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Abstract

A Roman dominating function on a graph G=(V; E) is a function f :V → {0; 1; 2} satisfying
the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. The weight of a Roman dominating function is the value f(V ) =

∑
u∈V f(u).

The minimum weight of a Roman dominating function on a graph G is called the Roman
domination number of G. In this paper, we study the graph theoretic properties of this variant
of the domination number of a graph.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V; E) be a graph of order |V |= n. For any vertex v∈V , the open neigh-
bourhood of v is the set N (v) = {u∈V |uv∈E} and the closed neighbourhood is the
set N [v] =N (v)∪ {v}. For a set S ⊆ V , the open neighbourhood is N (S) =

⋃
v∈S N (v)

and the closed neighbourhood is N [S] = N (S) ∪ S.
Let v∈ S ⊆ V . Vertex u is called a private neighbour of v with respect to S (denoted

by u is an S-pn of v) if u∈N [v] − N [S − {v}]. An S-pn of v is external if it is a
vertex of V − S. The set pn(v; S) =N [v]−N [S − {v}] of all S-pn’s of v is called the
private neighbourhood set of v with respect to S. The set S is said to be irredundant
if for every v∈ S, pn(v; S) �= ∅.
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A set S ⊆ V is a dominating set if N [S]=V , or equivalently, every vertex in V −S
is adjacent to at least one vertex in S. The domination number �(G) is the minimum
cardinality of a dominating set in G, and a dominating set S of minimum cardinality is
called a �-set of G. We note, for later reference, that every minimal dominating set is
a maximal irredundant set, but not conversely. For example, two adjacent vertices on
the cycle C5 of length Eve form a maximal irredundant set which is not a dominating
set.
A set S of vertices is called independent if no two vertices in S are adjacent.

The independent domination number i(G) is the minimum cardinality of a set S of
vertices which is both independent and dominating, or equivalently, which is a maximal
independent set.
A set S of vertices is called a 2-packing if for every pair of vertices u; v∈ S, N [u]∩

N [v] = ∅. The 2-packing number P2(G) of a graph G is the maximum cardinality of
a 2-packing in G.
Finally, a set S of vertices is called a vertex cover if for every edge uv∈E, either

u∈ S or v∈ S.
In this paper, we study a variant of the domination number which is suggested by

the recent article in Scienti8c American by Ian Stewart, entitled “Defend the Roman
Empire!” [10]. A Roman dominating function on a graph G = (V; E) is a function
f :V → {0; 1; 2} satisfying the condition that every vertex u for which f(u) = 0 is
adjacent to at least one vertex v for which f(v) = 2.
Stated in other words, a Roman dominating function is a colouring of the vertices

of a graph with the colours {0; 1; 2} such that every vertex coloured 0 is adjacent to at
least one vertex coloured 2. The deEnition of a Roman dominating function is given
implicitly in [10] and [9]. The idea is that colours 1 and 2 represent either one or two
Roman legions stationed at a given location (vertex v). A nearby location (an adjacent
vertex u) is considered to be unsecured if no legions are stationed there (i.e. f(u)=0).
An unsecured location (u) can be secured by sending a legion to u from an adjacent
location (v). But Emperor Constantine the Great, in the fourth century A.D., decreed
that a legion cannot be sent from a location v if doing so leaves that location unsecured
(i.e. if f(v) = 1). Thus, two legions must be stationed at a location (f(v) = 2) before
one of the legions can be sent to an adjacent location.
The recent book Fundamentals of Domination in Graphs [6] lists, in an appendix,

many varieties of dominating sets that have been studied. It appears that none of those
listed are the same as Roman dominating sets. Thus, Roman domination appears to be
a new variety of both historical and mathematical interest.

