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Abstract

In this paper we generalize the notion of essential codimension of Brown, Douglas, and Fillmore us-
ing KK-theory and prove a result which asserts that there is a unitary of the form ‘identity + compact’
which gives the unitary equivalence of two projections if the ‘essential codimension’ of two projections
vanishes for certain C∗-algebras employing the proper asymptotic unitary equivalence of KK-theory found
by M. Dadarlat and S. Eilers. We also apply our result to study the projections in the corona algebra of
C(X) ⊗ B where X is [0,1], (−∞,∞), [0,∞), and [0,1]/{0,1}.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

When two projections p and q in B(H), whose difference is compact, are given, an integer
[p : q] is defined as the Fredholm index of v∗w where v,w are isometries on H with vv∗ = p

and ww∗ = q . This number is called the essential codimension because it gives the codimension
of p in q if p � q [2]. A modern interpretation of this essential codimension is provided using
the Kasparov group KK(C,C). Indeed, a ∗-homomorphism from C to B(H) is determined by
the image of 1 which is a projection. Thus we can associate to the essential codimension a Cuntz
pair. An important result of the essential codimension is the following: [p : q] = 0 if and only
if there is a unitary u of the form ‘identity + compact’ such that upu∗ = q . Motivated by this
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result, Dadarlat and Eilers defined a new equivalence relation on KK-group [4]. When π,σ :A →
L(E) are two representations, with E being a Hilbert B-module, we say π and σ are properly
asymptotically unitarily equivalent and write π � σ if there is a continuous path of unitaries
u : [0,∞) → U (K(E) + C1E), u = (ut )t∈[0,∞), such that

• limt→∞ ‖σ(a) − utπ(a)u∗
t ‖ = 0 for all a ∈ A,

• σ(a) − utπ(a)u∗
t ∈ K(E) for all t ∈ [0,∞), and a ∈ A.

Note that the word ‘proper’ reflects the fact that implementing unitaries are of the form
‘identity + compact’. The main result of them is [4, Theorem 3.8] which asserts that if
φ,ψ : A → M(B ⊗ K(H)) is a Cuntz pair of representations, then the class [φ,ψ] van-
ishes in KK(A,B) if and only if there is another representation γ : A → M(B ⊗ K(H))

such that φ ⊕ γ � ψ ⊕ γ . When B = C, which corresponds to K-homology, the result
is improved as a non-stable version. In fact, if (φ,ψ) is a Cuntz pair of faithful, non-
degenerate representations from A to B(H) such that both images do not contain any non-
trivial compact operator, then the cycle [φ,ψ] = 0 in KK(A,C) if and only if φ � ψ [4,
Theorem 3.12]. This fits nicely with the above aspect of the essential codimension. An ab-
stract version of this is proved by given a Cuntz pair of absorbing representations (see The-
orem 2.11). Thus the proper asymptotic unitary equivalence must be the right notion and
tool for further developments of the non-stable K-theory. Our intrinsic interest lies in when
this non-stable version of proper asymptotic unitary equivalence happens as shown in K-
homology case. We show a similar result for K-theory. In fact, we prove that if (φ,ψ) is
a Cuntz pair of faithful representations from C → M(B ⊗ K) whose images are not in
B ⊗ K , then [φ,ψ] = 0 in K(B) if and only if φ � ψ provided that B is non-unital,
separable, purely infinite simple C∗-algebra such that M(B) has real rank zero (see Theo-
rem 2.14).

Besides our intrinsic interest, Theorem 2.14 was motivated by the projection lifting problem
from the corona algebra to the multiplier algebra of a C∗-algebra of the form C(X) ⊗ B . To
lift a projection from a quotient algebra to a projection has been a fundamental question related
to K-theory (see [5]). We show that a projection in the corona algebra is ‘locally’ liftable to a
projection in the multiplier algebra but not ‘globally’ in general. In other words, it can be rep-
resented by finitely many projection valued functions so that their discontinuities are described
in terms of Cuntz pairs. They give rise to K-theoretical obstructions. We show that these dis-
continuities can be resolved if corresponding K-theoretical terms are vanishing. In this process,
the crucial point of proper asymptotic unitary equivalence is exploited as a key step (see Theo-
rem 3.3).

