

Available online at www.sciencedirect.com

Discrete Mathematics 307 (2007) 2478-2483

www.elsevier.com/locate/disc

On the 2-factor index of a graph

Liming Xiong^{a, 1}, MingChu Li^{b, 2}

^aDepartment of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China ^bSchool of Software, Dalian University of Technology, Dalian 116024, PR China

Received 11 November 2004; received in revised form 27 September 2006; accepted 9 November 2006 Available online 24 January 2007

Abstract

The 2-factor index of a graph G, denoted by f(G), is the smallest integer m such that the m-iterated line graph $L^m(G)$ of G contains a 2-factor. In this paper, we provide a formula for f(G), and point out that there is a polynomial time algorithm to determine f(G).

© 2007 Elsevier B.V. All rights reserved.

MSC: 05C45; 05C38

Keywords: 2-factor; 2-factor index; Branch-bond; Iterated line graph

1. Introduction

We use [1] for terminology and notation not defined here and consider only loopless finite graphs. Let *G* be a graph. For each integer $0 \le i \le \Delta(G)$, let $V_i(G)$ denote the set of vertices of *G* having degree *i*. A *branch* in *G* is a nontrivial path with end vertices that do not lie in $V_2(G)$ and with internal vertices of degree 2 (if existing). If a branch has length 1, then it has no internal vertices of degree 2. Let B(G) denote the set of branches of *G* and $B_1(G)$ the subset of B(G) in which every branch has exactly one end vertex in $V_1(G)$. A 2-factor in *G* is a spanning subgraph of *G* such that its vertices have degree 2. For any subgraph *H* of *G*, denote by $B_H(G)$ the set of branches of *G* whose edges are all in *H*. For any two subgraphs H_1 and H_2 of *G*, the *distance* $d_G(H_1, H_2)$ between H_1 and H_2 is defined to be $\min\{d_G(v_1, v_2)|v_1 \in V(H_1) \text{ and } v_2 \in V(H_2)\}$.

The *line graph* of G = (V(G), E(G)) has E(G) as its vertex set, and two vertices are adjacent in L(G) if and only if the corresponding edges are incident with a common vertex in G. The *m*-iterated line graph $L^m(G)$ is defined recursively by $L^0(G) = G$ and $L^m(G) = L(L^{m-1}(G))$. The hamiltonian index of a graph G, denoted by h(G), is the smallest integer m such that $L^m(G)$ is hamiltonian, and the 2-factor index of a graph, denoted by f(G), is the minimum integer m such that the *m*-iterated line graph contains a 2-factor.

Chartrand [2] showed that if a connected graph G is not a path, then the hamiltonian index of G exists. Lai [7] obtained a bound of h(G). Because a hamiltonian cycle of G is a connected 2-factor of G, f(G) exists for any connected graph

E-mail addresses: lmxiong@eyou.com (L. Xiong), li_mingchu@yahoo.com (M. Li).

¹ Supported by Nature Science Funds of China under Contract Grant No.: 10671014 and by Excellent Young Scholars Research Fund of Beijing Institute of Technology under Contract Grant No. 000Y07-28 and the Project-sponsored by SRF for ROCS, SEM.

² Supported by Nature Science Funds of China under Grant No. 60673046.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.11.012

G that is not a path. A *circuit* of a graph G is a connected nontrivial subgraph of G whose vertices have only even degrees. Harary and Nash-Williams characterized these graphs whose line graphs are hamiltonian.

Theorem 1 (*Harary and Nash-Williams* [6]). Let G be a graph with at least three edges. Then $h(G) \leq 1$ if and only if $G \equiv K_{1,n}$, or G has a circuit H such that $d_G(e, H) = 0$ for any edge $e \in E(G)$.

Gould and Hynds gave a characterization of graphs whose line graphs contain a 2-factor. A star is the bipartite graph $K_{1,m}$ ($m \ge 3$), and the vertex of degree m in $K_{1,m}$ is called the center of the star. A k-system that dominates is a collection Γ of k edge-disjoint circuits and stars in G such that each edge e of G is either in one of the circuits or stars of Γ , e is adjacent to an edge of a circuit of Γ , or e is adjacent to the center of a star of Γ .