2. Properties of Roman dominating sets

For a graph G = (V; E), let f :V → {0; 1; 2}, and let (V0; V1; V2) be the ordered
partition of V induced by f, where Vi = {v∈V |f(v) = i} and |Vi| = ni, for i =
0; 1; 2. Note that there exists a 1–1 correspondence between the functions f :V →
{0; 1; 2} and the ordered partitions (V0; V1; V2) of V . Thus, we will write
f = (V0; V1; V2).
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A function f = (V0; V1; V2) is a Roman dominating function (RDF) if V2 � V0,
where � means that the set V2 dominates the set V0, i.e. V0 ⊆ N [V2]. The weight of
f is f(V ) =

∑
v∈V f(v) = 2n2 + n1.

The Roman domination number, denoted �R(G), equals the minimum weight of an
RDF of G, and we say that a function f=(V0; V1; V2) is a �R-function if it is an RDF
and f(V ) = �R(G).

Proposition 1. For any graph G,

�(G)6 �R(G)6 2�(G):

Proof. Let f = (V0; V1; V2) be a �R-function, and let S be a �-set of G. Then, V1 ∪
V2 is a dominating set of G and (∅; ∅; S) is a Roman dominating function. Hence,
�(G)6 |V1|+ |V2|6 |V1|+ 2|V2|= �R(G). But �R(G)6 2|S|= 2�(G).

Proposition 2. For any graph G of order n, �(G) = �R(G) if and only if G = Kn.

Proof. It is obvious that if G = Kn then �(G) = �R(G).
Let f = (V0; V1; V2) be a �R-function. The equality �(G) = �R(G) implies that we

have equality in �(G)6 |V1| + |V2| = |V1| + 2|V2| = �R(G). Hence, |V2| = 0, which
implies that V0 = ∅. Therefore, �R(G) = |V1| = |V | = n. This implies that �(G) = n,
which, in turn, implies that G = Kn.

Proposition 3. Let f = (V0; V1; V2) be any �R-function. Then

(a) G[V1], the subgraph induced by V1 has maximum degree 1.
(b) No edge of G joins V1 and V2.
(c) Each vertex of V0 is adjacent to at most two vertices of V1.
(d) V2 is a �-set of G[V0 ∪ V2].
(e) Let H =G[V0∪V2]. Then each vertex v∈V2 has at least two H -pn’s (i.e. private

neighbours relative to V2 in the graph H).
(f) If v is isolated in G[V2] and has precisely one external H -pn, say w∈V0, then

N (w) ∩ V1 = ∅.
(g) Let k1 equal the number of non-isolated vertices in G[V2], let C={v∈V0: |N (v)∩

V2|¿ 2}, and let |C|= c. Then n0¿ n2 + k1 + c.

Proof. We omit the proofs of (a)–(e); they are clear.

(f) Suppose the contrary, that is, N (w) ∩ V1 �= ∅. Form a new function by changing
the function values of v and each y∈N (w) ∩ V1 to 0, and the value f(w) to 2.
This is an RDF with smaller weight than f, which is a contradiction.

(g) Let k0 equal the number of isolated vertices in G[V2], so that k0 + k1 = n2. By (e),
n0¿ k0 + 2k1 + c = n2 + k1 + c, as required.
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Proposition 4. Let f= (V0; V1; V2) be a �R-function of an isolate-free graph G, such
that n1 is a minimum. Then

(a) V1 is independent, and V0 ∪ V2 is a vertex cover.
(b) V0 � V1.
(c) Each vertex of V0 is adjacent to at most one vertex of V1, i.e. V1 is a 2-packing.
(d) Let v∈G[V2] have exactly two external H -pn’s w1 and w2 in V0. Then there do

not exist vertices y1; y2 ∈V1 such that (y1; w1; v; w2; y2) is the vertex sequence of
a path P5.

(e) n0¿ 3n=7, and this bound is sharp even for trees.

Proof. Again, we omit the proofs of (a)–(c); they are clear.

(d) Suppose the contrary. Form a new function by changing the function values of
(y1; w1; v; w2; y2) from (1; 0; 2; 0; 1) to (0; 2; 0; 0; 2). The new function is a �R-
function with fewer 1’s, i.e. it has a smaller value of n1, which is a contradiction.

