interview technique with an independent interviewer. The focus group was conducted shortly after the completion of the first clinical placement. The themes that came from this were then used to create a survey for group B. This was also completed shortly after their first clinical placement. Additionally this survey was also undertaken by supervising qualified RTs from the clinical placements.

Results: Results: The results from the focus group A showed that the students did not fully grasp how the concepts applied to the final plan and this left them feeling very underprepared for their clinical placement and that this was reflected back to them by supervising qualified staff. Group B however, felt themselves to be much better prepared and reasonably confident to undertake clinical placement a view which was supported by the supervising radiation therapists.

Conclusion: Conclusion: The alteration of the teaching delivery had allowed the students to start the paper by thinking critically about a plan and then supporting this thinking with new knowledge. Although this was a very steep learning curve for the students at the beginning of the paper the final assessment and course evaluations also indicated that they had a much better overall grasp by the end.

EP-2102

“We’re all here for the patient”: exploring the process of interprofessional learning

K. Coleman1, B. Darlow2, E. McKinlay3, L. Beckingsale4, S. Donovan5, P. Gallagher6, B. Gray7, H. Neser8, M. Perry9, S. Pullon10

1University of Otago- Wellington, Department of Radiation Therapy, Wellington, New Zealand
2University of Otago- Wellington, Department of Primary Health Care and General Practice, Wellington, New Zealand
3University of Otago- Wellington, Department of Human Nutrition, Wellington, New Zealand
4University of Otago- Wellington, Medical Education Unit, Wellington, New Zealand
5University of Otago- Wellington, School of Physiotherapy, Wellington, New Zealand

Purpose or Objective: This qualitative study aimed to explore student perceptions and experiences of the Interprofessional Education (IPE) programme focused on long-term condition management.(1) A secondary aim was to explore the experiences of radiation therapy students who recently joined the programme.

Material and Methods: Three focus groups were conducted. All 41 students who participated in the IPE programme (dietetics; n=4, medicine; n=18, physiotherapy; n=6, radiation therapy; n=13) were invited to attend one of the two interdisciplin ary focus groups. Students from radiation therapy were also invited to attend a unidisciplinary focus group. Focus groups were audio-recorded and transcribed verbatim. Data were independently analysed by two researchers within the framework of Thematic Analysis.(2) Themes were determined following parallel coding and research team verification.

Results: Thirty-four students participated in the interprofessional focus groups and 13 radiation therapy students participated in their unidisciplinary focus group. Three key themes emerged related to i) learning ii) perceived long-term professional benefits and iii) the structure and content of the programme. An additional theme emerged from the radiation therapy focus group related to how they perceived, and considered they were perceived by, the medical students.

Conclusion: Participants considered the programme to be a valuable learning opportunity which had direct relevance to their clinical careers. Listening to the insights of students is an important means of discovering what, for them, constitutes a meaningful and positive learning experience. Providing students with an opportunity to learn about each other should be prioritised within IPE programmes in order to allow them to effectively learn with and from each other.

References:

EP-2103

Margin assessment for feline and canine radiotherapy using a custom cranial immobilisation device

J. Sharpe1, A. Tini1, I. Minneken1, C. Winter2, V. Meier2, C. Rohrer Bley2

1University Hospital Zürich, Radio-Onkologie, Zurich, Switzerland
2Vetsuisse Faculty University of Zurich, Division of Radiation Oncology, Zurich, Switzerland

Purpose or Objective: The purpose of this study was to observe the daily positioning correction errors in feline and canine radiotherapy, using a custom cranial immobilization device and KV onboard imaging. Then further assess the data for margin definition in the event of an unguided approach (without the possibility of daily imaging) for treatment use with the identical positioning device.

Material and Methods: Canine and feline patients with cranial tumors were treated using a custom made cranial immobilization device, consisting of: a plastic plate which is fixed to the couch, a detachable custom molded bite block, and a custom fitted vacuum foam cushion supporting the neck, thorax and body. The patients were imaged daily before treatment, thereby correcting all positioning errors in lateral, vertical and longitudinal directions. The shift values were then saved to a database for later analysis.

Results: 8 patients (3 feline, 5 canine) and a total of 93 post-imaging corrections were observed in 3 directions (lateral, vertical, and longitudinal). Upon assessment of the data, the formula:

\[
\text{PTV Margin} = 2 \times 0.7 \times \text{van Herk et al.}
\]

was used to calculate margin for the unguided approach. A result of 3mm x 2mm x 3mm (lateral, vertical, longitudinal) was found.

Conclusion: Based on the results, the margin of an unguided approach using the custom positioning system, would need to be extended from 2mm (margin used for image guided treatment planning) to 3mm in the lateral and longitudinal directions, while radial would remain at 2mm.

