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SUMMARY

Lysine acetylation is a dynamic posttranslational
modification with a well-defined role in regulating
histones. The impact of acetylation on other cellular
functions remains relatively uncharacterized. We
explored the budding yeast acetylome with a func-
tional genomics approach, assessing the effects of
gene overexpression in the absence of lysine deace-
tylases (KDACs). We generated a network of 463
synthetic dosage lethal (SDL) interactions involving
class I and II KDACs, revealing many cellular path-
ways regulated by different KDACs. A biochemical
survey of genes interacting with the KDAC RPD3
identified 72 proteins acetylated in vivo. In-depth
analysis of one of these proteins, Swi4, revealed
a role for acetylation in G1-specific gene expression.
Acetylation of Swi4 regulates interaction with its
partner Swi6, both components of the SBF transcrip-
tion factor. This study expands our view of the yeast
acetylome, demonstrates the utility of functional
genomic screens for exploring enzymatic pathways,
and provides functional information that can be
mined for future studies.

INTRODUCTION

Lysine acetylation influences gene expression (Robert et al.,

2004), and the dynamic interplay between lysine acetyltrans-

ferases (KATs) and lysine deacetylases (KDACs) is required to

maintain appropriate levels of histone acetylation to promote

normal cell proliferation, growth, and differentiation. Consistent

with a significant role for acetylation in regulating cell division,

abnormal KAT/KDAC function results in disease states such as

cancer (Archer and Hodin, 1999; Bradner et al., 2010; Chuang

et al., 2009; Das and Kundu, 2005). The budding yeast genome

encodes ten KDACs, which have been classified into three

groups based on sequence homology (Gregoretti et al., 2004).

Class I includes Rpd3, Hos1, and Hos2, and class II contains

Hda1 and Hos3; these two classes are zinc-dependent KDACs.
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Class III enzymes, the sirtuins, use NAD+ as a cofactor for the de-

acetylase reaction (Shore, 2000; Smith et al., 2002).

Rpd3 exists in two large macromolecular complexes, Rpd3(L)

and Rpd3(S), which share the core subunits Rpd3, Sin3, and

Ume1 (Carrozza et al., 2005; Keogh et al., 2005; Shevchenko

et al., 2008). Hda1 forms a heterotetrameric complex with two

regulatory subunits, Hda2 and Hda3 (Wu et al., 2001).The HDA

complex coregulates some genes with Rpd3, but also influences

expression of a distinct group of genes (Bernstein et al., 2000).

Although loss of either RPD3 or HDA1 is tolerated, deletion of

both KDACs results in cell death (Lin et al., 2008; Rundlett

et al., 1996). The other class I and II KDACs have received

much less scrutiny. Hos2 appears to activate gene expression

by restoring RNA polymerase-disrupted chromatin to a permis-

sive state (Wang et al., 2002). Hos3 is the only class I/II KDAC

that is insensitive to Tricostatin-A (TSA), an inhibitor of deacety-

lases (Carmen et al., 1999).

In the past decade, acetylation has been shown to regulate

proteins other than histones (Glozak et al., 2005; Kurdistani

and Grunstein, 2003). Proteomic studies identified �2,500 acet-

ylated proteins in mammalian cells, suggesting that acetylation

may be as ubiquitous as phosphorylation (Choudhary et al.,

2009; Glozak et al., 2005; Spange et al., 2009; Zhao et al.,

2010). In yeast, the acetylome remains relatively unexplored,

with only 28 nonhistone substrates identified to date (Basu

et al., 2009; Beckouët et al., 2010; Borges et al., 2010; Choudh-

ary et al., 2009; Heidinger-Pauli et al., 2009; Kim et al., 2010; Lin

et al., 2008, 2009; Lu et al., 2011; Mitchell et al., 2011; Robert

et al., 2011; VanDemark et al., 2007).

The genomic tools available in yeast provide an opportunity to

systematically explore the acetylome and add functional infor-

mation to our view of KAT/KDAC regulation. For example,

synthetic genetic array (SGA) technology automates the analysis

of genetic interactions in yeast and has been used to extensively

map interactions between deletion alleles of nonessential genes

(Baryshnikova et al., 2010; Costanzo et al., 2011). SGA has also

been used to systematically assess synthetic dosage lethal

(SDL) interactions (Sopko et al., 2006a). SDL interactions result

when increased gene expression levels have little effect on

the growth of a wild-type cell but produce a clear phenotype,

such as lethality, in a specific mutant background (Kroll et al.,

1996; Measday and Hieter, 2002; Sopko et al., 2006a). SDL
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interactions can identify enzyme-substrate relationships, and

SDL screens have discovered targets of kinases (Huang et al.,

2009; Sharifpoor et al., 2011; Sopko et al., 2006a; Zou et al.,

2009), regulators of protein degradation (Liu et al., 2009), and

lysine acetyltransferases (Mitchell et al., 2011). Hyperactivation

of an opposing biological pathway or perturbation of protein

complex stoichiometry may also result in SDL (Sopko et al.,

2006b), and this can facilitate identification of new connections

to a specific biological process (Measday et al., 2005).