(e) DeEne c as in Proposition 3(g). Let ai, i=1; 2; : : : ; �(G), be the number of vertices
of V2 which have exactly i H -pn’s in V0. By Proposition 3(e), (f) and Proposition
4(c), (d), we have

n16


a2 + 3a3 +

�∑
j=4

jaj


+ c; (1)

n0 =


a1 + 2a2 + 3a3 +

�∑
j=4

jaj


+ c; (2)

n2 = a1 + a2 + a3 +
�∑
j=4

aj: (3)

Therefore,

n = n0 + n1 + n2

6 n0 +


a2 + 3a3 +

�∑
j=4

jaj


+ c;

+


a1 + a2 + a3 +

�∑
j=4

aj


 ; [by (2) and (3)]

=


n0 + a1 + 2a2 + 4a3 +

�∑
j=4

(j + 1)aj


+ c
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
n0 + a1 + 2a2 +

�∑
j=4

(j + 1)aj


+ c

+
4
3


n0 − a1 − 2a2 −

�∑
j=4

jaj − c


 ; [eliminating a3 by (1)]

=
7n0
3

− a1 + 2a2
3

−
�∑
j=4

aj

(
j
3

− 1
)

− c
3

6
7n0
3
:

Hence, n0¿ 3n=7 as required.
The tree T with seven vertices V ={u; u1; u2; u3; v1; v2; v3}, where u is adjacent to u1,

u2 and u3, and ui is adjacent to vi, i= 1; 2; 3, has �R(T ) = 5, a �R-function deEned by
f=(V0; V1; V2)=({u1; u2; u3}; {v1; v2; v3}; {u}), and achieves the bound n0=3n=7=3.

Corollary 1. For any non-trivial connected graph G,

�R(G) = min{2�(G − S) + |S|:S is a 2-packing}:

Proof. Let f= (V0; V1; V2) be a �R-function of a graph G. From Proposition 4(a) and
(c) we can assume that V1 is a 2-packing. It follows from Proposition 3(d) that V2
is a �-set of the graph G − S obtained from G by deleting all vertices in V1. Thus,
�R(G)¿min{2�(G − S) + |S|: S is a 2-packing}.
Conversely, let V1 be a 2-packing for which 2�(G− S) + |S| is a minimum, and let

V2 be a �-set of G − V1. Then (V − V1 − V2; V1; V2) is an RDF, and �R(G)6 2|V2|+
|V1|=min{2�(G − S) + |S|: S is a 2-packing}.

The following lower bound for the Roman domination number of any graph is proved
in [3].

Proposition 5. For any graph G of order n and maximum degree �,

2n
�+ 1

6 �R(G):

We conclude this section with an upper bound on �R(G) using a probabilistic method
similar to that used by Alon and Spencer in [1].

Proposition 6. For a graph G on n vertices,

�R(G)6 n
2 + ln((1 + �(G))=2)

1 + �(G)
:
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Proof. Given a graph G, select a set of vertices A, where each vertex is selected
independently with probability p (with p to be deEned later). The expected size of A
is np. Let B=V−N [A], the vertices not dominated by A. Clearly f=(V−(A∪B); B; A)
is an RDF for G.
We now compute the expected size of B. The probability that v is in B is equal to the

probability that v is not in A and that no vertex in A is the neighbour of v. This probabil-
ity is (1−p)1+deg(v). Since e−x¿ 1−x for any x¿ 0, and deg(v)¿ �(G), we can con-
clude that Pr(v∈B)6 e−p(1+�(G)). Thus, the expected size of B is at most ne−p(1+�(G)),
and the expected weight of f, denoted E[f(V )], is at most 2np + ne−p(1+�(G)). The
upper bound for E[f(V )] is minimized when p= ln((1+ �(G))=2)=(1+ �(G)) (this is
easily shown using calculus), and substituting this value in for p gives:

E[f(V )]6 n
2 + ln((1 + �(G))=2)

1 + �(G)
:

Since the expected weight of f(V ) is at most n(2+ln((1+�(G))=2))=(1+�(G)), there
must be some RDF with at most this weight. It turns out that this bound is sharp, being
achieved when G is the disjoint union of n=2 copies of K2.

