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Objectives: MicroRNAs (miRNAs) play an important role in the regulation of chondrogenesis of mesen-
chymal stem cells, but their expression still remains unknown in human adipose-derived stem cells
(hADSCs). In this study the miRNA expression profile during chondrogenic differentiation of hADSC and
the potential mechanism whereby miRNAs may affect the process of chondrogenesis are considered.
Methods: hADSCs were isolated and cultured. The expression of chondrogenic proteins was detected
using enzyme-linked immunosorbent assay (ELISA). miRNA expression profiles before and after chon-
drogenic induction were obtained using miRNA microarray essay and differently expressed miRNAs were
primarily verified using quantitative real-time polymerase chain reaction (qRT-PCR). Putative targets of
the miRNAs were predicted using online software programs MiRanda, TargetScan and miRBase.
Results: Twelve miRNAs were found to be differentially expressed pre- and post-chondrogenic induction
by over a two-fold change, including eight up-regulated miRNAs (miR-193b, miR-199a-3p/hsa-miR-
199b-3p, miR-455-3p, miR-210, miR-381, miR-92a, miR-320c, and miR-136), and four down-regulated
miRNAs (miR-490-5p, miR-4287, miR-BART8*, and miR-US25-1*). qRT-PCR analysis further confirmed
these results. Predicted target genes of the differentially expressed miRNAs were based on the overlap of
at least two online prediction algorithms, with the known functions of regulating chondrogenic differ-
entiation, self-renewal, signal transduction and cell cycle control.
Conclusions: In this study we have identified a group of miRNAs and their target genes, which may play
important roles in regulating chondrogenic differentiation of hADSCs. Our results provide the basis for
further investigation into the molecular mechanism of chondrogenesis in hADSCs and their differenti-
ation for cartilage engineering.

� 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

MicroRNAs (miRNAs) are a group of non-coding, single
stranded, small RNAs (w22 nt in length) that have been identified
in various plants, animals and viruses1, and which were first
discovered in C. elegans in 19932,3. miRNAs are generated from
endogenous transcripts producing hairpin structures by an RNase
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III-type enzyme. At transcriptional levels, miRNAs function as
regulators in gene silencing by binding to the 30-untranslated
region (30UTR) of target mRNAs, leading to translational repression.
miRNAs are involved in the regulation of a wide range of biological
processes including embryonic development, cell proliferation,
apoptosis and cell differentiation4e7.

The important regulatory roles of miRNAs during chondro-
genesis were identified recently.Dicer is an essential component for
biogenesis of miRNAs, and Dicer-null growth plates showed
a progressive reduction in the proliferating pool of chondrocytes,
leading to severe skeletal growth defects and premature death in
mice8. When mouse mesenchymal stem cells (MSCs) were
compared withmature mouse chondrocytes, miR-29a andmiR-29b
were revealed to directly target 30 UTR of Col2a1 encoding type II
collagen, and their activity was under the regulation of Sox99. miR-
199a(*), a bone morphogenic protein 2-responsive miRNA, signifi-
cantly inhibited early chondrogenesis, as revealed by the reduced
ublished by Elsevier Ltd. All rights reserved.
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expression of early marker genes for chondrogenesis such as
cartilage oligomeric matrix protein (COMP), type II collagen, and
Sox9, whereas anti-miR-199a(*) increased the expression of these
chondrogenic marker genes via direct targeting to SMAD1 in
C3H10T1/2 stem cells10. Differentiation of mouse MSCs resulted in
up- or down-regulation of several miRNAs, with miR-199a
expression being over 10-fold higher in chondroblasts than in
undifferentiated MSCs. In addition, miR-124a was strongly up-
regulated during chondrogenesis while the expression of miR-96
was substantially suppressed11.

Most studies on the regulatory roles of miRNA during chondro-
genesis have focused on MSCs from bone marrow (BMSCs). BMSCs
and adipose-derived stem cells (ADSCs) have similar biological
functions12. Since adipose tissue is abundant and easy to access and
culture, ADSCsmaybeapromising therapeutic alternative toBMSCs.
HumanADSCs (hADSCs) are capable of self-renewal, are pluripotent,
and candifferentiate into osteogenic, chondrogenic, adipogenic, and
myogenic cells13,14.We have also isolated these cells, confirmed that
the isolated cells were indeed hADSCs from human adipose tissue,
and proved their pluripotency15.

