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Abstract

Let I be a finite or infinite index set¥ be a topological space and;, {¢py;,});c; be a family
of finitely continuous topological spaces (in shd¥€-space). For eache I, let 4; : X — 2%i be
a set-valued mapping. Some existence theorems of maximal elements for the {faphjly; are
established under noncompact setting=af-spaces. As applications, some equilibrium existence
theorems for generalized games with fuzzy constraint correspondences are proved in nhoncompact
FC-spaces. These theorems improve, unify and generalize many important results in recent literature.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

Itis well known that many existence theorems of maximal elements for set-valued map-
pings have been established in topological vector spdtesaces and:;-convex spaces
by many authors. Their important applications to mathematical economies and generalized
games have been studied extensively by many authors. For existence results of maximal
elements of various classes of set-valued mappings and their applications to mathematical
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economies, generalized games and other branches of mathematics, the reader may consult
[3,5-12,16-25,27,33—-45] and the references therein.

Let X be a nonempty set. We denote bYy and (X) the family of all subsets ok and
the family of all nonempty finite subsets &f respectively. Leta,, be the standard-di-
mensional simplex with vertice®), e1, ..., e¢,. If J is a nonempty subset ¢0, 1, ..., n},
we denote byA; the convex hull of the verticelg;: j € J}.

The following notions was introduced by Ding in [13,14].

Let X andY be topological spaces. A subsétof X is said to be compactly open
(respectively, compactly closed) if for each nonempty compact subsdtX, A N K is
open (respectively, closed) iKi. The compact interior and the compact closuredcdire
defined by

cintA = U{B C X: B C A andB is compactly open i}, and
cclA = ﬂ{B C X: A C B andB is compactly closed

Clearly, we havexX \ cintA =ccl(X \ A) andX \ cclA = cint(X \ A). For any compact
subsetk of X, we have cind N K =intx (AN K) and cclA N K =clg (AN K).

A set-valued mappin@ : X — 2¥ is said to be transfer compactly open-valued if for
x € X and for each compact subgétof Y, y € T (x) N K implies that there exists’ € X
such thaty cintg (T (x") N K).

The following notion of a finitely continuous topological space (in she@;space) was
introduced by Ding in [15].

Definition 1.1. (Y, {¢py}) is said to be &C-space ifY is a topological space and for each
N ={yo, ..., yn} € (Y) where some elements ¥ may be same, there exists a continuous
mappingey : A, — Y. A subsetD of (Y, {¢n}) is said to be &C-subspace o if for
eachN = {yo. ..., y,} € (Y) and for each{yi,, ..., y;,} C N N D, ¢n(Ar) C D where

A =co({ei;: j=0,....k}).

Clearly, each-C-subspaceé of aFC-spacgY, {¢n}) is also aFC-space.
The following notion of generalized convex (in shast,convex) spaces was introduced
by Park and Kim in [31] and Park in [30].

Definition 1.2. (Y, I') is said to be aG-convex space it is a topological space and
I :(Y) — 2Y \ {#} such that for eactN = {yo, ..., y,} € (Y), there exists a continuous
mappinggy : A, — I'(N) satisfying that for eactB = {yi,, ..., yi,} C N, ¢on(4x) C
I'(B) whereA; =cole;;: j=0,...,k}. AsubsetD of Y is said to beG-convex if for any
N e (D), '(N)C D.

Itis clear that the class @f-convex spaces is a true subclasEGfspaces. We emphasis
that FC-space is a topological space without any convexity structure. Major examples of
FC-space is convex subsets of topological vector spaces, Lassonde’s convex spaces in [26],
C-spaces (ot -spaces) due to Horvath in [240;-convex space due to Park and Kim in
[30,31] and many topological spaces with abstract convexity structure, see [30,31].
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Let X be a topological space andl, {px}) be aFC-space. The clas8(Y, X) of bet-
ter admissible mappings was introduced as followse B(Y,X) & F:Y — 2¥ is a
upper semicontinuous set-valued mapping with compact values such that fav¥ any
{yo,...,yn} € (Y) and any continuous mapping: F(en(A,)) — A,, the composition
mappingy o Fly, (a,) © ¢n : Ay — 24" has a fixed point.