2. Proper asymptotic unitary equivalence

Let E be a (right) Hilbert B-module. We denote by L(E,F ) the C∗-algebra of adjointable,
bounded operators from E to F . The ideal of ‘compact’ operators from E to F is denoted by
K(E,F ). When E = F , we write L(E) and K(E) instead of L(E,E) and K(E,E). Throughout
the paper, A is a separable C∗-algebra, and all Hilbert modules are assumed to be countably
generated over a separable C∗-algebra. We use the term representation for a ∗-homomorphism
from A to L(E). We let HB be the standard Hilbert module over B which is H ⊗ B where H is
a separable infinite dimensional Hilbert space. We denote by M(B) the multiplier algebra of B .
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It is well known that L(HB) = M(B ⊗ K) and K(HB) = B ⊗ K where K is the C∗-algebra of
the compact operators on H [8].

Definition 2.1. (See [4, Definition 2.1].) Let π,σ be two representations from A to E and F

respectively. We say π and σ are approximately unitarily equivalent and write π ∼ σ , if there
exists a sequence of unitaries un ∈ L(E,F ) such that for any a ∈ A

(i) limn→∞ ‖σ(a) − unπ(a)u∗
n‖ = 0,

(ii) σ(a) − unπ(a)u∗
n ∈ K(F ) for all n.

Definition 2.2. (See [4, Definition 2.5].) A representation π : A → L(E) is called absorbing if
π ⊕ σ ∼ π for any representation σ : A → L(F ).

We say that π and σ are asymptotically unitarily equivalent, and write π ∼asym σ if there is a

unitary valued norm continuous map u : [0,∞) → L(E,F ) such that t → σ(a) − utπ(a)u∗
t lies

in C0([0,∞)) ⊗ K(E) for any a ∈ A, or if

(i) limt→∞ ‖σ(a) − utπ(a)u∗
t ‖ = 0,

(ii) σ(a) − utπ(a)u∗
t ∈ K(F ) for all t ∈ [0,∞).

If π : A → L(E) is a representation, we define π(∞) : A → L(E(∞)) by π(∞) = π ⊕ π ⊕ · · ·
where E(∞) = E ⊕ E ⊕ · · · .

Lemma 2.3. Let ψ be an absorbing representation, and φ be a representation of a separable
C∗-algebra A on the standard Hilbert B-module HB . Then there exists a sequence of isometries
{vn} ⊂ L(H

(∞)
B ,HB) such that for each a ∈ A

vnφ
(∞)(a) − ψ(a)vn ∈ K

(
H

(∞)
B ,HB

)
,∥∥vnφ

(∞)(a) − ψ(a)vn

∥∥ → 0 as n → ∞,

v∗
j vi = 0 for i �= j .

Proof. Let Si , i = 1,2,3, . . . , be a sequence of isometries of L(HB) such that S∗
i Sj = 0, i �= j ,

and
∑

i SiS
∗
i = 1 in the strict topology. Let φ∞(a) = ∑

i Siφ(a)S∗
i . Since ψ is absorbing, there

is a unitary U ∈ L(HB,HB) such that

U∗ψ(a)U − φ∞(a) ∈ K(HB), a ∈ A. (1)

Define T : H(∞)
B → HB by T = (S1, S2, . . .). Then

φ∞(a) = T φ(∞)(a)T ∗.

Thus Eq. (1) is rewritten as

T ∗U∗ψ(a)UT − φ(∞)(a) ∈ K
(
H

(∞))
, a ∈ A. (2)
B
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If we identify φ(∞) as (φ(∞))(∞), there is a partition Ni , i = 1,2,3, . . . , of N so that we generate
a sequence of isometries vi ∈ L(H

(∞)
B ,HB) from UT = (US1,US2, . . .). More concretely, if we

let νi : Ni → N be bijections, we can define vi = (US
ν−1
i (1)

,US
ν−1
i (2)

, . . .). It is easily checked

that viv
∗
j = 0 for i �= j . Eq. (2) implies that

v∗
i ψ(a)vi − φ(∞)(a) ∈ K

(
H

(∞)
B

)
,∥∥v∗

i ψ(a)vi − φ(∞)(a)
∥∥ → 0 as i → ∞.