However, only a few studies have been carried out about miRNA
expression during chondrogenic differentiation in hADSCs. Here,
we profiled the expression of miRNAs during chondrogenesis in
hADSCs by miRNA microarray, and we also predicted the putative
targets of the interesting miRNAs.

Materials and methods

Isolation and culture of hADSCs

The adipose tissue was obtained with approval of the ethical
committee at Sun Yat-Sen University (Guangzhou, China). The
adipose tissue was obtained from donors who underwent elective
liposuction or other abdominal surgery with written consent and
approval forms (IRB No. 2011011). Donors’ age ranged from 19 to 45
years. Donors with malignant tumors and metabolic diseases were
excluded from this study. Three samples of adipose tissues from
three different donors (one male and two females) were used.
These are the same samples which were used in our previously
osteogenic study15. Third generation cells were used for initial
characterization and chondrogenesis experiments.

Induction of chondrogenic differentiation and histology

Healthy hADSCs (Passage 3) were harvested and resuspended in
incomplete chondrogenic medium at 2 � 107 cells/ml. Droplets
(12.5 ml)were carefully placed in eachwell of a 24-well plate. hADSCs
were allowed to adhere at 37�C for 90 min, followed by the addition
of 500 ml complete chondrogenic medium16. The complete chon-
drogenic medium (Cyagen, USA) contained 194 ml basal medium
(Cat. No. HUXMA-03041-194), 20 ml dexamethasone, 600 ml ascor-
bate, 2 ml ITSþ Supplement, 200 ml sodium pyruvate, 200 ml praline,
and 2 ml transforming growth factor beta 3 (TGF-b3). After 24 h, the
cell droplets coalesced andbecame spherical. Completemediumwas
changed every 3 days, andmicromasseswere harvested onday 21. At
21 days,micromasseswerefixed in 4%paraformaldehyde for 3 h, and
thendehydratedwithethanol,washedwith xylene andembedded in
paraffin. Sections at 5 mm were cut and mounted on glass slides.
Alcian blue staining for proteoglycans was performed for visualiza-
tion under microscopy.

ELISA detection of chondrogenesis-related proteins

Culture media were collected at days 0, 6, 10 and 14 after
chondrogenic induction. ELISA was performed to detect the
concentration of secreted protein expression of Col2A1, aggrecan,
Col10A1, and chondroitin using specific ELISA assay kits (Abcam,
USA) following the manufacturer’s instructions.

Total RNA extraction

Total RNA was extracted using Trizol (Invitrogen, USA) from
hADSCs with and without (control) chondrogenic induction. The
RNA was further purified using miRNeasy mini kit (QIAGEN)
according to the manufacturer’s instructions. The purity of extrac-
ted RNA was analyzed using Eppendorf BioPhotometer Plus
(Eppendorf, Hamberg, Germany) and the integrity of the RNA was
examined using agarose gel electrophoresis. An ND1000 ultraviolet
spectrophotometer (Nanodrop, USA) was used to quantify the
extracted RNA.

miRNA microarray analysis

The fifth generation of miRCURYTM LNA Array (v.14.0) (Exiqon)
contains more than 1891 capture probes, covering all human,
mouse and rat miRNAs annotated in miRBase 14.0. After RNA
isolation from all six samples (three paired comparison, with and
without chondrogenic induction from three donors, which were
shown as Sample 1 undifferentiated and Sample 1 differentiated,
Sample 2 undifferentiated and Sample 2 differentiated, Sample 3
undifferentiated and Sample 3 differentiated), the miRCURY�
Hy3�/Hy5� Power labeling kit (Exiqon, Vedbaek, Denmark) was
used according to the manufacturer’s guidelines for miRNA
labeling. After stopping the labeling procedure, the Hy3�-labeled
samples were hybridized on the miRCURY� LNA Array (v.14.0)
(Exiqon) according to array manual. The total 25 mL mixture from
Hy3�-labeled samples with 25 mL hybridization buffer were first
denatured for 2 min at 95�C, incubated on ice for 2 min and then
hybridized to the microarray for 16e20 h at 56�C in a 12-Bay
Hybridization Systems (Hybridization System e Nimblegen
Systems, Inc., Madison, WI, USA), which provided an active mixing
action and constant incubation temperature to improve hybrid-
ization uniformity and enhance signal. Following hybridization, the
slides were washed several times using wash buffer kit (Exiqon),
and dried by centrifugation for 5 min at 400 rpm. Then the slides
were scanned using the Axon GenePix 4000B microarray scanner
(Axon Instruments, Foster City, CA).