If (Y,{en}) be aG-convex space, the clagyY, X) was introduced by Park in [28].
If Y is a nonempty convex subset of a vector spacehe classB(Y, X) is introduced
and studied by Park in [29]. The clagY, X) of better admissible set-valued mappings
includes many important classes of set-valued mappings, for exabfflg, X) in [31],
KKM(Y, X) in [4] andA(Y, X) in [2] and so on as proper subclasses, see [28].

Lemma 1.1. Let I be any index set. For eache I, let (Y;, {¢n,}) be a FC-space. Let
Y =[];c; Yi andoy =[];c; ¢n,. Then(Y, {pn}) is also a FC-space.

Proof. Let Y be equipped with the product topology and far I, let; : Y — Y; be the
projective mapping frony to ;. For any giverV = {yo, ..., y,} € (Y), let N; = 7;(N) =
{m;(yo), ..., mi(yn)} € (Y;). SinceY; is a FC-space, there exists a continuous mapping
oN; - Ap — Y;. Define a mappingy : A, — Y by

on(a) = l—[gaN,. (@), VYaeA,.

iel

Thengy is continuous and hena®, {¢y}) is also a~C-space. O

By the definition ofFC-subspace of &C-space and Lemma 1.1, we can prove that if
for eachi € I, D; is aFC-subspace oFC-space(Y;, {¢n,}), thenD =[];_, D; is also a
FC-subspace of thEC-spaceY, {¢y}) defined in Lemma 1.1.

Lemma1.2[13]. LetX andY be topological spaceq;: X — 2¥ be a set-valued mapping
with nonempty values. Then the following conditions are equivalent

(1) T has the compactly local intersection property,

(2) for each compact subsét of X and for eachy € Y, there exists an open subs@{ of
X (which may be emphsuch thatO, N K C T1(y)andK = Uer(Oy NK),

(3) for each compact subsét of X, there exists a set-valued mappifig X — 2¥ such
that for eachy € ¥, F~1(y) is open or empty irX, and F~1(y) N K c T~1(y) for
eachy e Y andK =,y (F~1(») N K),

(4) for each compact subsét of X and for eachr € K, there exists: € cint7~1(y) N K,
ie.,

K= U (cintT~ () NK) = U (77 NK),

yey yeY

(5) T~1:Y — 2X is transfer compactly open-valued &n
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2. Existence of maximal e ements

In this section, we shall show several existence theorems of maximal elements for a
set-valued mapping and for a family of set-valued mappings involving a better admissible
set-valued mapping.

Theorem 2.1. Let X be a topological spacedy, {¢y}) be a FC-spaceF < B(Y, X) and
A:X — 2" such that,

(i) foreachN ={yo,..., y,} € (Y) and for each{y;,, ..., y;,} C N,

k
F(en(Ar) N ( N CintA_l(y,-j)> =,

Jj=0

(i) A~1:yY — 2X is transfer compactly open-valued,
(iii) there exists a nonempty setC Y and for eachV = {yo, ..., y,} € (Y), there exists a
compact FC-subspadey of Y containingYoU N such thatk = ﬂyeyo (cintA=1(y))¢

is empty or compact ii¥ where(cintA~1(y))¢ denotes the complementaifitA—1(y).
Then there exists a poitite X such thatA (x) = @.

Proof. Suppose the conclusion is false, th&¢x) # ¢ for eachx € X. If K is empty, then
we have

x=x\ () (cintA™ () = | J cintA*(y). 1)
yeYo yeYo
If K is nonempty and compact, by (ii) and Lemma 1.2, we have
K = J(cinta™* () n k).
yey

SinceK is compact, there exist§ = {yo, ..., y,} € (Y) such that

n n
K ={J(cintA~ (y) N K) c | JcintA™ ().
i=0 i=0
It follows that
x\ [JcintA™() = (M) (cintA™ () =k c | cintA™ ().
y€¥o yeYo yeN
Hence we obtain
x= |J cintA™ (). 2
yeYoUN