Here, we describe the SDL interaction network for class I and II

KDACs in yeast. Analysis of the network, combined with

secondary biochemical tests, has allowed us to extend the list

of acetylated proteins in yeast nearly 5-fold. To demonstrate

the utility of this resource, we characterized one potential

KDAC target identified in our rpd3D SDL screen in detail. Acety-

lation of the cell-cycle transcription factor Swi4 regulates its

function in vivo, uncovering a new aspect of G1 transcription

control in yeast. Our study expands the view of KDAC function

and provides a valuable resource for predicting functional rela-

tionships in pathways regulated by KDACs. In addition, the

data set captures functional information that cannot be revealed

by biochemical surveys of the proteome.

RESULTS

Systematic Gene Overexpression Identifies 463 SDL
Interactions for Class I and II KDACs
To perform whole-genome SDL screens, we introduced dele-

tions of genes encoding class I and II KDACs into an arrayed

collection of yeast strains, each conditionally overexpressing

a unique gene (Sopko et al., 2006a). Overexpression phenotypes

were measured with automated software using colony size as

a proxy for cell fitness, an approach that we have validated in

other large-scale genetic interaction screens (Baryshnikova

et al., 2010; Costanzo et al., 2010; Sopko et al., 2006a).

Genes whose overexpression resulted in a colony size reduction

of > 20% compared to wild-type were independently confirmed

(Figure S1 available online). A subset of interactions was

confirmed in the presence of the KDAC inhibitor, TSA, showing

that SDL interactions can result due to the loss of KDAC catalytic

activity (Table S1). Our screens identified 463 SDL interactions

(Figure 1A and Table S2) involving 374 unique genes, enriched

for diverse processes including cell polarity andmorphogenesis,

protein sorting to the Golgi, endosome and vacuole, nuclear-

cytoplasmic transport, peroxisome biogenesis, and drug/ion

transport (Table 1). The SDL network includes genes encoding

members of protein complexes (Figure 1A, black lines) and

components of common pathways (Figure 1A, red lines), sug-

gesting that acetylation may target protein complexes as well

as coregulate many pathways, consistent with observations

made in human acetylome studies (Choudhary et al., 2009) and

SDL screens with NuA4 complex components in yeast (Mitchell

et al., 2011).

Deletion of either RPD3 or HDA1 caused a significant fitness

defect in standard conditions, and our screens in rpd3D and

hda1D mutants produced the highest number of SDL interac-

tions among KDAC mutants (244 and 168 interactions, respec-

tively), consistent with other large-scale experiments showing
an inverse relationship between degree of genetic interaction

and fitness of a mutant strain (Costanzo et al., 2010). Because

Rpd3 and Hda1 regulate a number of common genes (Bernstein

et al., 2000), we expected some overlap between the interac-

tions in the rpd3D and hda1D screens. Indeed, 57 SDL interac-

tions were shared between the two KDACs (�34% of HDA1

and �23% of RPD3 interactions [p < 2.54 3 10�34]). Consistent

with significant nonoverlapping roles for each KDAC, the

majority of SDL interactions appear to be unique to each deace-

tylase (Figure 1A). The SDL hits in each KDAC screen were en-

riched for distinct biological processes (Table S3), a property

also observed in experiments assessing chromatin acetylation

in the absence of KDACs (Robyr et al., 2002).

Given that KDACs regulate transcription through deacetyla-

tion of histones, a subset of SDL interactions may result from

aberrant transcription in the absence of KDACs. For example,

in some cases, overexpression of the gene from the GAL

promoter together with the overexpression of the endogenous

copy of the same gene due to histone hyperacetylation might

lead to protein levels that are high enough to cause toxicity. To

address this point, we compared our KDAC-SDL profiles to the

gene expression profiles of rpd3D and hda1Dmutants (Bernstein

et al., 2000). Less than 4% of the genes that caused toxicity

when overexpressed (12/244 genes in rpd3D and 6/168 genes

in hda1D) were differentially regulated at the transcriptional level

in the absence of the KDAC (Bernstein et al., 2000; Table S4,

2-fold cut-off]. Furthermore, SDL interactors of RPD3 and genes

transcriptionally regulated by Rpd3 were enriched for distinct

biological processes (Figures 1B and 1C). These results suggest

thatmost SDL interactions do not reflect indirect effects resulting

from defects in gene expression caused by the deletion of

KDACs.

Gene Deletion and Gene Overexpression Uncover
Distinct Genetic Interactions
Negative genetic interactions, such as synthetic sickness (SS) or

lethality (SL), occur when the observed fitness of a double

mutant is more severe than expected, given the fitness of the

two single mutants (Mani et al., 2008). Our published SL/SS

data set (Costanzo et al., 2010) includes 497 unique negative

genetic interactions involving deletion alleles of class I and II

KDACs. Of the 463 genes that were SDL in the absence of

a KDAC, 14 were also SS/SL with the same KDAC (Table S5).

Seven of these encode components of multiprotein complexes,

consistent with the prediction that perturbation of stoichiometry

gives rise to haploinsufficient phenotypes (Veitia, 2002). For

example, Hda1 functions in a tetrameric complex (Carmen

et al., 1996; Wu et al., 2001), and either overexpression or

deletion of HDA1 caused lethality in the absence of RPD3; over-

expression of HDA1 may mimic the deletion phenotype by

disrupting HDA complex stoichiometry (Papp et al., 2003). The

small overlap between SL and SDL data sets suggests that SL

and SDL screens explore different facets of genetic interaction

space (Kelley and Ideker, 2005; Measday et al., 2005; Sopko

et al., 2006b; Tong et al., 2004).