Scanned images were then imported into GenePix Pro 6.0
software (Axon) for grid alignment and data extraction. Replicated
miRNAs were averaged and miRNAs with intensities >50 in all
samples were chosen for calculating Median normalization factor.
Expressed miRNA data was normalized using the Median normal-
ization and chosen for differentially expressed miRNAs screening.
After normalization, the distributions of log2-ratios across every
sample were nearly the same (Supplemental Fig. 1). Correlation
Matrix and scatter plot showed good correlation among experi-
ments and reproducibility between chips (Supplemental Table 1
and Supplemental Fig. 2). Hierarchical clustering was performed
using MEV software (v4.6, TIGR). To identify differentially
expressed miRNAs with statistical significance differences, we
performed a fold change filtering to determine differential
expression of miRNAs before and after induction of differentiation
of hADSCs in all three paired samples. The threshold we used to
screen Up- or Down-regulated miRNAs was fold change �2.0.

qRT-PCR analysis of miRNA expression

qRT-PCR analysis for the expression of chondrogenesis-related
miRNA and predicted target transcriptional factors was carried
out using 1 mg of total RNA. Primers were designed using Primer
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Express Version 5.0 (Applied Biosystems, Foster City, CA). Primer
sequences are listed in Table I. A universal PCR reverse-
transcriptional primer miRNA-R and U6 were used as internal
controls. PCR reaction was conducted in 20 ml total volume con-
taining a final concentration of 0.5 mM of each primer, 4 ml ddH2O,
10 ml of 2� SYBR Green PCRMaster Mix (TOYOBO, Japan) and 5 ml of
cDNA sample (1:20 diluted) corresponding to 1 mg of total RNA.
Real-time PCR reactions were performed on an ABI PRISM� 7500
Sequence Detection System. Reaction conditions were as follows:
95�C for 5 min to denature DNA templates, then followed by 40
cycles of 95�C for 15 s denaturation, and 65�C for 15 s annealing,
and 72�C for 32 s extension. After amplification, a melting curve
was obtained by heating from 60�C to 95�C with interval 0.5�C and
then cooling at 30�C for 30 s. Results were normalized to U6 to
obtain the DCt values. DDCt values were then obtained by sub-
tracting the DCt values for each gene of interest against DCt values
for the control sample. Fold difference in gene expression of the
sample from the reference undifferentiated cells was calculated
using the equation c ¼ 2�DDCt, in which DDCt ¼ DInduction � DC
and DInduction¼ Cinduction� CtU6; DC¼ Ctcontrol� CtU6. All samples
were measured in triplicate.

Target prediction

Target gene prediction of the screened miRNAs was performed
using online miRNA target predicting software MiRanda (www.
microrna.org), miRBase (microrna.sanger.ac.uk) and TargetScan
(www.targetscan.org). Only genes predicted by at least two soft-
ware programs were considered as target genes of the miRNA.

Statistical analysis

Arithmetic mean and standard deviation were computed for
expression and paired t-test was applied to examine the difference
between basal culture and chondrogenic-induced culture cells.
Geometric mean and standard deviation were computed for
chondrogenic/basal miRNA ratio. A P < 0.05 was defined as statis-
tically significant. All statistics were two-sided and performed by
using SPSS statistical software (version 13.0, USA).

Results

Chondrogenic differentiation of hADSCs

hADSC cells at passage 3 were cultured in chondrogenic
induction medium for 21 days. The micromasses were then fixed
Table I
Primer sequences used for qRT-PCR of chondrogenic miRNAs and potential target
transcription factors

U6 F (50 CTCGCTTCGGCAGCACA)
U6 R (50 AACGCTTCACGAATTTGCGT)
miRNA R (50 CTCAACTGGTGTCGTGGA)
hsa-miR-193b F (50 ACACTCCAGCTGGGAACTGGCCCTCAAAGTCCCG)
hsa-miR-199a-3p F (50 ACACTCCAGCTGGGACAGTAGTCTGCACATTG)
hsa-miR-490-5p F (50 ACACTCCAGCTGGGCCATGGATCTCCAGGTG)
18s rRNA F (50 CCTGGATACCGCAGCTAGGA)