Finally, our claim follows from

(
vnφ

(∞)(a) − ψ(a)vn

)∗(
vnφ

(∞)(a) − ψ(a)vn

)
= φ(∞)

(
a∗)(φ(∞)(a) − v∗

nψ(a)vn

)
+ (

φ(∞)
(
a∗) − v∗

nψ(a)vn

)
φ(∞)(a) − (

φ(∞)
(
a∗a

) − v∗
nψ

(
a∗a

)
vn

)
. �

Lemma 2.4. (See [4, Lemma 2.6].) Let π : A → L(E) and σ : A → L(F ) be two representations.
Suppose that there is a sequence of isometries vi : F (∞) → E such that for a ∈ A

viσ
(∞)(a) − π(a)vi ∈ K

(
F (∞),E

)
, lim

i→∞
∥∥viσ

(∞)(a) − π(a)vi

∥∥ → 0,

and v∗
j vi = 0 for i �= j . Then π ⊕ σ ∼asym π .

We say φ : A → B(H) is admissible if φ is faithful, non-degenerate, and φ(A)∩K = {0}. The
main result in [14] states that any pair of admissible representations φ and ψ satisfies that φ ∼ ψ .
Dadarlat and Eilers proved a much stronger version which states that any pair of admissible
representations φ and ψ satisfies φ ∼asymψ [4, Theorem 3.11]. Since the admissible representation
is absorbing, the following result is the appropriate generalization of Voiculescu’s result.

Theorem 2.5. If two representations ψ , φ of a separable C∗-algebra A on the standard Hilbert
B-module HB are absorbing, then we have φ ∼asym ψ .

Proof. By Lemma 2.3 and Lemma 2.4, we have ψ ⊕ φ ∼asym ψ , and the proof is complete by
symmetry. �
Definition 2.6. Let φ be a representation from A to M(B ⊗ K). Then we define a C∗-algebra by

Dφ(A,B) = {
x ∈ M(B ⊗ K)

∣∣ xφ(a) − φ(a)x ∈ B ⊗ K, a ∈ A
}
.

Lemma 2.7. If M(B ⊗ K) has real rank zero, then Dφ(C,B) has real rank zero for any repre-
sentation φ : C → M(B ⊗ K).

Proof. The proof of the lemma is essentially based on the argument due to Brown and Peder-
sen [1].

Note that any representation φ : C → M(B ⊗K) is determined by φ(1), which is a projection
in M(B ⊗K). Say φ(1) = p. Then we see that Dφ(C,B) = {x ∈ M(B ⊗K) | xp−px ∈ B ⊗K}.
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To show Dφ(C,B) has real rank zero, it is enough to show any self-adjoint element in
Dφ(C,B) is approximated by a self-adjoint, invertible element. Let x be a self-adjoint element.
Using the obvious matrix notation

x =
(

a c

c∗ b

)
,

xp − px ∈ B ⊗ K implies that c is ‘compact’, i.e., it is in B ⊗ K . Since M(B ⊗ K) has real
rank zero, pM(B ⊗K)p and (1 −p)M(B ⊗K)(1 −p) have real rank zero. Given ε > 0 we can
find b0 invertible in (1 −p)M(B ⊗K)(1 −p) with b0 = b∗

0 and ‖b − b0‖ < ε. Then considering
a − cb−1

0 c∗, we can find a0 in pM(B ⊗ K)p with a0 = a∗
0 and ‖a − a0‖ < ε, such that a0 −

cb−1
0 c∗ is invertible in pM(B ⊗ K)p. Then

(
p cb−1

0
0 1−p

)
,
( p 0

b−1
0 c∗ 1−p

)
are in Dφ(C,B) since cb−1

0 is

‘compact’. Thus

x0 =
(

a0 c

c∗ b0

)
=

(
p cb−1

0

0 1 − p

)(
a0 − cb−1

0 c∗ 0

0 b0

)(
p 0

b−1
0 c∗ 1 − p

)

is invertible in Dφ(C,B). Evidently ‖x − x0‖ < ε, so we are done. �
Let us recall the definition of Kasparov group KK(A,B). We refer the reader to [9] for the

general introduction of the subject. A KK-cycle is a triple (φ0, φ1, u), where φi : A → L(Ei) are
representations and u ∈ L(E0,E1) satisfies that

(i) uφ0(a) − φ1(a)u ∈ K(E0,E1),
(ii) φ0(a)(u∗u − 1) ∈ K(E0), φ1(a)(uu∗ − 1) ∈ K(E1).

The set of all KK-cycles will be denoted by E(A,B). A cycle is degenerate if

uφ0(a) − φ1(a)u = 0, φ0(a)
(
u∗u − 1

) = 0, φ1(a)
(
uu∗ − 1

) = 0.