References:

EP-2104

Waiting times for IMRT as a Quality Indicator: A study from a Tertiary Hospital in Saudi Arabia

Z. Mulla1, M.E. El Sayed1,2, S.M. Soaida1,2, A. AlHebshi1, M. Bayoumy1, A.H. Mohammed Khasim1

1King Faisal Specialist Hospital & Research Centre-Jeddah, Oncology, Jeddah, Saudi Arabia
2National Cancer Institute, Radiotherapy and Nuclear Medicine Department- Cairo University, Cairo, Egypt
3Cairo University, Clinical Oncology Department- Faculty of Medicine, Cairo, Egypt
4King Abdulaziz University Hospital, Radiology Department, Jeddah, Saudi Arabia

Purpose or Objective: To assess the compliance of our protocol of ≤ 10 working days (WD) for IMRT.

Material and Methods: A retrospective analysis of all cases treated between October 2010 and December 2014. Waiting
times from the date of the request to the start of treatment (REQ-ST), from the request to CT Simulation (REQ-CT) and from CT simulation to the start of treatment (CT-ST) were computed. To assess the compliance of our performance with the protocol, we calculated two indicators: mean waiting times and compliance rates. The cut-off of compliance for CT-ST ≤10 WD is defined by our protocol. Using this value, the two other cut-offs were respectively calculated using a linear equation of REQ-ST and REQ-CT as a function of CT-ST, giving a REQ-CT=9 and REQ-ST=26 week days (WKD). To assess the evolution in time of all studied parameters, we divided the study into 4 periods: 1) from Oct 2010 to Dec 2011, 2) from Jan to Dec 2012, 3) from Jan to Dec 2013 and 4) from Jan to Dec 2014. In addition, we analyzed the impact of the indication of IMRT on the waiting times by comparing the indicators across the tumor localizations. Statistical analysis was performed using SPSS. Mean waiting times were compared using ONEWAY ANOVA and compliance rates were compared using Pearson’s Chi-square test.

Results: A total 245 IMRT cases were included. Mean CT-ST was 13.80 ± 5.07 days, without significant difference across the study periods (p=0.254). The compliance rate of CT-ST with the protocol ≤10 WD, was 16%, without significant differences across the periods (p=0.257). Regarding REQ-ST, total mean was 30 ± 10 WKD, with a compliance rate at 33%. Regarding REQ-CT, total mean was 11.26 ± 8.33 WKD, with a compliance rate at 49%. There was a significant difference across the periods in both REQ-ST and REQ-CT, with the best performance for period 1, followed by period 4. See Table below.

The helpful rays a children’s book about cancer and radiotherapy explained in a non-intimidating way

K. Farstad
Alesund Hospital, Radiotherapy, Ålesund, Norway

Purpose or Objective:

Now I’m gonna tell you a story about your body, and some strong and helpful rays, which can help you if you get sick..." This is how my book for children, about radiotherapy begins. I started as a RTT 10 years ago, and have always felt that our department needed aid to explain cancer and radiotherapy to children in a comprehensible way. I couldn’t find any information that caters for children, so I wrote “The Helpful Rays”. Small children can sense differences in behavior and atmosphere in the family when someone gets sick. To help children understand, they need explanation. My purpose with this book is to explain cancer, radiotherapy and side-effects to children in a non-intimidating way. The word cancer can be frightening to children as well as adults. My goal is to provide this book as a tool to talk about cancer with children.

Material and Methods: I wrote this book in cooperation with an illustrator, a publisher and our national cancer society. I have used radiotherapists and doctors as proofreaders. And I used my own children (3, 5 and 5 years) to make sure the book was understandable and gripping enough.

It can be difficult to find the right words to describe what a mother, father, or relative is going through. Why do they need radiotherapy? Why do they feel nauseous? Why do they lose their hair? The “answers” are in this book. It can be difficult for young children to grasp the complicated cell biology and radiation physics involved, so, the side-effects are explained with use of imagination. For example when rays are burning the hair cells, the hair cells jump out of the skin, and may never come back. Simple explanations that children can understand, regardless if it's according to reality or not.

I have presented the various health personnel that a cancer patient will meet in a hospital. Ex: Radiographer, bioengineer, doctor, nurse and radiotherapist. Also I have presented the most common examinations and side-effects to children in a non-intimidating way. The word cancer can be frightening to children as well as adults. My purpose with this book is to explain cancer, radiotherapy and side-effects to children in a non-intimidating way. The word cancer can be frightening to children as well as adults. My goal is to provide this book as a tool to talk about cancer with children.

Results: The book is currently being published in Norway, where hospitals, nurses, radiotherapy departments, doctors, schools and kindergartens are using the book in contact with children who have cancer themselves, or their mom, dad, siblings, grand-parents, classmates or other people they are close to that got diagnosed with cancer. The response has been overwhelming. Since June this year approx. 1500 books have been handed out. And we are soon out-of-stock.

Conclusion: There are few or none books written for children about radiotherapy. In my country the book got welcomed as a much needed book, and I think it can be helpful in cancer departments in other countries as well, when adjustments to