R (50 GCGGCGCAATACGAATGCCCC)
C/EBPb F (50 GACGAGTACAAGATCCGGCG)

R (50 TTCTGCAGCCGCTCGTTCTC)
Runx2 F (50 TCTAAATCGCCAGGCTTCAT)

R (50 GAGGACCTACTCCCAAAGGA)
NF-kB1 F (50 ACTGGCTGAGCGGATGCATC)

R (50 TGCTGTGGTCAGAAGGAATG)
NF-kB2 F (50 GAACAGCCTTGCATCTAGCC)

R (50 CAGAGTCCGAGTCGCTATCA)
and stained with Alcian blue, where blue staining indicated
synthesis of proteoglycans by chondrocytes. The micromasses with
chondrogenic ADSCs were stained positively with Alcian blue
[Fig. 1(B)], whereas cells without chondrogenic induction were
negatively stained [Fig. 1(A)].

Confirmation of chondrogenic differentiation by detection of
representative chondrogenic protein expression

In order to ascertain if hADSCs were chondrogenically differ-
entiated with chondrogenic induction, the chondrogenesis-related
protein expression detected by ELISA was illustrated (Fig. 2).
Throughout the whole study period, the upper serum levels of
Col2A1, Col10A1, aggrecan and chondroitin in the chondrogenic-
induced group were significantly higher than those in basal
group. Overall, from day 6 after the chondrogenic differentiation,
protein expressions were gradually and steadily increased, not even
reaching peak expression by the end of the 2-week observation
period. These results indicated evidence of chondrogenic differ-
entiation after the cells were exposed to the chondrogenic induc-
tion buffer.

miRNA expression before and after chondrogenic induction using
microarray

miRNA expression levels before and after chondrogenic
differentiation were detected using miRNA microarray chips.
SAM statistical software was used to identify differential
expression of miRNAs between undifferentiated hADSCs and
chondro-differentiated hADSCs samples. The whole differential
expression of miRNAs before and after induction of differentia-
tion of hADSCs in all three paired samples was shown in
Supplemental file (Supplemental miRNA Expression Data). In
Sample 1, there were 256 differentially expressed miRNAs
identified, which include 141 up-regulated and 114 down-
regulated miRNAs over two-fold. In Sample 2, a total of 78
differentially expressed miRNAs were identified, of which 27
miRNAs were up-regulated and 51 miRNAs were down-regulated
over two-fold. In Sample 3, a total of 231 miRNAs with different
expression before and after chondrogenic induction were iden-
tified, of which 144 were up-regulated and 87 were down-
regulated over two-fold. Results are summarized in detail in
supplemental data files. We noticed there was a big variation
regarding the number of differentially expressed miRNAs among
the three independent samples. miRNAs with consistent differ-
ential expression in three paired samples were therefore iden-
tified, which include eight up-regulated miRNAs (miR-193b,
miR-199a-3p/hsa-miR-199b-3p, miR-455-3p, miR-210, miR-381,
miR-92a, miR-320c, and miR-136), and four down-regulated
miRNAs (miR-490-5p, miR-4287, miR-BART8*, and miR-US25-1*)
as shown in Table II.

qRT-PCR validation of the microarray results

To confirm the microarray results, we conducted real-time qRT-
PCR to detect the expression levels of the three representative
differentially expressed miRNAs identified by microarray, including
two up-regulated miRNAs (miR-193b and miR-199a-3p) and one
down-regulated miRNA (miR-490-5p). Parallel-grown hADSCs
without chondrogenic inductionwere used as control. The qRT-PCR
showed that all detected miRNAs were differentially expressed
between undifferentiated hADSCs and chondrogenic differentiated
hADSCs, with substantial consistency in the miRNA microarray
results (P > 0.05) (Fig. 3).

http://www.microrna.org
http://www.microrna.org
http://microrna.sanger.ac.uk
http://www.targetscan.org


Fig. 1. Morphology of hADSC cells after chondrogenic induction (1003). Cells at passage 3 were cultured as micromasses and induced for chondrogenic differentiation using
inducing buffer. After 21 days, the micromasses with hADSCs were stained with Alcian blue and visualized under microscope. (A) Control hADSC cells without induction for
chondrogenic differentiation at day 6. (B) hADSC cells after induction for chondrogenic differentiation by micromass culture at day 21.
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miRNA target prediction