An operator homotopy through KK-cycles is a homotopy (φ0, φ1, ut ), where the map t → ut is
norm continuous. The equivalence relation ∼

oh
is generated by operator homotopy and addition

of degenerate cycles up to unitary equivalence. Then KK(A,B) is defined as the quotient of
E(A,B) by ∼

oh
. When we consider non-trivially graded C∗-algebras, we define a triple (E,φ,F ),

where φ : A → L(E) is a graded representation, and F ∈ L(E) is of odd degree such that
Fφ(a)−φ(a)F , (F 2 −1)φ(a), and (F −F ∗)φ(a) are all in K(E) and call it a Kasparov (A,B)-
module. Other definitions like degenerate cycle and operator homotopy are defined in similar
ways. Let v be a unitary in Mn(Dφ(A,B)). Define φn : A → LB(Bn) by φn(a)(b1, b2, . . . , bn) =
(φ(a)b1, φ(a)b2, . . . , φ(a)bn). Let Bn ⊕ Bn be graded by (x, y) 
→ (x,−y). Then

(
Bn ⊕ Bn,

(
φn 0

0 φn

)
,

(
0 v

v∗ 0

))

is a Kasparov (A,B)-module. The class of this module depends only on the class of v in
K1(Dφ(A,B)) so that the construction gives rise to a group homomorphism Ω : K1(Dφ(A,B))→
KK(A,B).
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Lemma 2.8. Let φ be an absorbing representation from A to L(HB) = M(B) where B is a stable
C∗-algebra. Then Ω : K1(Dφ(A,B)) → KK(A,B) is an isomorphism.

Proof. See [13, Theorem 3.2]. In fact, Thomsen proved K1(
Dφ(A,B)

(Dφ(A,A,B))
) is isomorphic to

KK(A,B) via a map Θ where Dφ(A,A,B) = {x ∈ Dφ(A,B) | xφ(A) ⊂ B} is the ideal of
Dφ(A,B). However, the same proof shows Ω is an isomorphism. Alternatively we can show
that Ki(Dφ(A,A,B)) = 0 for i = 0,1 by the argument of [7, Lemma 1.6] with the fact that
K∗(M(B)) = 0. Thus, using the six term exact sequence, K∗(Dφ(A,B)) is isomorphic to

K∗( Dφ(A,B)

(Dφ(A,A,B))
). This implies the map Ω which is the composition with Θ and q1 is an iso-

morphism. Here q1 is the induced map between K-groups from the quotient map from Dφ(A,B)

onto Dφ(A,B)

(Dφ(A,A,B))
. �

Definition 2.9. (See [4, Definition 3.2].) If π,σ : A → L(E) are representations, we say that π

and σ are properly asymptotically unitarily equivalent and write π � σ if there is a continuous
path of unitaries u : [0,∞) → U (K(E) + CIE), u = (ut )t∈[0,∞) such that for all a ∈ A

(i) limt→∞ ‖σ(a) − utπ(a)u∗
t ‖ = 0,

(ii) σ(a) − utπ(a)u∗
t ∈ K(E) for all t ∈ [0,∞).

In the above, we introduced the Fredholm picture of KK-group. There is an alternative way
to describe the element of KK-group. The Cuntz picture is described by a pair of representations
φ,ψ : A → L(HB) = M(B ⊗ K) such that φ(a) − ψ(a) ∈ K(HB) = B ⊗ K . Such a pair is
called a Cuntz pair. They form a set denoted by Eh(A,B). A homotopy of Cuntz pairs consists
of a Cuntz pair (Φ,Ψ ) : A → M(C([0,1]) ⊗ (B ⊗ K)). The quotient of Eh(A,B) by homotopy
equivalence is a group KKh(A,B) which is isomorphic to KK(A,B) via the mapping sending
[φ,ψ] to [φ,ψ,1] [3].

Dadarlat and Eilers proved that [φ,ψ] = 0 in KKh(A,B) if and only if there is a representa-
tion γ : A → M(B ⊗ K) = L(HB) such that φ ⊕ γ � ψ ⊕ γ [4, Proposition 3.6]. The point is
that the equivalence is implemented by unitaries of the form compact + identity. Sometimes, we
can have a non-stable equivalence keeping this useful point.