Therefore, in both cases, there exidts= {yo, ..., y»} € (Y) such that (2) holds. By con-
dition (iii), there exists a compaétC-subspacd.y of Y containingYpo U N. SinceF is
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upper semicontinuous with compact values dndis compact, it follows from Proposi-
tion 3.1.11 of Aubin and Ekeland in [1] th&t(L 5 ) is compact inX. By (2), we have

F(Ly)= | (cintA™Y(y) N F(Ly)). ©)
YELN

Hence there exists a finite st = {zo, ..., zm} € (Ly) C (Y) such that

m

F(Ly) = J(cintA™ @) N F(Ly)). 4)
i=0

SinceLy is aFC-subspace of, we have
om(A) C Ly, Yzig,...,2i,} CM, (5)

whereA, =co({e;;: j=0,...,r}).
Let {y:}/", is the continuous partition of unity subordinated to the open covering
{cintA=Y(z;)) N F(Ln)}1,. Then for eachi € {0, 1, ..., m} andx € F(Ly),

Yi(x)#£0 & xecintA™}(z)NF(Ly) ccintA™1(z). (6)
Define a mapping : F(Ly) — A, by

Y(x) =Y Yix)e, VxeF(Ly). (7)
i=0
Hencey is continuous and
)= Y Yj(x)ej €Ay, VxeF(Ly), ®)
JEJ(X)

whereJ(x) ={j €{0,1,...,m}: ¥;(x) # 0}. Note thatM C Ly andLy is FC-subspace
of Y, we haveF(py(An)) C F(Ly). SinceF € B(Y, X), it follows from (5) and (7)
that the functiony o Fl,,,(a,) © M : Am — A, has afixed point € A, i.e.,ze Py o
Floy (am © 9m(z). Hence there exists € F|y,,(a,,) © ¢m(z) such that

z=y@ =Y ¥;(¥ej €A,
JeJ ()
whereJ (x) ={j € {0, ..., m}: ¥;(x) # 0}. It follows from (i) that
X € Flyy(ay 0 9om(2) C F(om(Asx)) C U (X \cintA™(z))).
JEJ ()

Therefore there existgy € J(x) such thatx ¢ CintA_l(Zjo). On the other hand, by the
definition of J (x), we havey j, (x) # 0. It follows from (6) thatx e cintA‘l(sz) which is
a contradiction. Hence there must exigts X suchthatA(x) =9¢. O

Remark 2.1. Theorem 2.1 generalizes Theorem 2.1 of Ding in [11] frGreconvex spaces
to FC-space without any convexity structure.
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Theorem 2.2. Let X be a topological spacek be a nonempty compact subsetXof
(Y, {¢n)) be a FC-spaceF € B(Y, X) andA: X — 2¥ such that,

(i) foreachN ={yo,..., y.} € (Y) and for each(y;,, ..., y;,} C N,

k
F(pn(A0) N ( ﬂ CintA_l(yij)> =0,

j=0

(i) A~1:yY — 2X is transfer compactly open-valued,
(iif) for eachN € (Y), there exists a compact FC-subspdcg of Y containingN such
that

F(Lm\ K c | cintA™1(y).

yELN
Then there exists a poiite K such thatA (x) = @.

Proof. Suppose the conclusion is false, théax) # ¢ for eachx € X. By (ii) and Lem-
ma 1.2, we have

K = J(cinta™* () N K).
yey

SinceK is compact, there exist§ = {yo, ..., y,} € (Y) such that

K ={J(cintA™ (y) N K).
i=0
By (iii) and F € B(Y, X), there exists a compaELC-subspace. y of Y containingN and
F(Ly) is compact inX and hence we have
F(Ly)= U (cintA™X(y) N F(Ly)).
YELN

By using similar argument as in the proof of Theorem 2.1, we can show that there exists
X € X such thatd (x) = @. The condition (jii) implies tha€ must be inKk. O

Remark 2.2. Theorem 2.2 generalizes Theorem 2.2 of Ding in [11] fréatonvex space
to FC-space without any convexity structure.

