R′

32)α (R′

33)α (R′

35)α (R′

41)α (R′

44)α

0 Suf 0.4839 0.7576 0.3391 0.4375 0.4375 0.0725 0.3333 0.4308 0.4308 0.3191 0.9259
Inf 0.2424 0.5161 0.2000 0.3016 0.3016 0.0121 0.1898 0.2846 0.2846 0.0741 0.6809

0.1 Suf 0.4735 0.7507 0.3321 0.4326 0.4326 0.0683 0.3259 0.4253 0.4253 0.3065 0.9182
Inf 0.2493 0.5265 0.2044 0.3066 0.3066 0.0136 0.1944 0.2901 0.2901 0.0818 0.6935

0.2 Suf 0.4631 0.7438 0.3252 0.4278 0.4278 0.0643 0.3186 0.4199 0.4199 0.2940 0.9104
Inf 0.2562 0.5369 0.2088 0.3117 0.3117 0.0151 0.199 0.2955 0.2955 0.0896 0.7060

0.3 Suf 0.4528 0.7370 0.3184 0.4231 0.4231 0.0605 0.3113 0.4146 0.4146 0.2816 0.9026
Inf 0.2630 0.5472 0.2132 0.3167 0.3167 0.0167 0.2036 0.3009 0.3009 0.0974 0.7184

0.4 Suf 0.4425 0.7301 0.3116 0.4184 0.4184 0.0568 0.3042 0.4094 0.4094 0.2693 0.8948
Inf 0.2699 0.5575 0.2176 0.3217 0.3217 0.0183 0.2082 0.3063 0.3063 0.1052 0.7307

0.5 Suf 0.4322 0.7233 0.3049 0.4137 0.4137 0.0533 0.2971 0.4042 0.4042 0.2571 0.8869
Inf 0.2767 0.5678 0.2220 0.3267 0.3267 0.0200 0.2128 0.3117 0.3117 0.1131 0.7429

0.6 Suf 0.4220 0.7615 0.2983 0.4091 0.4091 0.0499 0.2902 0.3991 0.3991 0.2450 0.8790
Inf 0.2835 0.5780 0.2263 0.3317 0.3317 0.0217 0.2174 0.3171 0.3171 0.1210 0.7550

0.7 Suf 0.4118 0.7098 0.2917 0.4046 0.4046 0.0467 0.2833 0.3941 0.3941 0.2331 0.8712
Inf 0.2902 0.5882 0.2307 0.3367 0.3367 0.0235 0.222 0.3225 0.3225 0.1288 0.7669

0.8 Suf 0.4017 0.7030 0.2852 0.4001 0.4001 0.0436 0.2765 0.3892 0.3892 0.2212 0.8633
Inf 0.2970 0.5983 0.2350 0.3416 0.3416 0.0253 0.2266 0.3279 0.3279 0.1367 0.7788

0.9 Suf 0.3917 0.6963 0.2788 0.3957 0.3957 0.0406 0.2698 0.3843 0.3843 0.2096 0.8554
Inf 0.3037 0.6083 0.2394 0.3466 0.3466 0.0272 0.2312 0.3334 0.3334 0.1446 0.7904

1 Suf 0.3817 0.6897 0.2724 0.3913 0.3913 0.0378 0.2632 0.3794 0.3794 0.1980 0.8475
Inf 0.3103 0.6183 0.2437 0.3515 0.3515 0.0291 0.2358 0.3388 0.3388 0.1525 0.8020

Table 3
Technical importance ratings of the five DRs by the proposed models.

α DR1 DR2 DR3 DR4 DR5

0 [0.0335, 0.2072] [0.0972, 0.2474] [0.1461, 0.3195] [0.1705, 0.4349] [0.1461, 0.3195]
0.1 [0.0377, 0.1961] [0.1016, 0.2386] [0.1520, 0.3112] [0.1801, 0.4219] [0.1520, 0.3112]
0.2 [0.0422, 0.1853] [0.1062, 0.2301] [0.1581, 0.3030] [0.1900, 0.4091] [0.1581, 0.3030]
0.3 [0.0468, 0.1749] [0.1109, 0.2217] [0.1643, 0.2950] [0.2000, 0.3964] [0.1643, 0.2950]
0.4 [0.0516, 0.1647] [0.1157, 0.2135] [0.1705, 0.2871] [0.2103, 0.3838] [0.1705, 0.2871]
0.5 [0.0565, 0.1549] [0.1205, 0.2055] [0.1769, 0.2793] [0.2208, 0.3715] [0.1769, 0.2793]
0.6 [0.0616, 0.1453] [0.1255, 0.1978] [0.1834, 0.2717] [0.2315, 0.3592] [0.1834, 0.2717]
0.7 [0.0669, 0.1360] [0.1305, 0.1902] [0.1900, 0.2643] [0.2423, 0.3472] [0.1900, 0.2643]
0.8 [0.0723, 0.1270] [0.1357, 0.1828] [0.1968, 0.2570] [0.2534, 0.3353] [0.1968, 0.2570]
0.9 [0.0778, 0.1184] [0.1410, 0.1757] [0.2036, 0.2498] [0.2647, 0.3236] [0.2036, 0.2498]
1 [0.0835, 0.1100] [0.1463, 0.1687] [0.2106, 0.2428] [0.2761, 0.3120] [0.2106, 0.2428]