Theorem 2 (Gould and Hynds [5]). Let G be a connected simple graph containing at least three edges. Then $f(G) \leq 1$ if and only if G has a k-system that dominates for some k.

Xiong and Liu characterized the graphs for which the *n*-iterated line graph is hamiltonian, for any integer $n \ge 2$.

Theorem 3 (*Xiong and Liu* [11]). Let G be a connected graph that is not a 2-cycle and let $n \ge 2$ be an integer. Then $h(G) \leq n$ if and only if $EU_n(G) \neq \emptyset$ where $EU_n(G)$ denotes the set of those subgraphs H of G which satisfy the following conditions:

- (i) any vertex of H has even degree in H;
- (i) $V_0(H) \subseteq \bigcup_{i=3}^{\Delta(G)} V_i(G) \subseteq V(H);$ (ii) $d_G(H_1, H H_1) \leq n 1$ for any subgraph H_1 of H;
- (iv) $|E(b)| \leq n + 1$ for any branch b in $B(G) \setminus B_H(G)$;
- (v) $|E(b)| \leq n$ for any branch in $B_1(G)$.

Very recently, Ferrara and Gould proved the following result.

Theorem 4 (Ferrara and Gould [3]). Let G be a connected graph with at least three edges. Then for any $n \ge 2$, $L^n(G)$ has a 2-factor if and only if $F_n(G) \neq \emptyset$ where $F_n(G)$ denotes the set of those subgraphs H of G that satisfy the following five conditions:

- (i') any vertex of H has even degree in H;
- (ii') $V_0(H) \subseteq \bigcup_{i=3}^{\Delta(G)} V_i(G) \subseteq V(H);$
- (iii') $d_G(H_1, H H_1) \leq n + 1$ for any subgraph H_1 of H;
- (iv') $|E(b)| \leq n + 1$ for any branch b in $B(G) \setminus B_H(G)$;
- (v') $|E(b)| \leq n$ for any branch in $B_1(G)$.

We observe that Theorem 4 does not hold for n = 0 or 1. To see this, let $C = u_1 u_2 \cdots u_{3s} \cdots u_t$ be a cycle of length $t, t \ge 3s \ge 6$, and x be a vertex outside C. Now let G_1 be the graph with $V(G_1) = V(C) \cup \{x\}$ and $E(G_1) = E(C) \cup \{x\}$ $\{xu_s, xu_{2s}, xu_{3s}\}$. It is easy to see that $C \cup \{x\} \in F_0(G_1)$ but G_1 has no 2-factor. To see that Theorem 4 does not hold for n = 1, let G_2 be the unique tree on 2n vertices with degree sequence $(x_1, x_2, \ldots, x_{n+1}, x_{n+2}, \ldots, x_{2n})$ where $x_i = 1$ for i = 1, 2, ..., n + 1 and $x_i = 3$ for i = n + 2, ..., 2n. It is easy to see that G_2 has no k-system that dominates for any k and the empty subgraph with the set of vertices of degree three in G_2 is in $F_1(G_2)$. This implies that $f(G_2) \ge 2$ and $F_1(G_2) \neq \emptyset$.

Note that the conditions on the subgraphs in $EU_k(G)$ of Theorem 3 and the subgraphs in $F_k(G)$ of Theorem 4 are the same except conditions (iii) and (iii'). The following natural result follows from the fact that all subgraphs F in $F_{f(G)+2}(G)$ are in $EU_{h(G)}(G)$ and all subgraphs H in $EU_{h(G)}(G)$ are in $F_{f(G)}(G)$.

Theorem 5. Let G be a connected graph that is not a path. Then

 $h(G) - 2 \leq f(G) \leq h(G)$.

Proof. Since any hamiltonian cycle in a graph G is also a 2-factor in G, $f(G) \leq h(G)$. If h(G) = 0, 1, 2, then obviously $f(G) \ge 0 \ge h(G) - 2$. If $h(G) \ge 3$, then $h(G) \le f(G) + 2$ by Theorem 3 and since subgraphs F in $F_{f(G)+2}(G)$ are all in $EU_{h(G)}(G)$. \Box

Observing that conditions (ii') and (iv') in the definition of $F_k(G)$ imply condition (iii') in the definition of $F_k(G)$, we obtain an equivalent version of Theorem 4 as follows.