3. Speci c values of Roman domination numbers

In this section, we illustrate the Roman domination number by presenting the value
of �R(G) for several classes of graphs. Some proofs are straightforward and are omitted.
The following two classes of graphs achieve the lower bound of Proposition 5.

Proposition 7. For the classes of paths Pn and cycles Cn,

�R(Pn) = �R(Cn) =
⌈
2n
3

⌉
:

For the class of complete multipartite graphs Km1 ;:::;mn there are three cases to consider.

Proposition 8. Let G = Km1 ;:::;mn be the complete n-partite graph with m16m26 · · ·
6mn.

(a) If m1¿ 3 then �R(G) = 4.
(b) If m1 = 2 then �R(G) = 3.
(c) If m1 = 1 then �R(G) = 2.

Proposition 9. If G is a graph of order n which contains a vertex of degree n − 1,
then �(G) = 1 and �R(G) = 2.

For arbitrary graphs G and H , we deEne the Cartesian product of G and H to be
the graph G H with vertices {(u; v)|u∈G; v∈H}. Two vertices (u1; v1) and (u2; v2)
are adjacent in G H if and only if one of the following is true: u1 = u2 and v1
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Fig. 1. The constructions for G2;n, 16 n6 6. Filled-in circles denote vertices in V2, empty circles denote
vertices in V1.

is adjacent to v2 in H ; or v1 = v2 and u1 is adjacent to u2 in G. If G = Pm and
H =Pn, then the Cartesian product G H is called the m×n grid graph and is denoted
Gm;n.

Proposition 10. For the 2× n grid graph G2; n, �R(G2; n) = n+ 1.

Proof. We only show, by construction (cf. Fig. 1), that �R(G2; n)6 n+1. The reverse
inequality is straightforward.
Let the vertices of G2; n be denoted v1;1; : : : ; v1; n; v2;1; : : : ; v2; n and deEne the RDF g

as follows: for each i such that 2 + 4i6 n, let g(v2;2+4i) = 2, and for each j such that
4j6 n, let g(v1;4j) = 2. Let g(v1;1) = 1, and if n ≡ 1 (mod 4), let g(v2; n) = 1, and if
n ≡ 3 (mod 4), let g(v1; n) = 1. For all of the remaining vertices u, let g(u) = 0. It is
easily seen that g is an RDF and that g(V ) = n+ 1.

One Enal class of graphs is of some interest. For even n, we let (n=2)K2 denote the
graph consisting of n=2 copies of the complete graph K2 on two vertices.

Proposition 11. If G is any isolate-free graph of order n, then �R(G)= n if and only
if n is even and G = (n=2)K2.

Proof. If G = (n=2)K2, then each edge contributes at least two to �R(G), and hence
n6 �R(G)6 n.
Assume therefore that �R(G) = n. If G has two incident edges uv and vw, then

f= (V0; V1; V2), where V0 = {u; w}, V1 =V − {u; v; w} and V2 = {v}, deEnes a Roman
dominating function. Hence, �R(G)6 |V1| + 2|V2| = n − 1, which is a contradiction.
Hence, no two edges of G are incident, and since G is isolate-free, the conclusion
follows.

4. Graphs with �R(G )6 �(G ) + 2

From Proposition 1, we know that:

�(G)6 �R(G)6 2�(G):

But from Proposition 2 we know that this lower bound is achieved only when G=Kn.
Thus, if G is a connected graph then �R(G)¿ �(G)+1. The connected graphs G with
�R-functions of weight �(G) + 1 and �(G) + 2 have a very speciEc structure, which
will be shown in the following propositions.
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Proposition 12. If G is a connected graph of order n, then �R(G) = �(G) + 1 if and
only if there is a vertex v∈V of degree n− �(G).