Centroid 0.1102 0.1663 0.2306 0.2992 0.2306
Ranking 5 4 2 1 2

r23α = r32α = r25α = r52α = [0.4 + 0.1α, 0.6 − 0.1α],

r12α = r13α = r14α = r15α = r21α = r24α = r31α = r34α = r41α = r42α = r43α = r45α = r51α = r54α = 0.

We then solve the pair of NLP models (19) and (20) or the two equivalent pairs of LP models (30) and (31) as well as (34)
and (35). Tables 2 and 3 show, respectively, the normalized fuzzy relationships obtained by solving the pair of LP models
(30) and (31) and the normalized fuzzy technical importance ratings of the five DRs obtained by solving either the pair of
NLP models (19) and (20) or the pair of LP models (34) and (35), where the centroids of the five fuzzy technical importance
ratings are computed by formulas (5)–(8). For the sake of visualization, the fuzzy technical importance ratings of the five
DRs are pictured in Fig. 3, from which it is seen that DR4 has a top priority for resource allocation, followed by DR3 and DR5,
while DR1 is the least important engineering design requirement.

Table 4 shows the fuzzy technical importance ratings of the five DRs obtained by combining fuzzy normalization formulas
(14) and (15) of Chen andWeng [23]with FWA. These ratings are essentially incorrect andmake no sense at all in spite of the
fact that there is no big difference between them and those in Table 3. It is observed that the technical importance ratings
of DR1 and DR4 are not affected by the incorrect fuzzy normalization procedure of Chen andWeng [23]. This is because they
are not correlated to any other DRs except for themselves. It is also observed that the ratings of DR2, DR3 and DR5 in Table 4
have wider support intervals than those in Table 3, leading to more fuzziness and uncertainty. Quite evidently, Chen and
Weng’s approach for rating the technical importance of DRs in fuzzy QFD is inadvisable.

Example 2. Consider the fuzzy QFD example investigated by Chen et al. [30], which involves eight CRs and ten independent
technical attributes (TAs), namely, product or engineering DRs. The relative importance weights of the eight CRs and the
relationships between the eight CRs and the ten TAs are described by triangular fuzzy numbers, as shown in Table 5.
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Fig. 3. Technical importance ratings of the five DRs by the proposed models.

Table 4
Incorrect technical importance ratings of the five DRs by combining Chen and Weng’s fuzzy normalization procedure and FWA.

α DR1 DR2 DR3 DR4 DR5

0 [0.0335, 0.2072] [0.0822, 0.2807] [0.1249, 0.3619] [0.1705, 0.4349] [0.1249, 0.3619]
0.1 [0.0377, 0.1961] [0.0871, 0.2689] [0.1315, 0.3498] [0.1801, 0.4219] [0.1315, 0.3498]
0.2 [0.0422, 0.1853] [0.0921, 0.2574] [0.1382, 0.3381] [0.1900, 0.4091] [0.1382, 0.3381]
0.3 [0.0468, 0.1749] [0.0973, 0.2463] [0.1451, 0.3266] [0.2000, 0.3964] [0.1451, 0.3266]
0.4 [0.0516, 0.1647] [0.1027, 0.2355] [0.1523, 0.3155] [0.2103, 0.3838] [0.1523, 0.3155]
0.5 [0.0565, 0.1549] [0.1083, 0.2250] [0.1596, 0.3047] [0.2208, 0.3715] [0.1596, 0.3047]
0.6 [0.0616, 0.1453] [0.1140, 0.2148] [0.1672, 0.2942] [0.2315, 0.3652] [0.1672, 0.2942]
0.7 [0.0669, 0.1360] [0.1199, 0.2050] [0.1749, 0.2839] [0.2423, 0.3472] [0.1749, 0.2839]
0.8 [0.0723, 0.1270] [0.1299, 0.1954] [0.1829, 0.2740] [0.2534, 0.3353] [0.1829, 0.2740]
0.9 [0.0778, 0.1184] [0.1321, 0.1862] [0.1911, 0.2643] [0.2647, 0.3236] [0.1911, 0.2643]
1 [0.0835, 0.1100] [0.1385, 0.1773] [0.1995, 0.2550] [0.2761, 0.3120] [0.1995, 0.2550]