Theorem 6. Let G be a connected graph with at least three edges. Then for any $n \ge 2$, $L^n(G)$ has a 2-factor if and only if $F_n(G) \neq \emptyset$ where $F_n(G)$ denotes the set of those subgraphs H of G that satisfy the following four conditions:

- (I) any vertex of H has even degree in H;
- (II) $V_0(H) \subseteq \bigcup_{i=3}^{\Delta(G)} V_i(G) \subseteq V(H);$ (III) $|E(b)| \leq n+1$ for any branch b in $B(G) \setminus B_H(G);$
- (IV) $|E(b)| \leq n$ for any branch in $B_1(G)$.

Proof. Since the "only if" part is trivial, we only need to prove the "if" part of the theorem. It suffices to prove that the subgraph H satisfying the conditions (I)–(IV) also satisfies the conditions (i')–(v'). We will prove this by contradiction. If possible, suppose that H is a subgraph satisfying (I)–(IV) but $d_G(H_1, H - H_1) \ge n + 2$ for some subgraph H_1 of H, we claim that the shortest path P between H_1 and $H - H_1$ is a branch in $B(G) \setminus B_H(G)$, by (ii'). Hence by (iv'), $|E(P)| \le n+1$, a contradiction. This implies that (iii') holds for H. Thus we have completed the proof of Theorem 6. \Box

The main purpose of this paper is to establish a formula for f(G).

2. Branch-bonds

In this section, we will introduce some notation and terminology about branch-bonds [10], which will be used in next section. For any subset S of B(G), G - S denotes the subgraph obtained from $G[E(G) \setminus E(S)]$ by deleting all internal vertices of degree 2 in any branch of S. A subset S of B(G) is called a *branch cut* if G - S has more components than G. A branch-bond is a minimal branch cut. If G is connected, then a branch cut S of G is a minimal subset of B(G) such that G - S is disconnected. It is easily shown that, for a connected graph G, a subset S of B(G) is a branch-bond if and only if G - S has exactly two components. We denote by BB(G) the set of branch-bonds of G. Given $S, T \subseteq V(G)$, let $[S, T] = \{uv \in E(G): u \in S \text{ and } v \in T\}$. An edge cut is an edge set of the form $[S, \overline{S}]$, where S is a nonempty proper subset of V(G) and $\overline{S} = V(G) \setminus S$. A minimal edge cut of G is called a *bond*. Note that a branch-bond of G is also a bond of G when every branch in the branch-bond is an edge.

McKee gave the following characterization of eulerian graphs.

Theorem 7 (*McKee* [8]). A connected graph is eulerian if and only if each bond contains an even number of edges.

The following characterization of eulerian graphs involves branch-bonds.

Theorem 8 (Xiong et al. [10]). A connected graph is eulerian if and only if each branch-bond contains an even number of branches.

3. A formula for f(G)

In this section we will establish a formula for f(G), which relates to the concept of odd branch-bonds. A branch-bond is called *odd* if it consists of an odd number of branches. The *length of a branch-bond* $S \in BB(G)$, denoted by l(S), is the length of a shortest branch in it. Let $BB_2(G) = \{S \in BB(G) \setminus BB_1(G) : S \text{ is odd}\}$ where $BB_1(G) = B_1(G)$, and, for i = 1, 2,

$$h_i(G) = \begin{cases} \max\{l(S): S \in BB_i(G)\} & \text{if } BB_i(G) \neq \emptyset, \\ 0 & \text{if } BB_i(G) = \emptyset. \end{cases}$$

We will give a formula for f(G) involving $h_i(G)$. First we present a lower bound for it.

Theorem 9. Let G be a connected graph that is not a path. Then

 $f(G) \ge \max\{h_1(G), h_2(G) - 1\}.$

Proof. If f(G) = 0, then the definition of a 2-factor implies that $h_1(G) = 0$, i.e., $BB_1(G) = \emptyset$. Obviously $l(S) \le 1$ for any branch-bond *S* with |S| = 1.