Proof. ⇐: Assume G has a vertex v of degree n− �(G). If V2 = {v}, V1 = V −N [v],
and V0 =V −V1−V2, then V1∪V2 is a �-set of G and f=(V0; V1; V2) is an RDF with
f(V ) = �(G) + 1. Since �R(G)¿ �(G) + 1 for connected graphs, f is a �R-function
for G.

⇒: In order for a Roman dominating function f=(V0; V1; V2) to have weight �(G)+
1, either (1) |V1| = �(G) + 1 and |V2| = 0 or (2) |V1| = �(G) − 1 and |V2| = 1. Any
other arrangement of weight �(G) + 1 would have |V1|+ |V2|¡�(G).
In case (1), since |V2|=0, then V1 =V . By a theorem of Ore [6, p. 41], �(G)6 n=2

for a connected graph G on n vertices. Thus, n=�(G)+16 n=2+1, which implies that
n6 2. It is easily veriEed that �R(P2) = 2 = �(P2) + 1, and P2 has a vertex of degree 1.
In case (2), let f = (V0; V1; V2) be a �R-function for G of weight �(G) + 1, with

|V1|= �(G)− 1 and |V2|=1. Let V2 = {v}. Since no edge of G joins V1 and {v}, and
{v} � V0, deg(v) = |V0|= n− |V1| − |V2|= n− �(G).

We next characterize the class of trees T for which �R(T )= �(G)+1. For a positive
integer t, a wounded spider is a star K1; t with at most t − 1 of its edges subdivided.
Similarly, for an integer t¿ 2, a healthy spider is a star K1; t with all of its edges
subdivided. In a wounded spider, a vertex of degree t will be called the head vertex,
and the vertices that are distance two from the head vertex will be the foot vertices.
The head and foot vertices are well deEned except when the wounded spider is the path
on two or four vertices. For P2, we will consider both vertices to be head vertices, and
in the case of P4, we will consider both endvertices as foot vertices and both interior
vertices as head vertices.

Proposition 13. If T is a tree on two or more vertices, then �R(T ) = �(T ) + 1 if and
only if T is a wounded spider.

Proof. ⇐: Let T be a wounded spider and let v be the head vertex. Let S={w :d(v; w)
=2} be the set of foot vertices. Clearly, {v}∪S forms a �-set for T . Also, if V0 =V −
S − {v}, V1 = S, and V2 = {v}, then f= (V0; V1; V2) is an RDF with f(V )= �(T )+ 1.
Therefore, f is a �R-function.

⇒: Let f= (V0; V1; V2) be a �R-function for T of weight �(T ) + 1. As in the proof
of Proposition 12, either T = P2, or |V1|= �(G)− 1, and |V2|= 1. Let V2 = {v}. Then
|N (v)|= |V0|=n−�(T ). Since |V1| is minimized in f, by Proposition 4(c), each vertex
of V0 is adjacent to at most one vertex of V1. Conversely, since T is connected, V1 is
independent, and V1 and V2 have no edges between them, every member of V1 must
be joined to a member of V0. Furthermore, not every vertex in V0 can be adjacent to
a member of V1, that is, T cannot be a healthy spider. If this was the case, then V0
forms a �-set for T and deg(v)= |V0|¡ |V0|+1= |V1|+ |V2|= |V0|+ |V1|+ |V2| − |V0|
=n− �(T ), which is a contradiction. Hence, T is a wounded spider.

We next characterize the class of graphs for which �R(G) = �(G) + 2.
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Proposition 14. If G is a connected graph of order n, then �R(G) = �(G) + 2 if and
only if:

(a) G does not have a vertex of degree n− �(G).
(b) either G has a vertex of degree n− �(G)− 1 or G has two vertices v and w such

that |N [v] ∪ N [w]|= n− �(G) + 2.