Definition 2.10. Let A be a C∗-algebra. Denote by Ã its unitization. We say that A has K1-
injectivity if the map from U (Ã)/U0(Ã) to K1(A) is injective where U (Ã) is the unitary group
and U0(Ã) is the connected component of the identity. We note that H. Lin proved in [11,
Lemma 2.2] that real rank zero implies K1-injectivity.

Theorem 2.11. Let A be a separable C∗-algebra and let ψ,φ : A → HB be a Cuntz pair of
absorbing representations. Suppose that the composition of φ with the natural quotient map
π : M(B ⊗K) → M(B ⊗K)/B ⊗K , which will be denoted by φ̇, is faithful. Further, we suppose
that Dφ(A,B) satisfies K1-injectivity. If [φ,ψ] = 0 in KK(A,B), then φ � ψ .

Proof. The proof of this theorem is almost identical to the one given in [4, Theorem 3.12]. We
just give the proof to illustrate how our assumptions play the roles.

By Theorem 2.5, we get a continuous family of unitaries (ut )t∈[0,∞) in M(B ⊗ K) such that

utφ(a)u∗
t − ψ(a) ∈ C0

([0,∞)
) ⊗ (B ⊗ K). (3)
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Note that (3) implies [φ,ψ] = [φ,u1φu∗
1] (see [4, Lemma 3.1]). We assume that [φ,ψ] = 0 and

we conclude that [φ,u1φu∗
1] = 0. Since (φ,φ,u∗

1) is unitarily equivalent to (φ,u1φu∗
1,1),

[
(φ,φ,u1)

] = [(
φ,φ,u∗

1

)] = 0.

Since the isomorphism Ω : K1(Dφ(A,B)) → KK(A,B) sends [u1] to [φ,φ,u1] by Lemma 2.8,
K1-injectivity implies that u1 is homotopic to 1 in Dφ(A,B). Thus we may assume that u0 = 1
in (3).

Let Eφ be a C∗-algebra φ(A) + B ⊗ K . We define (αt )t∈[0,∞) in Aut0(Eφ) by Ad(ut ). Note
that α0 = id and (αt ) is a uniform continuous family of automorphisms. Thus we apply Proposi-
tion 2.15 in [4] and get a continuous family (vt )[0,∞) of unitaries in Eφ such that

lim
t→∞

∥∥αt (x) − Advt (x)
∥∥ = 0 (4)

for any x ∈ Eφ .
Combining (4) with (3), we obtain (vt )[0,∞) of unitaries in Eφ such that

lim
t→∞

∥∥vtφ(a)v∗
t − ψ(a)

∥∥ = 0

for any a ∈ A. Since φ̇ is faithful, we can replace (vt )[0,∞) by a family of unitaries in B ⊗K +C1
by the argument shown in Step 1 of the proof of Proposition 3.6 in [4]. �

Recall the definition of the essential codimension of Brown, Douglas, and Fillmore defined by
two projections p,q in B(H) whose difference is compact as we have defined in Introduction.
Using KK-theory, or K-theory, we generalize this notion as follows, keeping the same notation.

Definition 2.12. Given two projections p,q ∈ M(B ⊗K) such that p − q ∈ B ⊗K , we consider
representations φ,ψ from C to M(B ⊗K) such that φ(1) = p,ψ(1) = q . Then (φ,ψ) is a Cuntz
pair so that we define [p : q] as the class [φ,ψ] ∈ KK(C,B) � K(B).

Lemma 2.13. (See [12].) Let B be a non-unital (σ -unital) purely infinite simple C∗-algebra. Let
φ,ψ be two monomorphisms from C(X) to M(B ⊗ K) where X is a compact metrizable space.
If φ̇, ψ̇ are still injective, then they are approximately unitarily equivalent.

The following theorem is a sort of generalization of BDF’s result about the essential codimen-
sion.

Theorem 2.14. Let B be a non-unital (σ -unital) purely infinite simple C∗-algebra such that
M(B ⊗ K) has real rank zero. Suppose two projections p and q in M(B ⊗ K) = L(HB) such
that p − q ∈ B ⊗ K and neither of them are in B ⊗ K . If [p,q] ∈ K0(B) vanishes, then there is
a unitary u in id + B ⊗ K such that upu∗ = q .