Corollary 2.1. Let (X, {¢pn}) be a FC-space and& be a nonempty compact subsetf
Let F € B(X, X) andA: X — 2X be such that

(i) foreachN = {xo, ..., x,} € (X) and for each{x;,, ..., x;,} C N,

k
F(pn(A) N ( ﬂ CintAl(x,-j)> =0,

j=0
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(i) A~1:Xx — 2Xis transfer compactly open-valued,
(iii) for eachN € (X) there exists a compact FC-subspdcg of X containingN such
that

F(Lm\ K c | cintA™1(y).
YELN

ThenA has a maximal elemernite K, i.e.,A(X) =
Proof. The conclusion of Corollary 2.1 follows from Theorem 2.2 with= (Y, {¢n}). O
If F isthe identity mapping in Corollary 2.1, then we have obtain the following result.

Corollary 2.2. Let (X, {¢pn}) be a FC-space an& be a nonempty compact subsetaf
LetA:X — 2% be such that

(i) for eachN ={xo,..., x,} € (X) and for each{x;, ..., x; } C N,

k
on (AN ( N CintA‘l(xi_/.)) — ¢,

Jj=0

(i) A~1:X — 2¥istransfer compactly open-valued,
(iii) for eachN € (X) there exists a compact FC-subspdcg of X containingN such
that

Ly\K c | cintA™Y(y).
YELN

ThenA has a maximal elemetite K, i.e., A(x) =0

Remark 2.3. We note that the coercive condition (iii) of Theorem 2.1 and the coercive con-
dition (iii) of Theorem 2.2 are not equivalent. Hence they are different results. Corollary 2.1
generalizes Corollary 2.1 of Ding in [11] fror¥-convex space t&C-space. Corollar-

ies 2.1 and 2.2, in turn, generalizes Theorem 2.1 of Shen in [32], Theorem 1 of Ding and
Tan in [19], Theorem 1 of Ding et al. in [17], Theorem 2 of Tulcea in [40], Theorem 2.2
of Toussaint in [39], Theorem 5.1 of Yannelis and Prabhakar in [42] and Corollary 1 of
Borglin and Keiding in [3] in many aspects.

Theorem 2.3. Let X be a topological space antibe an any index set. For eacke I, let
(Yi, {on;}) be a FC-space and lgf = [],; ¥; such that(Y, {¢x}) is a FC-space defined
asinLemmadl.l LetF € B(Y, X) and for eachi € I, A; : X — 2% such that,

(i) foreachN ={yo,...,y,} € (Y) and for each(y;,, ..., yi,} C N,

F(pn(A0)N (ﬂcmtA m(yi,»)):@,
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wherer; is the projection front to Y;,

(i) A,.‘1 :Y; — 2% is transfer compactly open-valued,

(iii) foreachx € X, I(x)={i € I: A;(x) # @} is finite,

(iv) there exists a nonempty S C Y and for eachN = {yo, ..., y,} € (¥), there exists
a compact FC-subspadey of Y containingYp U N such that

K=()ccxeX: 3iel(x), m(y)¢Ai(x))
y€Yo

is empty or compact iX.
Then there existé € X such thatA; (x) = ¢ for eachi € I.

Proof. DefineA:X — 2¥ by

Mierx) 77N A (), if T(x) #9,

A =
D=1y if 1(x) = .

Then for eachy € X, A(x) £ @ if and only if I(x) # @. Let x € X with A(x) # @, then
there exists aty € I (x) such thatd;,(x) # ¢. For eachy € Y, we have

A_l(y)z{xeX:yeA(x)} {xeX ye ﬂ
iel(x)

={xeX: m(y) € Ai(x), Vi € I (x)}
Clxex:xe A (m()} = A ().

A(x)}

ForeachV = {yo, ..., y,} € (Y) and for eacly;,. ..., yi,} C N, ifueﬂ’]‘ 0cintA*l(yij),
thenu e ﬂ _OcmtA_l(n, (yi;))- By (i), u & F(pn(Ax)). It follows that

F(pn(40) N (ﬂcmtA Y ))-

=0

The condition (i) of Theorem 2.1 is satisfied.