Proof. ⇐: By (a), we know that �R(G)¿�(G) + 1. If G has a vertex v of de-
gree n − �(G) − 1, and we deEne V0 = N (v), V1 = V − N [v], and V2 = {v}, then
f = (V0; V1; V2) is an RDF with f(V ) = �(G) + 2, and hence is a
�R-function.
If there are two vertices v and w such that |N [v] ∪ N [w]| = n − �(G) + 2, and we

deEne V0 = N [v] ∪ N [w] − {v; w}, V1 = V − (N [v] ∪ N [w]), and V2 = {v; w}, then
f = (V0; V1; V2) is an RDF with f(V ) = �(G) + 2, and hence is a �R-function.

⇒: In order for an RDF f= (V0; V1; V2) to have weight �(G) + 2, either (1) |V1|=
�(G)+2 and |V2|=0, (2) |V1|= �(G) and |V2|=1, or (3) |V1|= �(G)−2 and |V2|=2.
In order for such an f to be a �R-function, there can be no other Roman dominating
function of weight �(G) + 1, which implies that G has no vertex of degree n− �(G).
In case (1), if |V2| = 0, then V1 = V . Again using Ore’s theorem [6, p. 41],

n = �(G) + 26 n=2 + 2, which implies that n6 4. A simple analysis of the con-
nected graphs on four or fewer vertices shows that �R(G) = �(G) + 1 for all such
graphs.
In case (2), let f = (V0; V1; V2) be a �R-function for G of weight �(G) + 2 with

|V1|=�(G) and |V2|=1. Let V2 ={v}. Since no edge of G joins V1 and v, and v � V0,
it follows that deg(v) = |V0|= n− |V1| − |V2|= n− �(G)− 1.
In case (3), let f = (V0; V1; V2) be a �R-function for G of weight �(G) + 2 with

|V1| = �(G) − 2 and |V2| = 2. Let V2 = {v; w}. Since no edge joins V1 to v or w and
{v; w} � V0, it follows that |N [v]∪N [w]|=n−|V1|=n− (�(G)−2)=n−�(G)+2.

Corollary 2. If G is a connected graph and �R(G) = �(G) + 2, then 26 rad(G)6 4
and 36 diam(G)6 8.

It is possible to use Proposition 11 to obtain a characterization of trees for which
�R(T ) = �(T ) + 2. Once again, spiders play a major role. This classiEcation is rather
technical and we do not give the details.

Proposition 15. If T is a tree of order n¿ 2, then �R(T ) = �(T ) + 2 if and only
if either (i) T is a healthy spider or (ii) T is a pair of wounded spiders T1 and
T2, with a single edge joining v∈V (T1) and w∈V (T2), subject to the following
conditions:

(1) if either tree is a P2, then neither vertex in P2 are joined to the head vertex of
the other tree.

(2) v and w are not both foot vertices.
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5. Graphs for which �R(G ) = 2�(G )

From Proposition 1 we know that for any graph G, �R(G)6 2�(G). We will say
that a graph G is a Roman graph if �R(G) = 2�(G). In this section, we seek to End
a characterization of Roman graphs.
Proposition 9 gives us our Erst class of Roman graphs, i.e. graphs of the form

G = K1 + H , where �(G) = 1 and �R(G) = 2. Equivalently, any graph G of order n
having a vertex of degree n− 1 is a Roman graph.
Proposition 7 identiEes all Roman paths and cycles, i.e. P3k , C3k , P3k+2, and C3k+2.
Proposition 8 identiEes which complete bipartite graphs are Roman, i.e. Km;n where

min{m; n} �= 2, in which case either �(G)=1 and �R(G)=2, or �(G)=2 and �R(G)=4.
Two simple characterizations of Roman graphs are as follows.

