On the 2-factor index of a graph

Liming Xiong ${ }^{\text {a, }, ~}$, MingChu Li ${ }^{\text {b, }}$,
${ }^{\text {a }}$ Department of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China
${ }^{\mathrm{b}}$ School of Software, Dalian University of Technology, Dalian 116024, PR China

Received 11 November 2004; received in revised form 27 September 2006; accepted 9 November 2006
Available online 24 January 2007

Abstract

The 2 -factor index of a graph G, denoted by $f(G)$, is the smallest integer m such that the m-iterated line graph $L^{m}(G)$ of G contains a 2 -factor. In this paper, we provide a formula for $f(G)$, and point out that there is a polynomial time algorithm to determine $f(G)$. © 2007 Elsevier B.V. All rights reserved.

MSC: 05C45; 05C38
Keywords: 2-factor; 2-factor index; Branch-bond; Iterated line graph

1. Introduction

We use [1] for terminology and notation not defined here and consider only loopless finite graphs. Let G be a graph. For each integer $0 \leqslant i \leqslant \Delta(G)$, let $V_{i}(G)$ denote the set of vertices of G having degree i. A branch in G is a nontrivial path with end vertices that do not lie in $V_{2}(G)$ and with internal vertices of degree 2 (if existing). If a branch has length 1 , then it has no internal vertices of degree 2 . Let $B(G)$ denote the set of branches of G and $B_{1}(G)$ the subset of $B(G)$ in which every branch has exactly one end vertex in $V_{1}(G)$. A 2-factor in G is a spanning subgraph of G such that its vertices have degree 2 . For any subgraph H of G, denote by $B_{H}(G)$ the set of branches of G whose edges are all in H. For any two subgraphs H_{1} and H_{2} of G, the distance $d_{G}\left(H_{1}, H_{2}\right)$ between H_{1} and H_{2} is defined to be $\min \left\{d_{G}\left(v_{1}, v_{2}\right) \mid v_{1} \in V\left(H_{1}\right)\right.$ and $\left.v_{2} \in V\left(H_{2}\right)\right\}$.

The line graph of $G=(V(G), E(G))$ has $E(G)$ as its vertex set, and two vertices are adjacent in $L(G)$ if and only if the corresponding edges are incident with a common vertex in G. The m-iterated line graph $L^{m}(G)$ is defined recursively by $L^{0}(G)=G$ and $L^{m}(G)=L\left(L^{m-1}(G)\right)$. The hamiltonian index of a graph G, denoted by $h(G)$, is the smallest integer m such that $L^{m}(G)$ is hamiltonian, and the 2-factor index of a graph, denoted by $f(G)$, is the minimum integer m such that the m-iterated line graph contains a 2 -factor.

Chartrand [2] showed that if a connected graph G is not a path, then the hamiltonian index of G exists. Lai [7] obtained a bound of $h(G)$. Because a hamiltonian cycle of G is a connected 2 -factor of $G, f(G)$ exists for any connected graph

[^0]G that is not a path. A circuit of a graph G is a connected nontrivial subgraph of G whose vertices have only even degrees. Harary and Nash-Williams characterized these graphs whose line graphs are hamiltonian.

Theorem 1 (Harary and Nash-Williams [6]). Let G be a graph with at least three edges. Then $h(G) \leqslant 1$ if and only if $G \equiv K_{1, n}$, or G has a circuit H such that $d_{G}(e, H)=0$ for any edge $e \in E(G)$.

Gould and Hynds gave a characterization of graphs whose line graphs contain a 2 -factor. A star is the bipartite graph $K_{1, m}(m \geqslant 3)$, and the vertex of degree m in $K_{1, m}$ is called the center of the star. A k-system that dominates is a collection Γ of k edge-disjoint circuits and stars in G such that each edge e of G is either in one of the circuits or stars of Γ, e is adjacent to an edge of a circuit of Γ, or e is adjacent to the center of a star of Γ.

Theorem 2 (Gould and Hynds [5]). Let G be a connected simple graph containing at least three edges. Then $f(G) \leqslant 1$ if and only if G has a k-system that dominates for some k.