The set of genetic interactions associated with mutation

of a gene, the genetic interaction profile, can be used to

construct correlation-based networks, allowing prediction of
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Figure 1. Genetic Interactions Identified for Class I and II KDACs
(A) Synthetic dosage lethal interactions for the catalytic subunits of the five class I and II KDACs are shown. Genes are grouped according to biological processes

as annotated by Costanzo et al. (2010). The KDAC with which the SDL interaction occurs is indicated by a colored dot next to the gene. Lines connecting genes

denote genes encoding proteins that either regulate the same biological pathway (red) or that are components of a common protein complex (black) as annotated

in BioGRID. A complete list of SDL interactions is provided in Table S1.

(B) Bar graph showing enrichment of the rpd3DSDL interactions for biological process as defined byGO annotations (black columns) relative to the genome (gray

bars).

(C) Enrichment in biological process categories for genes whose expression level changes in the absence of RPD3 (blue columns) relative to the genome (gray

columns).

See also Figure S1 and Tables S1–S4.
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Table 1. Gene Enrichments for KDAC SDL Screens

Biological Processes Fold Enrichment (p Value)

cell polarity/morphogenesis 1.63 (5.8 3 10�3)

drug/ion transport 1.85 (2.8 3 10�4)

Golgi/endosome/vacuole/sorting 2.06 (1.4 3 10�4)

nuclear-cytoplasmic transport 1.78 (4.8 3 10�2)

peroxisome biogenesis 2.19 (2.4 3 10�2)
gene function, protein complexes, and biological pathways. To

predict pathways that may be controlled by KDACs, we exam-

ined the correlation between the SDL profiles of the KDACs

and available SL profiles (Costanzo et al. (2010). A correlation

between a gene pair indicates that a set of genes that are toxic

when overexpressed in a kdacD are also SL/SS when deleted

in combination with the correlated gene (Figure 2). Our compar-

ative analysis revealed that a correlation between genes

may indicate involvement in a similar biological process. For

example, two components of the SAGA acetyltransferase

complex (SPT3 and TAF9) are SS/SL with a set of genes that

exhibit an SDL phenotype in rpd3D mutants. This correlation

profile is likely relevant because both Rpd3 and SAGA regulate

transcription elongation (Carrozza et al., 2005; Daniel and Grant,

2007; Keogh et al., 2005; Li et al., 2007). Moreover, our data

suggest that a correlation between a KDAC and several compo-

nents of a protein complex with SL/SS correlations among them

represents a strong biological connection (Figure 2, red lines).

For example, the RPD3 SDL profile was correlated with the SL/

SS profiles of two genes required for autophagy, ATG13 and

ATG4 (Funakoshi et al., 1997; Lang et al., 1998; Yorimitsu and

Klionsky, 2005). Studies in cancer cells and in yeast show an

increase in autophagy in the presence of KDAC inhibitors (Robert

et al., 2011; Shao et al., 2004), and acetylation of some proteins

promotes their degradation through autophagy (Choudhary

et al., 2009; Jeong et al., 2009; Lin et al., 2009; Robert et al.,

2011). The stability of Sae2, a protein involved in DNA damage

repair, is regulated by the KDACs Rpd3 and Hda1 (Robert

et al., 2011), highlighting the possibility that, in addition to

Sae2, Rpd3 may be involved in negatively regulating other

proteins that are required for autophagy. Thus, correlation

networks may be useful for predicting nonchromatin substrates

of KDACs.

SDL Screens Uncover Unique Roles for HDA Complex
Subunits
The HDA complex is composed of a catalytic subunit, Hda1, and

regulatory subunits, Hda2 and Hda3. Physical interactions

among these subunits appear necessary for deacetylation

activity of the complex in vivo and in vitro (Carmen et al., 1996;

Wu et al., 2001). Because genes encoding proteins that are

part of a complex generally have similar genetic interaction

profiles (Collins et al., 2007; Tong et al., 2004), we reasoned

that SDL experiments would provide an unbiased genetic

approach to explore whether Hda1, Hda2, and Hda3 function

only as part of the HDA complex or exhibit subunit-specific roles.

We complemented our hda1D screen with two additional

genome-wide screens for SDL interactions in hda2D and
hda3D mutant strains. All interactions from each screen were

cross-tested using serial spot dilution assays (Figure S1). Among

the �16 000 interactions tested, we identified 327 unique

interactions for the HDA complex (Table S6). Surprisingly, only

�7% of the interactions were shared among all three of the

components, whereas �55% were specific to a single subunit

(Figure 3A). The subunit-specific interactions were enriched for

distinct biological processes, indicating that Hda2 and Hda3

may have unique functions (Figure 3B).

Many genes involved in peroxisome biogenesis or mainte-

nance were identified in the hda2D screen, suggesting a previ-

ously underappreciated role for the HDA complex in peroxisome

biology. Of the 25 peroxisome-related genes that were present

on our array, six were toxic in the absence of either HDA1 or

HDA2, two were toxic only in the absence of HDA1, and eight

were toxic only in the absence of HDA2, whereas only one was

toxic in the absence of HDA3 (Table S6). We saw no difference

in the number of peroxisomes between a wild-type strain and

strains mutated for the three components of the HDA complex

(Figure S2A), suggesting that the HDA complex has no role in

regulating peroxisome number. However, we saw a reduction

in translocation of the peroxisome matrix protein Pot1-GFP

into the lumen of the peroxisome in the absence of HDA complex

components (Figure 3C), with the hda2mutant showing themost

dramatic defect (33% of the cells had Pot1-GFP in the lumen of

the peroxisome compared to 84% in a wild-type strain [Fig-

ure 3D]). These results suggest a potential role for the HDA

complex in peroxisome protein import.