We further claim that $h_2(G) \leq 1$, which implies that Theorem 9 holds. We will prove this by contradiction. If possible, suppose that $h_2(G) \geq 2$, then there exists an odd branch-bond S_0 with $|S_0| \geq 3$ and $l(S_0) \geq 2$. Let *F* be a 2-factor of *G*. By the definition of a branch-bond, each cycle of *F* contains an even number of branches of S_0 . Hence there exists a branch b_0 in the odd branch-bond S_0 such that b_0 is not in any cycle of *F*. However $|E(b_0)| \geq l(S_0) \geq 2$ implies that there exists a vertex *u*, of degree 2, such that *u* is in b_0 but *u* is not in any cycle of *F*, a contradiction. This settles the case that f(G) = 0.

If f(G) = 1, then, by Theorem 2, there exists a *k*-system Γ that dominates. Obviously $h_1(G) \leq 1$ and $l(S) \leq 2$ for any branch-bond $S \notin BB_1(G)$ with |S| = 1. We furthermore claim that $h_2(G) \leq 2$, which implies that Theorem 9 holds. We will prove this by contradiction. If possible, suppose that $h_2(G) \geq 3$, then there exists an odd branch-bond S_0 with $|S_0| \geq 3$ and $l(S_0) \geq 3$. By the definition of a branch-bond, any circuit of Γ contains an even number of branches of S_0 . Hence there exists a branch b_0 in the odd branch-bond S_0 such that b_0 is not in any circuit of Γ . However, $|E(b_0)| \geq l(S_0) \geq 3$ implies that there is an edge uv, with d(u) = d(v) = 2, such that u and v in b_0 but uv is neither in one of stars of Γ nor has a vertex in one of the circuits of Γ , a contradiction. This settles the case that f(G) = 1.

It remains to consider the case that $f(G) \ge 2$. We can take an $S_i \in BB_i(G)$ such that $h_i(G) = l(S_i)$ for every $i \in \{1, 2\}$. For any subgraph $H \in F_{f(G)}(G)$, it is obvious that $E(b) \cap E(H) = \emptyset$ for any $b \in S_1$. The definitions of S_2 and H imply that there exists at least one branch $b \in S_2$ such that $E(b) \cap E(H) = \emptyset$. Hence by Theorem 6, we obtain $f(G) \ge h_1(G)$ by (IV) and $f(G) \ge h_2(G) - 1$ by (III). So $f(G) \ge \max\{h_1(G), h_2(G) - 1\}$, which completes the proof of Theorem 9. \Box

Now we state a formula for f(G). Let

 $\beta(G) = \max\{h_1(G), h_2(G) - 1\}.$

Theorem 10. Let G be a connected graph that is not a path such that $\beta(G) \ge 2$. Then $f(G) = \beta(G)$.

Proof. It suffices to prove that $f(G) \leq \beta(G)$ by Theorem 9. This theorem also implies $f(G) \geq \beta(G) \geq 2$. Hence by Theorem 6 we can assume that $H \in F_{f(G)}(G)$ is a subgraph with a maximal number of branches $b \in B_H(G)$ such that $|E(b)| \geq \beta(G) + 2$. Then we obtain the following fact.

Claim 1. If *S* is a branch-bond in BB(G) which contains at least three branches, then $|E(b)| \leq \beta(G) + 1$ for any branch $b \in S \setminus B_H(G)$.

Proof of Claim 1. We will prove this by contradiction. If possible, suppose that there is a branch-bond *S* with $|S| \ge 3$ and $b_0 \in S \setminus B_H(G)$ such that $|E(b_0)| \ge \beta(G) + 2$. Obviously b_0 is not a cycle. Let *u* and *v* be two end vertices of b_0 . Let $S(u, b_0)$ be a branch-bond containing b_0 such that any branch of $S(u, b_0)$ has *u* as an end vertex. Obviously $|S(u, b_0)| \ge 2$.

By the following algorithm, we will first find a cycle of G that contains b_0 and then obtain a contradiction.

Algorithm b_0 .