In order to investigate the specific role miRNAs play in the
regulation of chondrogenic differentiation, we attempted to predict
potential target genes of the differentially expressed miRNAs
namely hsa-miR-193b, hsa-miR-199a-3p/hsa-miR-199b-3p, hsa-
miR-455-3p, hsa-miR-210, hsa-miR-381, hsa-miR-92a, and
hsa-miR-490-5p. Putative targets were predicted using online
software programs. Predicted targets of each miRNA contain a large
set of genes potentially involved in cell proliferation, cell differen-
tiation, cell cycle regulation, transcriptional regulation and signal
transduction. In Table III, only potential target genes related to
chondrogenic differentiation, cartilage formation and signal
transduction are listed. The up-regulated miRNAs (hsa-miR-193b,
hsa-miR-199a-3p/hsa-miR-199b-3p, hsa-miR-455-3p, hsa-miR-
210, hsa-miR-381, and hsa-miR-92a) in chondrogenic differentia-
tion of hADSCs were predicted to target genes such as CCAAT/
enhancer binding protein beta (C/EBPb), nuclear factor of kappa
light polypeptide gene enhancer in B-cells inhibitor-alpha (NFKBIA
or IKBA), sex determining region Y (SRY)-box 5 (SOX5), mitogen
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Fig. 2. Determination of chondrogenesis-related proteins expression to confirm chondr
day 0, 6, 10 and 14, media were collected and chondrogenesis-related protein concentrations
obtained using parallel growth media without chondrogenic induction at same time poin
implemented for comparisons between chondrogenic and basal group at a given time poin
activated kinase-like protein 1 (MAPK1), runt-related transcription
factor 2 (RUNX2), and bone morphogenetic protein receptor 2
(BMPR2). Predicted target genes of the down-regulated miRNA
were SOX4, SMAD4, SMAD5, MAPK1, and BMPR2.

mRNA expression of the predicted target genes before and after
chondrogenic induction

To verify the putative targets of the differentially expressed
miRNAs, we carried out qPCR analysis (Fig. 4) to examine themRNA
expression of predicted targets C/EBPb, RUNX2, NF-kB1 and
NF-kB2, which are related to chondrogenic differentiation. We
found the expression of these detected potential target genes in
chondro-differentiated hADSC was significantly up-regulated,
except for NF-kB1 (P > 0.05).

Discussion

miRNAs, a class of short (w22 nt) non-coding, single-stranded
RNA molecules, play an important role in differentiation and
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Table II
miRNAs expression in chondrogenic differentiated hADSCs by microarray

Gene name Gene ID Sample 1 fold change Sample 2 fold change Sample 3 fold change Average fold change STDEV

miRNAs up-regulated more than two-folds in all three samples
hsa-miR-193b 10,987 3.1075056 2.87459181 2.27071 2.750936 0.431885
hsa-miR-199a-3p/hsa-miR-199b-3p 10,995 3.609247053 4.422484486 2.1424689 3.3914 1.155513
hsa-miR-455-3p 28,950 4.06924905 2.43942769 2.41203 2.973569 0.948986
hsa-miR-210 145,852 4.89686732 7.47132223 20.3964 10.92153 8.305831
hsa-miR-381 145,832 3.938098859 3.001146438 2.5195419 3.152929 0.721356
hsa-miR-92a 145,693 6.32213505 4.70770313 2.16024 4.396693 2.098306
hsa-miR-320c 46,228 5.36642876 2.83912774 2.10609 3.437216 1.710478
hsa-miR-136 10,943 2.895205 2.417214 7.076207524 4.129542 2.563054