For any compact subsé? of X, if x € A~1(y) N D, then for each € I(x), x €
Al.‘l(m (y)) N D. By (ii), each A,.‘1 is transfer compactly open-valued and hence there
existsy; € ¥; such thatx € intD(Ai_l(y,-) N D). Note that/ (x) is finite by (iii), we have

xe ) intD(Ai_l(yi)ﬂD)cintD< N (Ai_l()‘)i)ﬂD)).
iel(x) iel(x)

Let y = [licrn) ¥ ® [ e (vj) Wherey; € Y; is an any fixed element for eaghe
I\ I(x). Hence there existg € Y such that

x eintD< ﬂ

AT m ()N D> =intp(A71(3) N D).
iel(x)
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HenceA 1 is transfer compactly open-valued, the condition (i) of Theorem 2.1 is satisfied.
By the definition ofA, for eachy € Y we have

AT ) ={x e X: m(y) € Ai(x), Vi e I(0)}.
It follows from (iv) that
K = ﬂ (cintA=1(y)" = ﬂ ccl{x € X: Ji e I(x), mi(y) ¢ Ai ()}
yelo yeXo
is empty or compact and hence the condition (iii) of Theorem 2.1 is satisfied. By Theo-

rem 2.1, there exists € X such thatA (x) = ¢ which implies/ (x) =@, i.e., A; (x) = @ for
all i € I. This completes the proof.o

Let X =Y =[],.,; ¥; and F be an identity mapping o#i, then, by Theorem 2.3, we
have the following result.

Corollary 2.3. Let I be an any index set. For eaéte I, let (X;, {¢n,}) be a FC-space
and letX =[,.; X; such that(X, {¢n}) is a FC-space defined as in Lemta. For each
iel, letA;: X — 2% such that

(i) for eachN = {xo,..., x,} € (X) and for each{x;,, ..., x; } C N,

k
en (AN ( ﬂ cintA; (xl-/.))) =0,

j=0

(ii) Ai‘l:Xi — 2% is transfer compactly open-valued,

(i) foreachx € X, I(x)={i e I: A;(x) # ¥} is finite,

(iv) there exists a nonempty s C X and for eachN = {xo, ..., x,} € (X), there exists
a compact FC-subspadey of X containingXo U N such thatk =) {x e X:
i e l(x), m(y) ¢ A;(x)} is empty or compact.

yeXo

Then there existé € X such thatA; (x) = ¥ for eachi € I.

Theorem 2.4. Let X be a topological space antibe an any index set. For eac¢le I, let
(Yi, {en,}) be a FC-space and lat = [],,; ¥: such that(Y, {¢n}) is a FC-space defined

iel

asinLemmad.l Let F € B(Y, X) and for each € I, A; : X — 2¥i such that

(i) foreachN ={yo,..., y.} € (Y) and for eachy;,, ..., y;} C N,

F(en(40)N (ﬂClﬂtA m(yi,-))>=@,

(ii) Ai‘1 :Y; — 2% is transfer compactly open-valued,

(iii) foreachx € X, I(x) ={i € I: A;(x) # @} is finite,

(iv) there exists a compact subgétof X and for eachi € I and N; € (Y;), there exists a
nonempty compact FC-subspaktg, of ¥; containingN; such that for eaclx € X \

K, there existy € Ly =[];<; L, such that for each e I(x), x € cintAi_l(ni ).

Then there existé € K such thatA; (x) = @ for eachi € I.
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Proof. DefineA:X — 2Y by

Nicro ”i_l(Ai(X)), if 1(x)#0,
2 if 7(x)=0.

Then for eachx € X, A(x) £ ¢ if and only if I(x) # @. By the conditions (i)—(iii) and

the proof of Theorem 2.3, the conditions (i) and (ii) of Theorem 2.2 are satisfied. For
eachN € (Y) andi € I, let N; = ; (N). By (iv), there exists compa&iC-subspaced. v,
containingN;. Let Ly =[],.; Ln;, thenLy is a compacEC-subspace of and

Alx) =

iel
Ly=[]Lw o[[m(N) D N.
iel iel
By (iv) again, we have

FLm\Kcx\kc | ( N cintA;l(m(y)))

yeLy Viel(x)

< cint( () A7 (y))> = | cintaAt(y).
yeLy iel(x) yeLy
The condition (iii) of Theorem 2.2 is satisfied. By Theorem 2.2, there exist& such
that A(x) = @ which implies (x) =@, i.e., A;(x) = ¢ for all i € I. This completes the
proof. O

Let X =Y =]],.; ¥; and F be the identity mapping oif, then, by Theorem 2.4, we
have the following result.