1. If $|S(u, b_0)|$ is even, then select a branch $b_1 \in S(u, b_0) \setminus (B_H(G) \cup \{b_0\})$ by Theorem 8. Otherwise, since $|E(b_0)| \ge \beta(G) + 2$, select a branch $b_1 \in S(u, b_0)$ with

$$|E(b_1)| = l(S(u, b_0)) \leq h_2(G) \leq \beta(G) + 1$$

(obviously $b_1 \neq b_0$) and let $u_1 \neq u$) be the other end vertex of b_1 . If $u_1 = v$, then set t := 1 and stop. Otherwise i := 1.

2. Select a branch-bond $S(u, u_i, b_0)$ in G which contains b_0 but not b_1, b_2, \ldots, b_i such that any branch in $S(u, u_i, b_0)$ has exactly one end vertex in $\{u, u_1, u_2, \ldots, u_i\}$. If $|S(u, u_i, b_0)|$ is even, then, by Theorem 8, select a branch

 $b_{i+1} \in S(u, u_i, b_0) \setminus (B_H(G) \cup \{b_0\}).$

Otherwise, since $|E(b_0)| \ge \beta(G) + 2$, select a branch $b_{i+1} \in S(u, u_i, b_0)$ such that

 $|E(b_{i+1})| = l(S(u, u_i, b_0)) \leq h_2(G) \leq \beta(G) + 1$

(obviously $b_{i+1} \neq b_0$), and let u_{i+1} be the end-vertex of b_{i+1} that is not in $\{u, u_1, u_2, \dots, u_i\}$. 3. If $u_{i+1} = v$, then set t := i + 1 and stop. Otherwise replace *i* by i + 1 and return to step 2.

Note that |B(G)| is finite, and $d_G(v) \ge 2$ implies that the Algorithm b_0 will stop after a finite number of steps. It is easy to see that $G[\bigcup_{i=0}^{t} E(b_i)]$ is connected. Furthermore, since $u_t = v$ and $|S(u, u_i, b_0)| \ge 2$, $G[\bigcup_{i=0}^{t} E(b_i)]$ has a cycle of G which contains b_0 . Hence we have established the following fact.

Claim 1.1. b_0 is in a cycle C_0 of $G[\bigcup_{i=0}^t E(b_i)]$.

Let H' be the subgraph of G obtained from

 $G[(E(H) \cup (E(C_0) \setminus E(H))) \setminus (E(H) \cap E(C_0))]$

by adding the remaining vertices of $\bigcup_{i=3}^{\Delta(G)} V_i(G)$ as isolated vertices in H'.

Obviously $|E(b)| \leq h_2(G) \leq \beta(G) + 1$ for $b \in B_H(G) \cap \{b_1, b_2, \dots, b_t\}$. Hence, by Claim 1.1, H' satisfies (III). Obviously H' satisfies (I), (II) and (IV), and this implies that H' is also in $F_{f(G)}(G)$. But H' contains b_0 which contradicts the maximality of H. Thus Claim 1 is true.

Now we will complete the proof of Theorem 10. By the definition of $\beta(G)$, $|E(b)| \leq h_1(G) \leq \beta(G)$ for any branch $b \in B_1(G)$ and $|E(b)| \leq h_2(G) \leq \beta(G) + 1$ for the branch b in a branch-bond $S \notin BB_1(G)$ such that |S| = 1. The last fact and Claim 1 implies that $|E(b)| \leq \beta(G) + 1$ for any branch $b \in B(G) \setminus B_H(G)$. It follows that $H \in F_{\beta(G)}(G)$, and so $f(G) \leq \beta(G)$. Therefore we have completed the proof of Theorem 10. \Box

Remark 11. Note that Theorem 10 does not hold for a graph G with $\beta(G) \leq 1$. To see this, let G_0 be the graph depicted in Fig. 1. It is easy to see that $h_1(G_0) = 0$ and $h_2(G_0) = 2$, hence $\beta(G_0) = 1$. By Theorem 12, $f(G_0) \leq 2$. We claim that $f(G_0) = 2$. To see this, it suffices to show that G_0 has no k-system that dominates for any k. We will prove this by contradiction. If possible, suppose that G_0 has a k-system that dominates. It is easy to see that the unique cycle with all branches of length 4 of G_0 should be contained in Γ . Hence none of the vertices u_i is a center of some star since u_i

Fig. 1. A graph G_0 with $f(G_0) = 2$ and $\beta(G_0) = 1$.

has degree exactly three. So x_i should be a center of some star in *S* and hence *w* should not be a center of some star for wx_1, wx_2, wx_4 should be in the stars with centers x_1, x_2, x_4 , respectively. The edge ww', however, is not contained in any star in Γ . This shows that Γ is not any *k*-system that dominates. This implies that $f(G_0) = 2$ by Theorem 2. If we replace some of these branches of length 4 by branches of length $l \ge 4$, then we can get infinite graph *G* with f(G) = 2 and $\beta(G) = 1$.