miRNAs down-regulated more than two-folds in all three samples
hsa-miR-490-5p 17,822 �3.671 �2.627754 �4.833253 �3.710669 �1.103285
hsa-miR-4287 147,938 �2.409416 �9.195081 �6.896076 �6.166858 �3.451106
ebv-miR-BART8* 17,328 �2.702788 �3.757458 �2.159921 �2.873389 �0.812318
hcmv-miR-US25-1* 42,458 �7.12345 �2.600192 �6.400819 �5.374821 �2.429912
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development across awide range of organisms and tissue types17,18,
including bone and cartilage development8,15,19e22. To provide
a view of the specific involvement of miRNAs on chondrogenesis of
hADSCs, we used miRNA microarray technique to profile miRNA
expression and screen miRNAs with differential significant
expression (greater than two-fold change) before and after chon-
drogenic induction. We found that miR-193b, miR-199a-3p/hsa-
miR-199b-3p, miR-455-3p, miR-210, miR-381, miR-92a, miR-320c,
and miR-136 were up-regulated, and miR-490-5p, miR-4287,
miR-BART8*, andmiR-US25-1* were down-regulated in all samples
tested. Considering the important roles of miRNAs during chon-
drogenesis of MSC 9,21,23, these consistently overexpressed miRNAs
could potentially alter the chondrogenic differentiation of hADSCs.

The miRNAs highly up-regulated during chondrogenic differ-
entiation have not been previously shown in human ADSCs. miR-
193b, miR-199a and miR-199a* have been identified in MSCs and
regulated chondrogenesis10,11,23,24. Swingler et al. also reported that
miR-455-3p is expressed during chondrogenesis and in adult
articular cartilage21. It was reported that miR-140 was expressed in
cartilage development of zebrafish and mouse25,26, in chondrocyte
differentiation and in human articular cartilage27. In our study, miR-
140-5p was up-regulated in two samples with a fold change over 2.
It was reported that the expression of miR-140-5p was increased in
Fig. 3. qRT-PCR confirmation of miRNA expression in chondrogenic differentiated hADS
used for qRT-PCR analysis. The RNA samples were reverse transcribed to cDNA, and then am
mRNA was normalized to U6 mRNA. Each point represents the mean value of fold change c
each was repeated three times.
human osteoarthritic cartilage recently21, and that miR-140 was
involved in the chondrogenesis20,28, indicating that miR-140 is
important in cartilage development. However, it only showed
significant over-expression in two of our three paired samples, not
over two-fold up-regulated in all three paired samples as has been
shown in the other up-regulated miRNAs in this study. Further-
more, these miRNAs that were significantly expressed during
chondrogenesis of hADSCs were not significantly expressed during
osteogenic differentiation of hADSC cells15. Therefore, the expres-
sion of miRNAs with over two-fold change during chondrogenesis
of hADSCs should be considered for a role in the cartilage
development.

The metabolism of chondrocytes was regulated at both tran-
scriptional and post-transcriptional levels29,30, and miRNAs, as
important regulators in chondrogenesis at post-transcriptional
level8,11,19, play the regulatory role by binding target genes, largely
based on the transcription factors. For example, miR-199a*,
a BMP2-resposive miRNA, regulated chondrogenesis via direct
targeting to SMAD1 in murine MSCs10, and miR-455-3p regulated
TGFb signaling, suppressing the SMAD2/3 pathway during chon-
drognesis21. To explore potential target genes of miRNAs, as re-
ported here, we used miRNA target predicting software15, and
several chondrogenic-related transcription factors were indicated,
C cells. 1 mg of total RNA purified from undifferentiated and differentiated hADSCs were
plified. Quantitative real-time PCR was done with indicated primers and fold-change of
ompared with undifferentiated cell control samples (set as 1) from three patients, and



Table III
Predicted target genes of chondrogenic miRNAs. Only genes that are related to
cartilage formation and chondrogenic differentiation are listed here

miRNA Target genes Functions

hsa-miR-193b RUNX2 Chondrogenesis
SOX4 Chondrogenesis, apoptosis
SMAD-3, 4, 5 Chondrogenesis
MAPK-1, 10, 12 Chondrogenesis, cell cycle

control, apoptosis
BMPR2, BMP-2,
6, 7

Chondrogenesis

hsa-miR-199a-3p/
hsa-miR-199b-3

MAPK-1, 10 Chondrogenesis, cell cycle
control, apoptosis

SMAD-1, 4, 5 Chondrogenesis
BMPR2, BMP2 Chondrogenesis
TGFB1 Chondrogenesis, cell cycle

control, apoptosis
MMP26 Collagen metabolic/catabolic

hsa-miR-455-3p NFKBIA Self-renewal and multipotency,
cell proliferation and
differentiation, cell cycle control,
apoptosis