Proof. Step 1: Let φ,ψ : C → M(B ⊗ K) be representations from p and q respectively. Ev-
idently φ is injective. Moreover, it does not contain any “compacts” since p does not belong
to B ⊗ K . Thus φ̇ is faithful. Recall ψ∞ is defined by ψ∞(a) = ∑

Siψ(a)S∗
i where {Si} is a

sequence of isometries in M(B ⊗ K) such that SiS
∗ = 0 for i �= j . Suppose that ψ∞(λ) = 0 for
j
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λ ∈ C. Then S∗
i ψ∞(λ)Si = ψ(λ) = 0 or λq = 0. Thus λ = 0. Similarly, ψ̇∞ is injective. Then

they are approximately unitarily equivalent by applying Lemma 2.13 to X = {x0}. Thus we have
a unitary U in L(HB) such that

U∗φ(a)U − ψ∞(a) (5)

for a ∈ C.
Note that to get a sequence of isometries {vi} ∈ L(H

(∞)
B ,HB) satisfying the conditions of

Lemma 2.3, what we needed was Eq. (5). Following the same argument in the proof of Theo-
rem 2.5, we get φ ∼asym ψ . In other words, we have a continuous family of unitaries (ut )t∈[0,∞) in
M(B ⊗ K) such that

utφ(a)u∗
t − ψ(a) ∈ C0

([0,∞)
) ⊗ (B ⊗ K) for any a in A.

Since Dφ(C,B) has real rank zero, it satisfies K1-injectivity. Thus it follows that φ � ψ as in
the proof of Theorem 2.11.

Step 2: For large enough t , we can take ut = u of the form ‘identity + compact’ such that
‖upu∗ − q‖ < 1. For the moment we write upu∗ as p. Thus ‖p − q‖ < 1. Note that p − q ∈
B ⊗ K . Then z = pq + (1 − p)(1 − q) ∈ 1 + B ⊗ K is invertible and pz = zq . If we consider
the polar decomposition of z as z = v|z|. It is easy to check that v ∈ 1 + B ⊗ K and vpv∗ = q .
Now w = vu is also a unitary of the form ‘identity + compact’ such that

wpw∗ = q. �
3. Application: projection lifting

In this section, we show an application of proper asymptotic unitary equivalence of two pro-
jections. In this application, with an additional real rank zero property, the unitary of the form
‘identity + compact’ plays a crucial role as we shall see.

Let B be a stable C∗-algebra such that the multiplier algebra M(B) has real rank zero. Let
X be [0,1], [0,∞), (−∞,∞) or T = [0,1]/{0,1}. When X is compact, let I = C(X) ⊗ B

which is the C∗-algebra of (norm continuous) functions from X to B . When X is not compact,
let I = C0(X) ⊗ B which is the C∗-algebra of continuous functions from X to B vanishing at
infinity. Then M(I) is given by Cb(X,M(B)s), which is the set of bounded functions from X

to B(H), where M(B) is given the strict topology. Let C(I ) = M(I)/I be the corona algebra
of I and also let π : M(I) → C(I ) be the natural quotient map. Then an element f of the corona
algebra can be represented as follows: Consider a finite partition of X, or X� {0,1} when X = T,
which is given by partition points x1 < x2 < · · · < xn all of which are in the interior of X and
divide X into n+1 (closed) subintervals X0,X1, . . . ,Xn. We can take fi ∈ Cb(Xi,M(B)s) such
that fi(xi) − fi−1(xi) ∈ B for i = 1,2, . . . , n and f0(x0) − fn(x0) ∈ B where x0 = 0 = 1 if X

is T.

Lemma 3.1. The coset in C(I ) represented by (f0, . . . , fn) consists of functions f in M(I) such
that f − fi ∈ C(Xi) ⊗ B for every i and f − fi vanishes (in norm) at any infinite end point
of Xi .
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Proof. If X is compact, then we set x0 = 0, xn+1 = 1. Otherwise, we set x0 = x1 − 1 when
X contains −∞, and xn+1 = xn + 1 when X contains +∞. Then we define a function in
C(X) ⊗ B by

mi(x) =

⎧⎪⎨
⎪⎩

x−xi−1
xi−xi−1

(fi(xi) − fi−1(xi)), if xi−1 � x � xi,

x−xi+1
xi−xi+1

(fi(xi) − fi−1(xi)), if xi � x � xi+1,

0, otherwise

for each i = 1, . . . , n. In addition, we set m0 = mn+1 = 0. Then we define a function f̃ from fi ’s
by

f̃ (x) = fi(x) − mi(x)/2 + mi+1(x)/2

on each Xi . It follows that fi(xi)−mi(xi)/2+mi+1(xi)/2 = fi−1(xi)−mi−1(xi)/2+mi(xi)/2.
Thus f̃ is well defined. The conditions f − fi ∈ C(Xi) ⊗ B for each i imply that f − f̃ is norm
continuous function from X to B since f |Xi