The SDL Data Set Is Enriched for In Vivo Acetylated
Proteins
We next examined the proteins encoded by genes that had an

SDL interaction with a single KDAC in greater detail. We chose

the Rpd3 screen as a test case, as Rpd3 is the best-studied

KDAC in S. cerevisiae, and its human homolog HDAC1 deacety-

lates multiple proteins in human cells (Glozak et al., 2005). We

asked whether genes encoding acetylated proteins, which are

probable KDAC targets, were enriched among the SDL interac-

tions in our rpd3D screen (Figure 4A). Given the variability in

epitope recognition for anti-acetyl lysine antibodies (Mitchell

et al., 2011), it is possible that this assay has some false nega-

tives. We tested 184 proteins whose overexpression was toxic

in the absence of RPD3 and identified 72 in vivo acetylated

proteins (40%; Figure 4B and Table S7). Only two, Yng2 and

Rsc4, were previously shown to be acetylated (Choi et al.,

2008; VanDemark et al., 2007). Our biochemical survey of

RPD3 SDL hits expands the list of known acetylated proteins

in yeast from 28 to 97 and identifies proteins involved in tran-

scription, cell polarity and budding, growth and morphogenesis,

vesicle fusion, and trans-membrane transport, consistent with

the myriad roles of acetylated proteins in mammalian cells

(Choudhary et al., 2009; Glozak et al., 2005; Zhao et al., 2010).

Because we had seen effects of a KDAC on localization of perox-

isomal proteins, we also tested our peroxisomal markers and

found that Pot1, but not Pex15, was acetylated in vivo (Fig-

ure S2B). We also assayed a random set of 94 proteins and

detected acetylation on �20% of the proteins tested (Table

S6). Thus, the KDAC-SDL roster is significantly enriched for
Cell 149, 936–948, May 11, 2012 ª2012 Elsevier Inc. 939
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Figure 2. Similarity Analysis of Synthetic Dosage Lethal and Synthetic Lethal/Sick Interaction Profiles for Yeast KDACs
Similarity between the rpd3D and hda1D synthetic dosage lethal (SDL) profiles and the synthetic lethal/sick (SL/SS) profiles from Costanzo et al. (2010) was

measured by computing Pearson correlation coefficients (PCCs). Gene pairs whose profile similarity exceeded a threshold PCC > 0.15 were connected in the

network. Similarities between SDL and SL/SS profiles (black lines) as well as similarity between SL/SS and SL/SS profiles (red lines) of gene pairs are shown, and

edge thickness is directly proportional to the degree of similarity. Nodes are colored according to the biological processes annotated by Costanzo et al. (2010).
acetylated proteins (�40% versus 20%; p < 1.5 3 10�14). We

note that we have not been able to reproducibly assay acetyla-

tion in the absence of the KDAC because these proteins cause

toxicity when overproduced in the absence of RPD3. However,

consistent with direct regulation by the KDAC, 27/244 proteins

encoded by genes SDL with RPD3 have protein-protein interac-

tions (PPIs) with Rpd3 or an associated subunit (Sardiu et al.,

2009; Stark et al., 2011; Table S2).

A Cell Biological Screen Detects Proteins Mislocalized
in the Absence of RPD3

Similar to phosphorylation, acetylation can affect protein

stability, protein-protein interactions, enzymatic activity, and

protein localization (Kouzarides, 2000). To assess whether

Rpd3 influences protein localization, we examined the subcel-

lular localization of proteins identified in the rpd3D screen (Huh

et al., 2003). Of the 187 proteins tested, we saw a defect in

localization for four in the absence of RPD3: Ubx3, a ubiquitin

regulatory X domain-containing protein, and three membrane

proteins (Figure 5A). The group of genes most significantly en-

riched in the rpd3D SDL screen included membrane proteins

and receptors with annotated roles in drug and ion transport

(Table S3). Hnm1, a choline/ethanolamine transporter (Nikawa

et al., 1986), Tat2, a tryptophan/tyrosine permease (Schmidt

et al., 1994), and Itr1, a myo-inositol transporter (Nikawa et al.,

1991), were mislocalized from their normal cell surface localiza-

tion in wild-type cells to the vacuole in an rpd3D strain (Fig-
940 Cell 149, 936–948, May 11, 2012 ª2012 Elsevier Inc.
ure 5B). We saw a similar mislocalization phenotype when

cells were treated with the KDAC inhibitor TSA (Figure 5C), sug-

gesting that KDAC activity is required for proper transporter

localization. We did not detect acetylation of any of these

transporters, and thus it is possible that localization of some

cell surface receptors in yeast may be regulated indirectly by

acetylation.