Corollary 2.4. Let I be an any index set. For eache I, let (X;, {¢n,}) be a FC-space
and letX =[T,.; X; such that(X, {¢x}) is a FC-space defined as in Lemta. For each
iel, letA;: X — 2% suchthat

(i) for eachN ={xo,..., x,} € (X) and for each{x;y, ..., x;} C N,

k

o (A0 N (ﬂ cintA; (m; (xi,))) =0,

j=0

(i) A;l : X; — 2% is transfer compactly open-valued,

(i) foreachx € X, I(x)={i € I. A;(x) # @} is finite,

(iv) there exists a compact subgétof X and for each € I and N; € (X;), there exists a
nonempty compact FC-subspaktg, of X; containingN; such that for eachr € X \
K, there exists: € Ly = [];; L, such that for each € I (x), x € cintA; ™ (7; (x)).

Then there existé € K such thatA; (x) = ¢ for eachi € 1.
Corallary 2.5. Let I be an any index set. For eache 1, let (X;, {gn,}) be a FC-space

and letX =[1,.; X; such that(X, {¢x}) is a FC-space defined as in Lemta. For each
iel, letA;: X — 2% such that



X.P. Ding / J. Math. Anal. Appl. 305 (2005) 29-42 39

(i) foreachx € X, A;(x) is a FC-subspace of;,
(i) foreachx € X, x; =m;(x) ¢ A;(x) and Alfl : X; — 2% is transfer compactly open-
valued,
(i) foreachx € X, I(x)={i € I. A;(x) # @} is finite,
(iv) there exists a compact subgétof X and for each € I and N; € (X;), there exists a
nonempty compact FC-subspaktg, of X; containingN; such that for eackr € X \
K, there existy € Ly = [];; Ln; such that for eachi € I (x), x € cintA[l(n,-(y)).

Then there exist§ € K such thatA; (x) = @ for eachi € 1.

Proof. Itis sufficient to show that the conditions (i) ang(x) ¢ A; (x) for eachx € X im-
ply the condition (i) of Corollary 2.4 holds. Suppose that the condition (i) of Corollary 2.4
does not hold, then there exiSt= {xo, ..., x,} € (X) and{xj,, ..., x;,} C N such that

k
on (AN ( ﬂ cintA~(; (xi_,))> # (.

j=0

Hence there exists € gy (Ay) such thatx € CintAi_l(m(x,-j)) C Ai_l(m(x,»_/.)) for all
j=0,.... k. Itfollow that{m; (x;;): j=0,...,k} C A;(%). SinceA; (%) is aFC-subspace
of ¥;, we have

2 =m (%) € mi(on (AK) = ow, (Ar) C Ai ()

which contradicts the condition that for eacke X, x; = 7; (x) ¢ A;(x). Hence the condi-
tion (i) of Corollary 2.4 hold. The conclusion follows from Corollary 2.4

Remark 2.4. Corollary 2.5 generalizes Theorem 4.1 of Lin, Yu, Ansari and Lai in [27] from
convex subsets of topological vector spac&@spaces without any convexity structure.

3. Equilibria of generalized games

In this section, by using the maximal element theorems obtained in the above section,
we will establish a new existence theorems for equilibrium points of generalized games
with fuzzy constraint correspondencedH6-spaces.

Because of the fuzziness of consumers’ behavior or market situations, in a real market,
any preference of a real agent would be unstable. Therefore Kim and Tan [25] introduced
the following model of generalized games with fuzzy constraint correspondences.

Let 7 be a finite or infinite set of agents. For each I, let X; be a strategy set (or
commodity space) ofth agent. A generalized game = (X;, A;, F;, P;);c; is defined
as a family of ordered quadrupléX;, A;, F;, P;), whereA;: X =[[;.; Xi — 2% is a
constraint correspondence such thatr) is the state attainable foth agent;F; : X — 2%i
is a fuzzy constraint correspondence such that) is the unstable state foth agent, and
P;: X x X — 2%i is a preference correspondence such tat, y) is the state preference
of ith agent at(x, y). An equilibrium for generalized gamg is a point(x,y) € X x X
such that for eache I, x; = m; (%) € A; (%), y; = 7;(P) € F;(y), andA; () N P;(x, y) = 0.
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If for eachi € I, F;(x) = X; and P;(x,y) = P;(x) for all (x,y) € X x X, then the
above definition of a generalized gamfieand an equilibrium point of” coincide with the
usual definition of a generalized game in [3,5,7-10,16-21,23,25,32—-45].