Proposition 16. A graph G is Roman if and only if it has a �R-function f=(V0; V1; V2)
with n1 = |V1|= 0.

Proof. Let G be a Roman graph and let f= (V0; V1; V2) be a �R-function of G. From
Proposition 3(d) we know that V2 � V0 and V1 ∪ V2 � V , and hence

�(G)6 |V1 ∪ V2|= |V1|+ |V2|6 |V1|+ 2|V2|= �R(G):

But since G is Roman, we know that

2�(G) = 2|V1|+ 2|V2|= �R(G) = |V1|+ 2|V2|:

Hence, n1 = |V1|= 0.
Conversely, let f=(V0; V1; V2) be a �R-function of G with n1 = |V1|=0. Therefore,

�R(G) = 2|V2|, and since by deEnition V1 ∪V2 � V , it follows that V2 is a dominating
set of G. But by Proposition 3(d), we know that V2 is a �-set of G[V0 ∪ V2], i.e.
|V2|= �(G) and �R(G) = 2�(G), i.e. G is a Roman graph.

Proposition 17. A graph G is Roman if and only if �(G)6 �(G−S)+ |S|=2, for every
2-packing S ⊆ V .

Proof. From Corollary 1, we know that �R(G) is the minimum value of 2�(G−S)+|S|,
over all 2-packings S ⊂ V . Thus, if �R(G) = 2�(G), then 2�(G − S) + |S|¿ �(G), or
�(G)6 �(G − S) + |S|=2, for every 2-packing S.
Conversely, if �(G)6 �(G − S) + |S|=2, for every 2-packing S, then 2�(G)6

�(G − S) + |S|, for every 2-packing S. This implies that 2�(G)6 �R(G). But from
Proposition 1 we know that �R(G)6 �(G). Therefore, �R(G) = 2�(G).

We conclude this section by noting that a constructive characterization of Roman
trees has recently been given by Henning [7].
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6. Open problems

Among the many questions raised by this research, the following are of particular
interest to the authors.
1. Can you End other classes of Roman graphs?
2. Can Propositions 12 and 14 be generalized to produce a characterization of graphs

for which �R(G) = �(G) + k?
3. Can you determine the Roman domination number of the grid graph Gm;n, for any

positive integers m and n? Various values of Roman domination in grid graphs have
been determined by Dreyer [4] in his Ph.D. Thesis, and bounds are obtained in [3].
4. What are the algorithmic, complexity and approximation properties of Roman

domination? For example, the authors have constructed a linear algorithm for computing
the Roman domination number of any tree. Furthermore, McRae [8] has constructed
proofs which show that the decision problem RDF, corresponding to the value of
a Roman dominating function, is NP-complete, even when restricted to (i) chordal,
(ii) bipartite, (iii) split, or (iv) planar graphs. It was also suggested by one of the
referees that the inequalities, �(G)6 �R(G)6 2�(G), imply immediately that there is
a 2 log n approximation algorithm for the Roman domination number, while a c log n
approximation algorithm does not exist for any c¡ 1 unless P =NP. The algorithmic
complexity of Roman domination will be the subject of a subsequent paper [2].
5. Can you construct a polynomial algorithm for computing the value �R(G) for any

interval graph G?
6. What can you say about the minimum and maximum values of n0, n1 and n2 for

a �R-function f = (V0; V1; V2) of a graph G? For example, Proposition 4(e) says that
you can always guarantee there is a �R-function with n0¿ 3n=7.
7. What are the properties of independent Roman dominating functions? A Roman

domination function f = (V0; V1; V2) is called independent if the set V1 ∪ V2 is an in-
dependent set. McRae [8] has also shown that the decision problem IRDF correspond-
ing to independent Roman dominating functions is NP-complete, even when restricted
to bipartite graphs. It is interesting, however, to note that Farber [5] has shown that
independent dominating set is polynomial when restricted to chordal graphs. This raises
the interesting question of whether IRDF is polynomial for chordal graphs.
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