Swi4 Is Regulated by Acetylation
To further study direct nonhistone KDAC targets, we compared

our SDL screens to the results of high-sensitivity mass spec-

trometry experiments in mammalian cells (Choudhary et al.,

2009; Kim et al., 2006; Zhao et al., 2010; Zhou et al., 2010). Thirty

six percent (903) of the human proteins that are acetylated have

yeast homologs (O’Brien et al., 2005), 52 of which were toxic

when overexpressed in the absence of KDACs and 38 were

specifically SDL in the absence of RPD3: 12 of these proteins

were acetylated in vivo (Figure 4B, black circles). One of these

proteins, Swi4, is the yeast analog of the mammalian transcrip-

tion factor E2F, which is regulated by acetylation (Martı́nez-

Balbás et al., 2000; Marzio et al., 2000). Both Swi4 and E2F acti-

vate G1-specific transcription via a regulatory pathway that is

well conserved between budding yeast and higher eukaryotes

(Costanzo et al., 2004; de Bruin et al., 2004; Schaefer and

Breeden, 2004). Acetylation of E2F at sites adjacent to its

DNA-binding domain augments DNAbinding, increases stability,

and stimulates transactivation activity (Martı́nez-Balbás et al.,
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Figure 3. SDL Profiles for HDA Complex

Subunits

(A) Venn diagram highlighting the overlap of SDL

interactions between HDA complex subunits.

Numbers refer to shared SDL interactions, and

a complete list of these interactions is provided in

Table S5.

(B) Enrichment for the SDL interactions unique to

each HDA complex subunit for biological process

as annotated by Costanzo et al. (2010). The top

panel shows fold enrichment for genes in

a particular biological process, and the bottom

panel shows the associated p values.

(C) Localization of a peroxisomal matrix marker in

the absence of HDA complex components. Pot1-

GFP was imaged in wild-type, hda1D, hda2D, and

hda3D cells using confocal microscopy.

(D) Graph showing quantified data for the Pot1-

GFP localization phenotype for the strains shown

in (C). Error bars represent standard deviations

from the mean generated from three independent

experiments.

See also Figure S2.
2000; Marzio et al., 2000). Swi4 is the DNA-binding

component of the transcription factor SBF and interacts with

a heterodimeric partner Swi6 to regulate genes expressed in

late G1 (Wittenberg and Reed, 2005). The repressor of SBF,

Whi5, mediates repression in part through interaction with two

KDACs, Hos3 and Rpd3 (Huang et al., 2009; Wang et al.,

2009), and Rpd3 is recruited to G1 promoters, placing it near

Swi4 (Robert et al., 2004; Takahata et al., 2009; Wang et al.,

2009).

These data, together with the SDL interaction between RPD3

and SWI4 (Figure 6A), suggest that Swi4 may be directly

regulated by acetylation. Consistent with an enzyme-substrate

relationship between Rpd3 and Swi4, the levels of Swi4 acetyla-

tion increased in an rpd3D mutant (Figure 6B). Using mass

spectrometry, we identified two acetylation sites, K1016

and K1066 (Figure S3), in the C-terminal domain of Swi4, which

is required for interaction with its regulatory partner, Swi6

(Andrews and Moore, 1992). We mutated both residues to either

arginine, which mimics constitutive deacetylation (Swi4-RR), or

glutamine, which mimics constitutive acetylation (Swi4-QQ),

at the endogenous SWI4 locus (Figure 6C). We then assessed

the Swi4 mutant strains for phenotypes associated with defects

in Swi4 function. The point mutations had little effect on cell

growth (Figure S4A) or protein abundance (Figure S4B) and did
Cell 149, 936–
not detectably alter the ability of Swi4

to bind to the CLN2 promoter in log-

phase cells (Figure S4C). To assess the

potential effects of defects in Swi4 acety-

lation on G1 transcription, we synchro-

nized wild-type and swi4 mutant strains

in G1 and then followed the expression

of a Swi4 target gene, CLN2, using quan-

titative real-time PCR (Q-PCR) through

the cell cycle. As expected, expression
of CLN2 was induced during the G1-S phase transition in

wild-type cells but was constitutively expressed at low levels

in the swi4D strain (Figure 6D; Cross et al., 1994). Likewise,

in cells expressing the constitutive deacetylation mimic,

Swi4-RR, induction of CLN2 was dramatically reduced. In

contrast, cells expressing the Swi4-QQ protein showed no

defect in CLN2 expression. These results suggest that acetyla-

tion of Swi4 is important for its role in activating G1-specific

transcription.

The acetylated residues of Swi4 reside in the C-terminal

domain, which is required for interaction with Swi6. We therefore

tested whether the Swi4-Swi6 interaction is regulated by Swi4

acetylation. First, we assessed binding of Swi6 and Swi4 to the

CLN2 promoter. In both asynchronous cells and G1-synchro-

nized cells, the ratio of Swi6 to Swi4-RR at the CLN2 promoter

was reduced relative to both wild-type Swi4 and Swi4-QQ (Fig-

ure 6E), suggesting that acetylation of Swi4 may be needed for

a stable association with Swi6 at G1 promoters. We also saw

reduced association betweenSwi4-RR andSwi6 in a coimmuno-

precipitation experiment (Figure S4D). Conversely, deletion of

RPD3 increased the Swi4-Swi6 interaction (Figure 6F), suggest-

ing that acetylation of Swi4 promotes association between Swi4

and Swi6. These results establish a role for Swi4 acetylation in

regulating G1 transcription.
948, May 11, 2012 ª2012 Elsevier Inc. 941
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Figure 4. Analysis of Acetylation on

Proteins Encoded by rpd3D SDL Genes

(A) Western blot analysis of proteins using acetyl-

lysine antibody. A wild-type strain was trans-

formed with plasmids carrying genes identified

in the rpd3D screen and the GST-proteins purified

using glutathione Sepharose. The top panel shows

a representative western blot with partially purified

GST-tagged proteins probed with acetyl-lysine

antibody. The bottom panel shows an anti-GST

western blot to show protein levels in the pull-

down experiment. Acetylation was clearly de-

tected on known acetylation targets (Yng2, Rsc4)

and on three of the five proteins tested (asterisk

indicates acetylated proteins).