Centroid 0.1102 0.1716 0.2365 0.2992 0.2365
Ranking 5 4 2 1 2

Chen et al. [30] rated the technical importance of the ten TAs using FWA without normalizing the fuzzy relationships
between the eight CRs and the ten TAs. The results are provided in Table 6. As we have pointed out in Section 3, the
relationships or fuzzy relationships between CRs and DRs should be normalized before calculating technical importance
ratings of DRs. The reason for this is similar to that for weight normalization in AHP. For this fuzzy QFD example, since
correlations are not considered, we can normalize fuzzy relationships by using analytical formulas (26) and (27) without
solving the pair of LPmodels (30) and (31). The technical importance ratings of the ten TAs can then be formulated as a FWA
and be computed by solving the pair of LP models (34) and (35) for each given α-level. The results are shown in Table 7,
where the centroids of the ten fuzzy technical importance ratings are calculated by formula (8). From Tables 6 and 7, it is
observed that the main difference between the results in the two tables lies in that the fuzzy technical importance ratings
in Table 7 are normalized, whereas those in Table 6 are not. There is also a minor difference between the priority rankings
of TA5 and TA10, but the defuzzified ratings for the two TAs are nearly equal, indicating that they could be considered as
equally important.

7. Conclusions

As a customer-oriented methodology, QFD has been widely applied to improve product quality to achieve higher or
maximum customer satisfaction. To achieve maximum customer satisfaction, limited organizational resources such as
budget have usually to be optimally allocated among DRs in terms of their technical importance ratings. Without correct
technical importance ratings of DRs, it would be impossible to optimally allocate limited organizational resources among
them to achieve maximum customer satisfaction. This requires the development of a method that can correctly rate the
technical importance of DRs.

In this paper we have investigated how to correctly rate the technical importance of DRs in fuzzy QFD using α-level sets.
We have presented a literature review on existing approaches for rating technical importance of DRs in fuzzy environments
and pointed out their incorrectness or inappropriateness. We have then developed a pair of NLP models and two pairs of LP
models, respectively, for rating the technical importance of DRs in fuzzy environments. We have proved the equivalence of
the two pairs of LP models and the pair of NLP models. The developed models have finally been examined and illustrated
with two numerical examples. The numerical examinations have clearly revealed that the developed models can correctly
and accurately rate the technical importance of DRs in fuzzy environments.
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Table 6
Technical importance ratings of the 10 technical attributes by fuzzy weighted average.

Technical
attribute

α Centroid Ranking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TA1 Sup 0.7746 0.7496 0.7246 0.6996 0.6745 0.6493 0.6242 0.5989 0.5736 0.5483 0.5228 0.5163 3
Inf 0.2518 0.2786 0.3054 0.3323 0.3593 0.3863 0.4135 0.4407 0.4680 0.4954 0.5228

TA2 Sup 0.7335 0.7088 0.6840 0.6593 0.6344 0.6095 0.5844 0.5592 0.5339 0.5084 0.4828 0.4839 5
Inf 0.2342 0.2589 0.2837 0.3085 0.3333 0.3582 0.3831 0.4080 0.4392 0.4579 0.4828

TA3 Sup 0.8320 0.8109 0.7896 0.7683 0.7468 0.7252 0.7035 0.6817 0.6597 0.6377 0.6157 0.6028 1
Inf 0.3599 0.3853 0.4107 0.4362 0.4617 0.4872 0.5128 0.5385 0.5641 0.5899 0.6157

TA4 Sup 0.7401 0.7158 0.6914 0.6669 0.6423 0.6175 0.5925 0.5675 0.5423 0.5170 0.4915 0.4881 4
Inf 0.2312 0.2572 0.2832 0.3091 0.3350 0.3610 0.3870 0.4131 0.4392 0.4653 0.4915

TA5 Sup 0.5740 0.5490 0.5240 0.4991 0.4741 0.4491 0.4241 0.3991 0.3741 0.3491 0.3240 0.3405 10
Inf 0.1233 0.1437 0.1638 0.1837 0.2037 0.2237 0.2437 0.2637 0.2838 0.3039 0.3240

TA6 Sup 0.6548 0.6304 0.6061 0.5819 0.5577 0.5335 0.5094 0.4854 0.4614 0.4374 0.4135 0.4143 7
Inf 0.1761 0.1995 0.2230 0.2466 0.2702 0.2939 0.3176 0.3415 0.3654 0.3894 0.4135

TA7 Sup 0.8410 0.8178 0.7945 0.7712 0.7477 0.7242 0.7006 0.6768 0.6530 0.6291 0.6052 0.5958 2
Inf 0.3409 0.3671 0.3934 0.4197 0.4460 0.4723 0.4986 0.5251 0.5517 0.5784 0.6052