CEBPb Chondrogenesis
RUNX2 Chondrogenesis
SMAD-3, 4, 5 Chondrogenesis
SOX-4, 5, 6, 9 Chondrogenesis, apoptosis
MAPK-1, 12 Chondrogenesis, cell cycle

control, apoptosis
BMPR2, BMP-6, 7 Chondrogenesis
TGFB1 Chondrogenesis, cell cycle

control, apoptosis
hsa-miR-210 CEBPb Chondrogenesis

RUNX2 Chondrogenesis
SAMD-4, 5 Chondrogenesis
SOX2 Chondrogenesis
MAPK1 Chondrogenesis, apoptosis
BMPR2, BMP6 Chondrogenesis

hsa-miR-381 NFKBIA Self-renewal and multipotency,
cell proliferation and differentiation,
cell cycle control, apoptosis

CEBPb Chondrogenesis
RUNX2 Chondrogenesis
SOX-2, 4, 5, 6, 9 Chondrogenesis, apoptosis
SMAD-3, 4, 5 Chondrogenesis
MAPK-1, 9 Chondrogenesis, cell cycle control,

apoptosis
BMPR2, BMP6 Intracellular signaling cascade,

cell proliferation
MMP7 Collagen metabolic/catabolic,

cell proliferation
hsa-miR-92a CEBPb Chondrogenesis

RUNX2 Chondrogenesis
SOX-4, 9 Chondrogenesis, apoptosis
SMAD-3, 4, 5 Chondrogenesis
MAPK1 Chondrogenesis, apoptosis
BMPR2, BMP7 Chondrogenesis

hsa-miR-490-5p SOX-2, 4 Chondrogenesis, apoptosis
SMAD-4, 5 Chondrogenesis
MAPK-1, 7, 9, 12 Chondrogenesis, cell cycle

control, apoptosis
BMPR2,
BMP-7, 9
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Fig. 4. The expression of targeting transcription factors in chondrogenic differ-
entiated hADSC cells. RNAs from undifferentiated and differentiated hADSCs were
tested. Quantitative real-time PCR was done with indicated primers and fold-change of
mRNA was normalized to U6 mRNA. Each bar represents the mean � S.D. of fold
change compared with undifferentiated cell control samples (set as 1) from three
patients, and each was repeated three times (*** indicates P < 0.001).
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including C/EBPb, NFKBIA, Runx2, SOX5, SOX9, MAPK1, SMAD3, and
BMPR224,31e38. In addition, these predicted target genes were up-
regulated during chondrogenesis of hADSCs. However, some pre-
dicted target genes were supposed to be down-regulated as the
potential direct target gene of some up-regulated miRNAs, such as
C/EBPb and Runx2.

We have previously proved that C/EBPb could enhance the
degradation of COL2A1 and aggrecan in human articular chon-
drocytes, and Interleukin 1 beta (IL-1b) and the adipokine resistin
induced the expression of pro-inflammatory cytokines and che-
mokines via post-transcription and transcription, including C/
EBPb30,39. It was also reported that C/EBPb promoted transition
from proliferation to hypertrophic differentiation of chondrocytes,
and the removal of C/EBPb could retard the development of oste-
oarthritis32. In hepatocellular carcinoma (HCC) cells and B-cells, C/
EBPb could regulate the cell proliferation with miRNAs40,41. Here,
although C/EBPb was the candidate target gene of several up-
regulated miRNAs during chondrogenesis of hADSCs, it was still
a bit increased compared to pre-chondrogenesis. One reason was
that other factors which increased the degradation of ADSC during
chondrogenesis could increase the C/EBPb. Moreover, multiple C/
EBPb isoforms with stimulatory or inhibitory activity can be
translated from a single mRNA by use of alternative translation
initiation sites within the same open reading frame, including liver-
enriched transcriptional activator proteins (LAP) and liver-enriched
inhibitory protein (LIP)39,42e44. Therefore, C/EBPb was an inter-
esting potential target factor for miRNAs during chondrogenesis in
the balance of chondrogenesis and degradation, and we should pay
more attention to C/EBPb in cartilage metabolism as we previously
reported39.