(B) Diagram showing proteins that were detect-

ably acetylated in vivo encoded by genes that

were also SDL in the rpd3D screen. Nodes are

color coded according to biological processes

as annotated by Costanzo et al. (2010). Yeast

orthologs of mammalian proteins known to be

acetylated are circled in black and are listed in

Table S6.

See also Table S7.
DISCUSSION

Exploration of the Yeast Lysine Acetylome Using
Genetic Interactions
We report a systematic assessment of synthetic dosage interac-

tions for yeast class I and II KDACs. Although a role for acetyl-

transferases and deacetylases in regulating nonhistone proteins

in higher eukaryotes has been previously appreciated, less

information is available about the acetylation status of the

S. cerevisiae proteome. Our comprehensive genetic data set

provides a powerful functional counterpart to biochemical efforts

to explore protein acetylation and links diverse biological path-

ways to lysine deacetylases.

Mechanisms for SDL
An SDL screen with the gene encoding the cyclin-dependent

kinase Pho85 identified several genes encoding negatively regu-

lated substrates of the kinase (Sopko et al., 2006a), suggesting

that some SDL interactions may be caused by an accumulation

of unmodified substrate (Sopko et al., 2007). We identified Yng2,
942 Cell 149, 936–948, May 11, 2012 ª2012 Elsevier Inc.
a known target of Rpd3 (Lin et al., 2008),

and Swi4, a novel target of Rpd3, in our

SDL screen, both negatively regulated

by deacetylation. Consistent with the

possibility that SDL identifies direct

targets of KDACs, the RPD3 SDL screen

was enriched for genes encoding acety-

lated proteins, although the functional

relevance of most of these acetylation

events is unknown.

A second mechanism that could lead

to SDL involves indirect effects of acety-

lation. Our rpd3D SDL screen was en-
riched for proteins involved in drug/ion transport. Although

several of these transporters were mislocalized in the absence

of RPD3 or in the presence of TSA, they did not appear to

be acetylated. In this case, SDL may reflect defective regula-

tion of components involved in protein transport. In human

cells, the removal of KDAC6 results in increased degradation

of EGFR (Deribe et al., 2009; Gao et al., 2010). However, it

is the acetylation of a-tubulin, a nonhistone target of KDAC6,

that is required for correct localization of EGFR as well as

two other proteins: JNK-interaction protein 1 (Reed et al.,

2006), and brain-derived neurotrophic factor (Dompierre et al.,

2007).

A third mechanism that may result in SDL is hyperactivation of

an opposing pathway. In this case, overexpression of a KAT in

the absence of a cognate KDAC may produce SDL due to either

hyperacetylation of histones and aberrant gene expression or

the constitutive hyperacetylation of a common substrate.

Consistent with this model, we identified two regulatory compo-

nents of KATs, Hfi1 and Yng2, whose overproduction caused

SDL in rpd3D. Multisubunit complexes such as KATs may
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Figure 5. Aberrant Localization of Proteins that Cause SDL in the Absence of RPD3

(A) Yeast strains carrying C-terminally GFP-tagged proteins and cytosolic tdTomato under the control of theRPL39 promoter were imaged in wild-type and rpd3D

backgrounds using confocal microscopy. Graphs show quantified localization changes for four proteins that changed localization in the absence of RPD3. Error

bars represent standard deviation from the mean generated by three independent experiments.

(B) Increased vacuolar localization of transporters Hnm1, Itr1, and Tat2 in the absence of RPD3. Untagged tdTomato protein, which localizes to the cytosol and

the nucleus but is excluded from the vacuole, was used to assess transporter localization in rpd3Dmutants. Ubx3-GFP localization was punctate in wild-type but

localized to vacuolar membrane in rpd3D cells.

(C) Strains carrying C-terminally GFP-tagged proteins were imaged in wild-type cells in the presence or absence of the KDAC inhibitor TSA using confocal

microscopy.
require the overexpression of accessory subunits in addition to

the overexpression of the catalytic subunit to produce a func-

tional enzyme (Utley and Côté, 2003).

In a fourth mechanism, SDL may arise from perturbed stoichi-

ometry of a multisubunit complex. Here, deletion and overex-

pression phenotypes are typically concordant, consistent with

the balance hypothesis (Veitia, 2002). In this case, genes that
result in SDL are likely to be corepressors that function in parallel

with the given KDAC to produce the same biological outcome.

One such example is Hda1, which is part of a tetrameric complex

(Carmen et al., 1996; Wu et al., 2001). Although we highlight

several mechanisms by which SDL may arise, additional mech-

anisms may be uncovered as the functional relevance of protein

acetylation is characterized.
Cell 149, 936–948, May 11, 2012 ª2012 Elsevier Inc. 943
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Figure 6. Regulation of the G1 Transcription

Factor Swi4 by Acetylation In Vivo

(A) Growth defect caused by overexpression of

SWI4 in the absence of RPD3. Wild-type, rpd3D,

hda1D, hos1D, hos2D, and hos3D strains bearing

either vector or pGAL-GST-SWI4 were assessed

for growth defects using liquid growth assays. The

growth rate of all strains was measured relative to

that of a wild-type strain transformed with vector

(set at 100% fitness). Error bars represent stan-

dard deviation from the mean generated by three

independent experiments.