TA8 Sup 0.7026 0.6783 0.6539 0.6296 0.6052 0.5808 0.5565 0.5321 0.5078 0.4834 0.4590 0.4599 6
Inf 0.2175 0.2418 0.2661 0.2903 0.3145 0.3386 0.3628 0.3869 0.4110 0.4350 0.4590

TA9 Sup 0.6444 0.6191 0.5938 0.5684 0.5429 0.5174 0.4918 0.4662 0.4405 0.4148 0.3890 0.3962 8
Inf 0.1553 0.1784 0.2016 0.2248 0.2481 0.2714 0.2948 0.3183 0.3418 0.3654 0.3890

TA10 Sup 0.5851 0.5590 0.5330 0.5070 0.4809 0.4549 0.4289 0.4029 0.3769 0.3510 0.3250 0.3414 9
Inf 0.1144 0.1354 0.1564 0.1774 0.1985 0.2195 0.2406 0.2617 0.2827 0.3038 0.3250

Table 7
Technical importance ratings of the 10 technical attributes by integrating fuzzy normalization and fuzzy weighted average.

Technical
attribute

α Centroid Ranking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TA1 Sup 0.2682 0.2440 0.2226 0.2037 0.1867 0.1715 0.1576 0.1449 0.1332 0.1223 0.1123 0.1319 3
Inf 0.0392 0.0446 0.0503 0.0564 0.0628 0.0697 0.0771 0.0850 0.0934 0.1025 0.1123

TA2 Sup 0.2504 0.2275 0.2075 0.1896 0.1737 0.1592 0.1459 0.1337 0.1225 0.1121 0.1025 0.1224 5
Inf 0.0362 0.0411 0.0464 0.0519 0.0578 0.0641 0.0708 0.0779 0.0855 0.0937 0.1025

TA3 Sup 0.2937 0.2688 0.2468 0.2272 0.2096 0.1937 0.1793 0.1661 0.1541 0.1430 0.1327 0.1525 1
Inf 0.0561 0.0617 0.0677 0.0740 0.0808 0.0880 0.0957 0.1040 0.1129 0.1224 0.1327

TA4 Sup 0.2680 0.2427 0.2205 0.2008 0.1834 0.1678 0.1536 0.1406 0.1288 0.1178 0.1077 0.1290 4
Inf 0.0364 0.0417 0.0472 0.0531 0.0594 0.0661 0.0732 0.0809 0.0892 0.0981 0.1077

TA5 Sup 0.2094 0.1876 0.1684 0.1514 0.1362 0.1225 0.1102 0.0990 0.0888 0.0794 0.0708 0.0930 9
Inf 0.0192 0.0231 0.0271 0.0314 0.0359 0.0407 0.0458 0.0514 0.0574 0.0638 0.0708

TA6 Sup 0.2349 0.2122 0.1922 0.1745 0.1586 0.1444 0.1316 0.1199 0.1092 0.0994 0.0903 0.1101 7
Inf 0.0277 0.0322 0.0371 0.0423 0.0478 0.0536 0.0599 0.0667 0.0740 0.0818 0.0903

TA7 Sup 0.2944 0.2692 0.2470 0.2271 0.2092 0.193 0.1782 0.1647 0.1523 0.1409 0.1303 0.1508 2
Inf 0.0527 0.0585 0.0645 0.0709 0.0778 0.0851 0.0929 0.1012 0.1102 0.1199 0.1303

TA8 Sup 0.2474 0.2241 0.2037 0.1855 0.1693 0.1548 0.1416 0.1297 0.1187 0.1086 0.0992 0.1193 6
Inf 0.0340 0.0389 0.0440 0.0495 0.0553 0.0615 0.0681 0.075 0.0825 0.0905 0.0992

TA9 Sup 0.2281 0.2057 0.1859 0.1683 0.1526 0.1384 0.1255 0.1138 0.1031 0.0933 0.0842 0.1050 8
Inf 0.0242 0.0287 0.0334 0.0383 0.0436 0.0492 0.0552 0.0617 0.0686 0.0761 0.0842

TA10 Sup 0.2070 0.1855 0.1668 0.1501 0.1352 0.1216 0.1094 0.0982 0.0880 0.0786 0.0699 0.0915 10
Inf 0.0177 0.0215 0.0256 0.0300 0.0346 0.0395 0.0447 0.0504 0.0564 0.0629 0.0699

In comparisonwith existing approaches for rating the technical importance of DRs in fuzzy environments, the developed
models have some significant merits such as being able to rate the technical importance of DRs in fuzzy environments
accurately through α-level sets, producing normalized fuzzy technical importance ratings for DRs, offering two alternative
options, linear and nonlinear programming, for technical importance rating. It is believed that the developed models make
a good contribution to fuzzy QFD and lay a solid theoretical foundation for its development and applications. The future
research work is to combine the developed models and limited resources to set targets for DRs. A belief-rule based (BRB)
methodology will be developed.
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