The following result deals with these graphs G with small $\beta(G)$.

Theorem 12. Let G be a graph that is not a path such that $\beta(G) \leq 1$. Then $f(G) \leq 2$.

Proof. By Theorem 6, we only need to prove that $F_2(G) \neq \emptyset$. Let *H* be a subgraph of *G* with (I) and (II) and with a maximal number of branches $b \in B_H(G)$ such that $|E(b)| \ge 3$. Then, in a way similar to the one in Claim 1 in the proof of Theorem 10, we obtain the following claim.

Claim 12.1. If *S* is a branch-bond in BB(*G*) which contains at least three branches, then $|E(b)| \leq 2$ for any branch $b \in S \setminus B_H(G)$.

For any branch *b* of *G*, if *G*[*E*(*b*)] is not a cycle of *G* then there exists a branch-bond $S \in BB(G)$ with $b \in S$. By $\beta(G) \leq 1$, we have $|E(b)| \leq 1$ for $b \in B_1(G)$, which implies that *H* satisfies (IV). By Claim 12.1, *H* satisfies (III). Hence $H \in F_2(G)$, and so $f(G) \leq 2$. Thus we have completed the proof of Theorem 12. \Box

A result in [4] implies the following.

Theorem 13 (*Fujisawa et al.* [4]). Let G be a graph that is not a path such that $\beta(G) = 0$. Then $f(G) \leq 1$. It would be interesting to consider the following question.

Question 14. Which graph *G* satisfies $f(G) = \beta(G) \leq 1$.

Remark 15. Note that the graph G_0 shown in Remark 11 is 2-connected and $F_1(G_0) \neq \emptyset$ since $C_0 \cup \{x_1, x_2, x_3, x_4, w\}$ is a subgraph in $F_1(G_0)$ where C_0 is the unique cycle with all branches of length 4. However $f(G_0) = 2$, this shows that Theorem 6 does not hold for n = 1 even for a 2-connected graph.

Remark 16. Woeginger [9] pointed out that there is a polynomial algorithm to determine $h_i(G)$ of G. Hence there is a polynomial algorithm to determine $\beta(G)$. So if $\beta(G) \ge 2$ then there is a polynomial algorithm to determine f(G) by Theorem 10.

Acknowledgement

The authors would like to thank Ronald Gould for providing his papers and are grateful to the referees for their valuable comments and careful reading.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Elsevier, Amsterdam, 1980.
- [2] G. Chartrand, On hamiltonian line graphs, Trans. Amer. Math. Soc. 134 (1968) 559–566.
- [3] M. Ferrara, R. Gould, The structure and existence of 2-factors in iterated line graphs, Preprint.
- [4] J. Fujisawa, L. Xiong, K. Yoshimoto, S. Zhang, The upper bound of the number of cycles in a 2-factor of a line graph, J. Graph Theory, in press, doi: 10.1002/jgt.20220.
- [5] R. Gould, E. Hynds, A note on cycles in 2-factors of line graphs, Bull. ICA 26 (1999) 46-48.
- [6] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701–710.
- [7] H.-J. Lai, On the hamiltonian index, Discrete Math. 69 (1988) 43–53.
- [8] T.A. Mckee, Recharacterizing eulerian: intimations of new duality, Discrete Math. 51 (1984) 237–242.
- [9] G.J. Woeginger, Personal communication.
- [10] L. Xiong, H.J. Broersma, X. Li, M. Li, The hamiltonian index of a graph and its branch-bonds, Discrete Math. 285 (2004) 279-288.
- [11] L. Xiong, Z. Liu, Hamiltonian iterated line graphs, Discrete Math. 256 (2002) 407–422.