(xi) − f̃ |Xi
(xi) = f |Xi−1(xi) − f̃ |Xi−1(xi). �

Similarly (f0, . . . , fn) and (g0, . . . , gn) define the same element of C(I ) if and only if
fi − gi ∈ C(Xi) ⊗ B for i = 0, . . . , n if X is compact. (f0, . . . , fn) and (g0, . . . , gn) de-
fine the same element of C(I ) if and only if fi − gi ∈ C(Xi) ⊗ B for i = 0, . . . , n − 1,
fn −gn ∈ C0([xn,∞))⊗B if X is [0.∞). (f0, . . . , fn) and (g0, . . . , gn) define the same element
of C(I ) if and only if fi − gi ∈ C(Xi) ⊗ B for i = 1, . . . , n − 1, fn − gn ∈ C0([xn,∞)) ⊗ B ,
f0 − g0 ∈ C0((−∞, x1]) ⊗ B if X = (−∞,∞).

The following theorem says that any projection in the corona algebra of C(X) ⊗ B for some
C∗-algebras B is described by a “locally trivial fiber bundle” with the fiber HB in the sense of
Dixmier and Duady [6].

Theorem 3.2. Let I be C(X) ⊗ B or C0(X) ⊗ B where B is a stable C∗-algebra such that
M(B) has real rank zero. Then a projection f in M(I)/I can be represented by (f0, f1, . . . , fn)

as above where fi is a projection valued function in C(Xi) ⊗ M(B)s for each i.

Proof. Let f be the element of M(I) such that π(f ) = f. Without loss of generality, we can
assume f is self-adjoint and 0 � f � 1.

(i) Suppose X does not contain any infinite point. Choose a point t0 ∈ X. Then there is a self-
adjoint element T ∈ M(B) such that T − f (t0) ∈ B and the spectrum of T has a gap around 1/2
by [1, Theorem 3.14]. So we consider f (t) + T − f (t0) which is still self-adjoint whose image
is f. Thus we may assume f (t0) is a self-adjoint element whose spectrum has a gap around 1/2.

Since r(f (t)) : t → f (t)−f (t)2 is norm continuous where r(x) = x −x2, if we pick a point z

in (0, 1
4 ) such that z /∈ σ(f (t0) − f (t0)

2), then σ(f (s)) omits r−1(J ) for s sufficiently close to
t where J is an interval containing z. In other words, there is δ > 0 and b > a > 0 such that if
|t0 − s| < δ, then σ(f (s)) ⊂ [0, a) ∪ (b,1].

If we let ft0(s) = χ(b,1](f (s)) for s in (t0 − δ, t0 + δ) where χ(b,1] is the characteristic func-
tion on (b,1], then it is a continuous projection valued function such that ft0 − f ∈ C(t0 − δ,

t0 + δ) ⊗ B .
By repeating the above procedure, since X is compact, we can find n + 1 points t0, . . . , tn,

n + 1 functions ft , . . . , ftn , and an open covering {Oi} such that ti ∈ Oi , Oi ∩ Oi−1 �= ∅, and
0
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fti is projection valued function on Oi . Now let fi = fti as above. Take the point xi ∈ Oi−1 ∩Oi

for i = 1, . . . , n. Then fi(xi) − fi−1(xi) = fi(xi) − f (xi) + f (xi) − fi−1(xi) ∈ B and f0(x0) −
fn(x0) ∈ B if applicable. Let Xi = [xi, xi+1] for i = 1, . . . , n−1, X0 = [0, x1], and Xn = [xn,1].
Since each fi is also defined on Xi , (f0, . . . , fn) is what we want.

(ii) Let X be [0,∞). Since f 2(t) − f (t) → 0 as t goes to ∞, for given δ in (0,1/2), there
is M > 0 such that whenever t � M then ‖f 2(t) − f (t)‖ < δ − δ2. It follows that σ(f (t)) ⊂
[0, δ)∪ (1−δ,1] for t � M . Then again χ(1−δ,1](f (t)) is a continuous projection valued function
for t � M such that f (t) − χ(1−δ,1](f (t)) vanishes in norm as t goes to ∞. By applying the
argument in (i) to [0,M], we get a closed sub-intervals Xi for i = 0, . . . , n − 1 of [0,M] and
fi ∈ Cb(Xi,B(H)). Now if we let Xn = [M,∞) and fn(t) = χ(1−δ,1](f (t)), we are done.