(B) Acetylation of Swi4 in KDAC mutants. Endog-

enously produced Swi4-myc from wild-type and

kdac mutant strains was immunoprecipitated and

protein levels assessed using anti-myc antibody

(bottom). Swi4 acetylation in the immunoprecipi-

tates was assayed using an antibody against

acetylated lysines.

(C) Schematic diagram of Swi4 showing location of

relevant protein domains and the location of

acetylated lysines (1016 and 1066; arrows).

(D) Cell-cycle regulation of G1 transcription in Swi4

acetylation site mutants. cDNAwas prepared from

strains containing wild-type Swi4, a point mutant

mimicking constitutive acetylation, Swi4-QQ, a

point mutant that mimics constitutive deacetyla-

tion, Swi4-RR, and a swi4D strain. CLN2 expres-

sion levels were normalized to transcript levels of

ACT1. Error bars represent standard deviation

from the mean generated by three independent

experiments.

(E) Cross-linking of Swi6 and Swi4 to the CLN2

promoter in Swi4 acetylation site mutant strains.

Swi6 association with the CLN2 promoter was

detected using chromatin immunoprecipitation

(ChIP) in both asynchronous samples and cells

synchronized in G1 using a factor (15 min after

release). Immunoprecipitations were performed

using antibodies specific to Swi4 and Swi6. The

presence of CLN2 promoter sequence was de-

tected using quantitative RT-PCR. ChIP efficiency

is shown as a ratio between Swi6 and Swi4. Error

bars represent standard deviation from the mean

generated by three independent experiments.

(F) Coimmunoprecipitation of Swi4 and Swi6 from

KDAC mutant extracts. Endogenously tagged

Swi4-myc was immunoprecipitated from wild-type, rpd3D, hda1D, and hos1D strains. The associated Swi6 was detected using an antibody specific to Swi6.

Antibodies against the myc tag were used to test levels of immunoprecipitated Swi4.

See also Figures S3 and S4.
Novel Functions for the HDA Complex
Genes encoding proteins in the same complex are predicted to

have similar genetic interactions (Collins et al., 2007; Tong

et al., 2004); however, more than half of the dosage interactions

identified for the HDA complex were unique to a given subunit.

Most SL interactions and most PPIs described in the literature

for hda1D, hda2D, and hda3D are also unique (Stark et al.,

2011). Likewise, a dramatic difference in the number of SL and

SDL interactions and a lack of overlap between complex compo-

nents was observed for the NuA4 acetyltransferase complex

(Mitchell et al., 2008; Mitchell et al., 2011). Because we cross-

tested all interactions identified in our HDA complex screens,

we have high confidence in our SDL data. HDA2 has several
944 Cell 149, 936–948, May 11, 2012 ª2012 Elsevier Inc.
unique SDL interactions with genes whose products are involved

in peroxisome biogenesis. A genome-wide study that examined

genes involved in fatty acidmetabolism revealed a growth defect

for hda2D cells in myristic acid, a saturated fatty acid whose

metabolism requires peroxisome function (Smith et al., 2006).

Although peroxisome genes do not appear to be transcriptionally

regulated by the HDA complex (Bernstein et al., 2000), we

observed mislocalization of Pot1-GFP in the absence of HDA

components. These data raise the possibility that the inability

to metabolize fatty acids may be due to defective transport

into the peroxisome. The enhanced Pot1 localization phenotype

in the absence of HDA2, along with the defect in metabolizing

myristic acid that was only observed in an hda2D mutant,
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Figure 7. Model for Acetylation-Dependent Regulation of Swi4 and

Transcriptional Induction during G1 Phase of the Cell Cycle

A schematic depicting how acetylation of Swi4 may facilitate the interaction

between Swi4 and Swi6 to promote timely activation of G1 transcription. Early

in G1, Rpd3 is recruited to promoters by the repressor Whi5, where it de-

acetylates Swi4, leading to a weaker interaction with Swi6, preventing tran-

scription. Phosphorylation and removal of Whi5 by G1 CDKs allows the

recruitment of a KAT, which acetylates Swi4, strengthening the interaction

between Swi4 and Swi6. Together, these events ensure that SBF targets are

appropriately activated in late G1 phase prior to DNA replication.
suggests that Hda2 may be more important for peroxisome

function than the other HDA components. These experiments

highlight the importance of performing genetic screens with

the regulatory subunits of multisubunit enzyme complexes.

Regulation of G1 Transcription Factors by Acetylation
We found that several genes identified in our RPD3 SDL screen

encoded proteins that were acetylated in vivo and had clear

human counterparts known to be regulated by acetylation.