Runx2 (cbfa1) was up-regulated during chondrogenesis of
hADSCs as we have shown previously45, and in the perichon-
drium46, implying that it may play a role during chondrogenesis.
Runx2 could inhibit chondrocyte proliferation and hypertrophy46,
and its direct transcriptional target was Type X collagen during
chondrogenesis47. Analysis of the growth plates in transgenic mice
and in chick limbs showed that Runx2 promoted chondrogenesis
either by maintaining or by initiating early chondrocyte differen-
tiation34. Furthermore, Runx2 regulated differentiation of MSCs as
the target of miRNAs48,49. Moreover, C/EBPb could enhance the
activity of Runx250. Runx2 was also an important target gene of
miRNAs in osteogenesis as we reported in hADSCs15. Osteogenic
and chondrogenic miRNAs could co-regulate the chondrogenesis of
MSCs by some co-target genes. Stein et al. have reported that 11
Runx2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a,
miR-135a, miR-137, miR-204, miR-205, miR-217, miR-218, and
miR-338) were expressed in a lineage-related pattern in mesen-
chymal cell types, and during both osteogenic and chondrogenic
differentiation, these miRNAs, in general, were inversely expressed
relative to Runx251. Therefore, C/EBPb and Runx2 were targeted
genes of the up-regulational miRNAs during chondrogenesis, but
they were not shown simply down-regulation as we considered.
For the transcriptional factors such as C/EBPb and Runx2, which
widely cooperated with others transcriptional factors and miRNAs
in cartilage metabolism, the regulatory circuit should be consid-
ered, not just the one-to-one direct regulation.

Another predicted candidate target gene, NFKBIA (IKBA), binds
NF-kB and inhibits its function52. The NFKBIA was the potential
regulator of chondrogenesis in hADSCs, which means NF-kB could
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be involved in the regulation of chondrogenesis of hADSCs. We
showed that NF-kB subunits NF-kB1 and NF-kB2were up-regulated
in human ADSCs, but the levels of NF-kB1 mRNA were not signifi-
cantly affected in cells undergoing chondrogenesis (P > 0.05).
Moreover, IKBA, which blocks the signal-induced, post-trans-
lational activation of canonical NF-kB subunits, did not affect the
levels of specific canonical NF-kB subunit mRNAs53. In contrast, NF-
kB p100, which encodes the precursor of the NF-kB p52 subunit, is
a direct target of canonical NF-kB heterodimers54, and as such the
up-regulation of miRNAs that may target NFKBIA/IKBA may be
consistent with our NF-kB2mRNA data. In fact, the activation of NF-
kB was associated with inhibition of chondrogenesis of MSCs by
both IL-1b and TNFa in a dose-dependent manner35. NF-kB has
a close relationship with miRNAs during cell regulation, and
a positive feedback loop involving NF-kB and miRNA plays an
important role in maintaining the epigenetic transformed state55.

Recently, more and more studies have indicated that cell
differentiation is regulated by a regulatory circuit at both the
transcriptional and post-transcriptional levels. Human granulocytic
differentiation was controlled by a regulatory circuitry involving
miR-223 and two transcriptional factors, NFI-A and C/EBPa56. A
regulatory circuit comprised NF-kB, Lin28, Let-7 miRNA, STAT3 and
IL-6, and a minicircuitry of miR-124, IL-6R, STAT3, miR-24, miR-629
and HNF4a, was involved in cell transformation55,57. From our
predicted targets of miRNAs, it seems up-regulated and down-
regulated miRNAs comprised some of minicircuitry during chon-
drogenesis of hADSCs by co-regulating some of the transcriptional
factors. Therefore, it can be expected that the regulatory loop
comprised these overexpressed miRNAs and their targeted tran-
scriptional factors have a significant impact on the chondrogenic
differentiation of hADSCs, and should be considered in the treat-
ment of cartilage defects and the retardation of the degradation of
tissue-engineered cartilage.

In summary, we have discovered a group of miRNAs that are
differentially expressed during the chondrogenic differentiation
process in hADSCs. Multiple miRNAs are known to work in a coor-
dination to regulate chondrogenic differentiation in these cells.
There are multiple potential targets of a single miRNA, and one
potential target genemay be linkedwith several identifiedmiRNAs,
indicating complex regulatory circuit during chondrogenesis of
hADSCs. To provide the precise circulating regulatorymechanism of
these overexpressed miRNAs and transcriptional factors during
chondrogenic differentiation, further studies are required. Our
results just provide the basis for further investigation into the
molecular mechanisms of chondrogenesis in hADSCs and hADSC
cell differentiation for cartilage engineering.
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