(iii) The case X = (−∞,∞) is similar to (ii). �
When a projection f ∈ C(I) is represented by (f0, f1, . . . , fn) by Theorem 3.2, we note that

fi(x) is a projection in M(B ⊗ K) for each x ∈ Xi and fi(xi) − fi−1(xi) ∈ B . Applying Defi-
nition 2.12 we have K-theoretical terms ki = [fi(xi) : fi−1(xi)] ∈ KK(C,B) for i = 1,2, . . . , n.
The following theorem shows that if all ki ’s are vanishing, then a projection f in C(I) lifts to a
projection in M(I).

Theorem 3.3. Let I be C(X) ⊗ B where B is a σ -unital, non-unital, purely infinite simple C∗-
algebra such that M(B) has real rank zero or K1(B) = 0 (see [15]). Let a projection f in M(I)/I

be represented by (f1, f2, . . . , fn), where fi is a projection valued function in C(Xi) ⊗ M(B)s
for each i, as in Theorem 3.2. If ki = [fi(xi) : fi−1(xi)] = 0 for all i, then the projection f in
M(I)/I lifts.

Proof. Note that, by Zhang’s dichotomy, B is stable [15, Theorem 1.2]. By induction, assume
that fj (xj ) = fj−1(xj ) for j = 1,2, . . . , i − 1.

Let fi(xi) = pi, fi−1(xi) = pi−1. Since [pi : pi−1] = 0, we have a unitary u of the form
‘identity + compact’ such that ‖pi − u∗pi−1u‖ < 1/2 by Theorem 2.14. Since B has real rank
zero, given 0 < ε < 1/4 there is a unitary v ∈ C1 +B with finite spectrum such that ‖u− v‖ < ε

[10,11]. Then

∥∥pi − vpi−1v
∗∥∥ �

∥∥pi − upi−1u
∗∥∥ + ∥∥upi−1u

∗ − vpi−1v
∗∥∥ < 1.

Note that pi − vpi−1v
∗ ∈ B . Thus we have wpiw

∗ = vpi−1v
∗ for some unitary w ∈ id + B .

(Recall that Step 2 of the proof of Theorem 2.14.) Let gi = wfiw
∗, then fi − gi ∈ C(Xi) ⊗ B

since w is of the form ‘identity + compact’.
On the other hand, we can write v as eih where h is a self-adjoint element in B since v has the

finite spectrum. A homotopy of unitaries t → eith, which are of the form “identity + compact”,
connects 1 to v. Now we define gi−1(t) as

exp

(
i

t − xi−1

xi − xi−1
h

)
fi−1(t)exp

(
i

t − xi−1

xi − xi−1
h

)

for t ∈ [xi−1, xi]. Then we see that gi−1(xi) = gi(xi), gi−1 − fi−1 ∈ C(Xi−1) ⊗ K , and
gi−1(xi−1) = fi−1(xi−1). Moreover, if we let gi+1 = wfi+1w

∗, then fi+1 −gi+1 ∈ C(Xi+1)⊗B ,
and
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[
gi+1(xi+1) : gi(xi+1)

] = [
wfi+1(xi+1)w

∗ : wfi(xi + 1)w∗]
= [

fi+1(xi+1) : fi(xi+1)
] = 0.

Then (f0, f1, . . . , fn) and (f0, f1, . . . , gi−1, gi, gi+1, fi+2, . . . , fn) define the same element f
while the ki ’s are unchanged and i-th discontinuity is resolved. So we take the latter as
(f0, . . . , fn) such that fj (xj ) = fj−1(xj ) for j = 1, . . . , i. We can repeat the same procedure un-
til we have fi(xi) = fi−1(xi) for all i. It follows that (f0, . . . , fn) is a projection in M(C(X)⊗B)

which lifts f. �
Remark 3.4. When I = C0(X) ⊗ B where X is [0,∞) or (−∞,∞), the similar result holds
replacing C(Xi) ⊗ B with C0(−∞, x1] ⊗ B or C0[xn,∞) ⊗ B for i = 0 or i = n respectively.
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