One of these genes, SWI4, is a G1 transcription factor analogous

to the E2F in human cells. This is the first example of a transcrip-

tion factor regulated by (de)acetylation in yeast. Our data

suggest that acetylation of Swi4 is necessary for optimal interac-

tion with Swi6 and binding of SBF to G1 promoters, as high-

lighted by a failure to induce G1 transcription in a swi4 mutant

that mimics constitutive deacetylation. In early G1 phase, SBF

is bound to promoters, but its activity is restrained by the

repressor Whi5, a protein that is analogous to the Retinoblas-

toma protein that inhibits E2F in the G1 regulatory circuit in

mammalian cells. Our data suggest that Rpd3 has a dual role

in regulating G1 transcription in early G1, both by deacetylating

histones to create repressive chromatin and by ensuring that

Swi4 remains deacetylated (Figure 7). Phosphorylation and

removal of Whi5 and Rpd3 by the CDKs, Cdc28 and Pho85, is

necessary to initiate G1 gene expression (Huang et al., 2009;

Wang et al., 2009), and the binding of SBF is facilitated by the

recruitment of additional chromatin remodeling factors,

including the Gcn5 KAT to G1 promoters (Cosma et al., 1999).

Our data suggest that acetylation of Swi4 by a KAT strengthens
the interaction between Swi4 and Swi6 and is necessary for the

maximal induction of G1 transcription. Because Gcn5 is known

to acetylate histones at G1 promoters, it may be the Swi4

acetyltransferase as well (Cosma, 2002; Cosma et al., 1999).

The ortholog E2F is acetylated by two KATs, p300/CBP and

P/CAF, and is deacetylated by HDAC1 (Martı́nez-Balbás et al.,

2000; Marzio et al., 2000). The regulation of E2F and Swi4 by

(de)acetylation is distinct from their regulation by the repressors

Whi5 (for Swi4) and Rb (for E2F) and from the modulation of

chromatin structure by KATs and KDACs. Our data provide

evidence for acetylation modulating the protein-protein interac-

tion between the two components of SBF and further extend

the parallels between the G1 regulatory pathways between yeast

and metazoans.

Conclusions
The results presented here show that synthetic dosage lethal

screens can provide a powerful counterpart to biochemical

efforts in systematically exploring protein acetylation. KDAC

overexpression is linked to poor prognosis in many cancers

(Wang et al., 2001), and several KDAC inhibitors are currently

being used as chemotherapies (Kavanaugh et al., 2010) and

as treatments for neurodegenerative diseases (D’Mello, 2009;

Dietz and Casaccia, 2010). Little information is available about

changes in acetylation patterns of the proteome (Spange et al.,

2009); thus, studies linking specific acetylation events to

cognate KATs/KDACs coupled with an examination of their

biological effects are important. Though these types of high-

throughput genome-wide screens remain technically difficult in

mammalian cells, KDACs and their regulatory pathways are

highly conserved (Bradner et al., 2010; Yang and Seto, 2008).

Systematic genetic studies in yeast can enhance our under-

standing of the global relationships between acetylation events

and the propensity of acetylation networks to lapse into malign

states in diseased cells.

EXPERIMENTAL PROCEDURES

Yeast Strains and Growth Conditions

S. cerevisiae strains and growth conditions are described in Extended Exper-

imental Procedures.

SDL Screens and Confirmations

Screens were performed as previously described (Sopko et al., 2006a). For

details, refer to Extended Experimental Procedures.

Cell Biology

For the vacuolar internalization experiments, GFP-tagged proteins from the

yeast GFP collection (Huh et al., 2003) were imaged in wild-type and rpd3D

backgrounds, and for the peroxisome experiments, GFP-tagged proteins

were imaged in wild-type, hda1D, hda2D, and hda3D backgrounds as previ-

ously described (Youn et al., 2010). Cells were treated with 10 mM TSA or

DMSO for 6 hr before imaging. Peroxisome number was determined by eye

in three independent experiments. For details of the cell biology screen and

quantification, refer to Extended Experimental Procedures.

Pull-Down of GST-Tagged Proteins and Anti-Acetylation

Western Blots

Pull-downs were performed as previously described (Huang et al., 2009). Anti-

acetyl lysine antibodies are described in detail in the Extended Experimental

Procedures.
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Mass Spectrometry

Protein purification and mass spectrometry analysis of acetylation sites on

Swi4-TAP was performed as previously described (Lambert et al., 2009).

Cell-Cycle Synchronization, Quantitative PCR, andGene Expression

Analysis

Cultures were grown to midlog phase in YPD at 30�C, and their cell cycle was

arrested by incubating with 5 mM a factor (GenScript) for 2–3 hr. Cells were

then washed with cold YP and resuspended in fresh YPD medium. RNA

extraction, cDNA preparation, and qPCR reactions were performed as previ-

ously described (Fillingham et al., 2009). FACS analysis for the cell-cycle-

synchronized samples was performed as previously described (Huang et al.,

2009).

Chromatin Immunoprecipitations

Formaldehyde (Sigma) cross-linking and whole-cell extracts were prepared as

previously described (Kim et al., 2004). Immunoprecipitations were performed

using 1:200 dilution of a-myc monoclonal antibody (9E10) and a-Swi6 or

a-Swi4 polyclonal antibodies (Andrews and Herskowitz, 1989; Ogas et al.,

1991). Enrichment of the CLN2 promoter sequence was quantified with real-

time PCR, using a dual fluorogenic reporter TaqMan assay in an ABI PRISM

7500HT Sequence Detection System as previously described (Costanzo

et al., 2004).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

four figures, and eight tables and can be found with this article online at

doi:10.1016/j.cell.2012.02.064.
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