Theorem 3.1. LetI" = ((X;, {¢n, 1), Ai, Fi, Pi)icr be ageneralized game arkilbe a non-
empty compact subset & = [],_; X; such that for eachi € I, the following conditions
are satisfied

iel

(i) foreachx € X, A;(x), F;(x) are nonempty FC-subspacesXf,

(i) foreachy; € X;, A-1(v;), F(y), and P 1(y;) are compactly open,

(i) forall (x,y) e X x X, P;(x,y) is a FC-subspace of; andx; = 7; (x) ¢ P;(x,y),

(iv) thesetW; ={(x,y) € X x X: m;(x) € A;(x) andr;(y) € F;(x)} is compactly closed,

(v) foreach(x,y) e X x X,thesetl (x,y)={i € I: A;(x) N P;(x, y) # @} is finite,

(vi) for eachN;, M; € (X;), there exist compact FC-subspadeg and L, of (X;) con-
taining N; and M; respectively, such that for eack, y) € X x X \ K x K, there
exists(u, v) € Ly x Ly, whereLy =[];.; Ly; and Ly = [[;; L, such that for
eachi € I (x, y), mi(u) € A; (x) N P;(x, y) andm; (v) € F;(x).

iel
Thenthere exist&, y) € K x K suchthatforeache I,x; =m;(x) € A; (%), i =7 (9) €
F;(3),andA; (x) N P;(x,y) =0, i.e., (x, y) is an equilibrium point of".

Proof. By Lemma 1.1(X x X, {¢n}) is also & C-space wher& x X =]
For each e I, defineG,; : X x X — 2%ixXi py

ieI(Xi XX,').
[Ai(x) N Pi(x, )] x Fi(x), if (x,y) e W,

o= { Ai(x) X F(x), (. 3) ¢ Wi.

Then, by (i) and (iii), for each € I and for eachx, y) € X x X, G;(x, y) is aFC-space
of X; and so the condition (i) of Corollary 2.5 is satisfied. By (iii) and the definitioWpf
we have(x;, y;) = (m; (x), ;i (y)) ¢ G;(x, y) for eachi € I and for any(x, y) € X x X.

For each € I and for any(u;, v;) € X; x X;, we have

G ui, vi) = [P7Hu) N (A7 ) x X) N (F7H ) x X)]
U[((X x X))\ Wi) N (A7 @) x X) N (F7Hw) x X))
By the conditions (ii) and (iv)Gjl(ui, v;) is compactly open-valued and hen(‘3¢1 it
transfer compactly open-valued an x X;. The condition (ii) of Corollary 2.5 is satisfied.

The condition (v) implies that the condition (iii) of Corollary 2.5 holds. Note tﬁatl is
compactly open-valued, from condition (vi), we have

(X x X)\ (K x K) ({67 (i), 7 ()): (u,v) € Ly x L}
= U{cintc;l(m(u), 7 (v)): (u,v) € Ly x Ly}

and so the condition (iv) of Corollary 2.5 is satisfied. By Corollary 2.5, there eistd <
X x X such thatG;(x,5) =@ foralli e I. If (X,3) ¢ W; for somej € I, then either
A;(X) =0 or F;(x) = ¥ which contradicts the fact that; (x) and F; (x) are both nonempty
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for eachx € X and for anyi € I. Therefore we havéx, 3) € W; for all i € I, and hence
for eachi € I, xA,' = 7Ti()2) € Ai()’f), )A),' = 7'[,'()’\1) € Fi(xA) andAi(i) N Pl'()’f, )A)) =@. This
completes the proof. O

Remark 3.1. Theorem 3.1 generalizes Theorem 5.1 of Lin, Yu, Ansari and Lai [27] from
convex subsets of topological vector spaceB@spaces without any convexity structure
under much weaker assumptions.
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