Xiong and Liu characterized the graphs for which the n-iterated line graph is hamiltonian, for any integer $n \geqslant 2$.
Theorem 3 (Xiong and Liu [11]). Let G be a connected graph that is not a 2 -cycle and let $n \geqslant 2$ be an integer. Then $h(G) \leqslant n$ if and only if $E U_{n}(G) \neq \emptyset$ where $E U_{n}(G)$ denotes the set of those subgraphs H of G which satisfy the following conditions:
(i) any vertex of H has even degree in H;
(ii) $V_{0}(H) \subseteq \bigcup_{i=3}^{4(G)} V_{i}(G) \subseteq V(H)$;
(iii) $d_{G}\left(H_{1}, H-H_{1}\right) \leqslant n-1$ for any subgraph H_{1} of H;
(iv) $|E(b)| \leqslant n+1$ for any branch b in $B(G) \backslash B_{H}(G)$;
(v) $|E(b)| \leqslant n$ for any branch in $B_{1}(G)$.

Very recently, Ferrara and Gould proved the following result.
Theorem 4 (Ferrara and Gould [3]). Let G be a connected graph with at least three edges. Then for any $n \geqslant 2, L^{n}(G)$ has a 2 -factor if and only if $F_{n}(G) \neq \emptyset$ where $F_{n}(G)$ denotes the set of those subgraphs H of G that satisfy the following five conditions:
(i') any vertex of H has even degree in H;
(ii') $V_{0}(H) \subseteq \bigcup_{i=3}^{\Delta(G)} V_{i}(G) \subseteq V(H)$;
(iii') $d_{G}\left(H_{1}, H-H_{1}\right) \leqslant n+1$ for any subgraph H_{1} of H;
(iv') $|E(b)| \leqslant n+1$ for any branch b in $B(G) \backslash B_{H}(G)$;
$\left(\mathrm{v}^{\prime}\right)|E(b)| \leqslant n$ for any branch in $B_{1}(G)$.
We observe that Theorem 4 does not hold for $n=0$ or 1 . To see this, let $C=u_{1} u_{2} \cdots u_{3 s} \cdots u_{t}$ be a cycle of length $t, t \geqslant 3 s \geqslant 6$, and x be a vertex outside C. Now let G_{1} be the graph with $V\left(G_{1}\right)=V(C) \cup\{x\}$ and $E\left(G_{1}\right)=E(C) \cup$ $\left\{x u_{s}, x u_{2 s}, x u_{3 s}\right\}$. It is easy to see that $C \cup\{x\} \in F_{0}\left(G_{1}\right)$ but G_{1} has no 2 -factor. To see that Theorem 4 does not hold for $n=1$, let G_{2} be the unique tree on $2 n$ vertices with degree sequence ($x_{1}, x_{2}, \ldots, x_{n+1}, x_{n+2}, \ldots, x_{2 n}$) where $x_{i}=1$ for $i=1,2, \ldots, n+1$ and $x_{i}=3$ for $i=n+2, \ldots, 2 n$. It is easy to see that G_{2} has no k-system that dominates for any k and the empty subgraph with the set of vertices of degree three in G_{2} is in $F_{1}\left(G_{2}\right)$. This implies that $f\left(G_{2}\right) \geqslant 2$ and $F_{1}\left(G_{2}\right) \neq \emptyset$.

Note that the conditions on the subgraphs in $E U_{k}(G)$ of Theorem 3 and the subgraphs in $F_{k}(G)$ of Theorem 4 are the same except conditions (iii) and (iii'). The following natural result follows from the fact that all subgraphs F in $F_{f(G)+2}(G)$ are in $E U_{h(G)}(G)$ and all subgraphs H in $E U_{h(G)}(G)$ are in $F_{f(G)}(G)$.

Theorem 5. Let G be a connected graph that is not a path. Then

$$
h(G)-2 \leqslant f(G) \leqslant h(G)
$$

Proof. Since any hamiltonian cycle in a graph G is also a 2-factor in $G, f(G) \leqslant h(G)$. If $h(G)=0,1,2$, then obviously $f(G) \geqslant 0 \geqslant h(G)-2$. If $h(G) \geqslant 3$, then $h(G) \leqslant f(G)+2$ by Theorem 3 and since subgraphs F in $F_{f(G)+2}(G)$ are all in $E U_{h(G)}(G)$.

Observing that conditions (ii') and (iv') in the definition of $F_{k}(G)$ imply condition (iii') in the definition of $F_{k}(G)$, we obtain an equivalent version of Theorem 4 as follows.

Theorem 6. Let G be a connected graph with at least three edges. Then for any $n \geqslant 2, L^{n}(G)$ has a 2 -factor if and only if $F_{n}(G) \neq \emptyset$ where $F_{n}(G)$ denotes the set of those subgraphs H of G that satisfy the following four conditions:
(I) any vertex of H has even degree in H;
(II) $V_{0}(H) \subseteq \bigcup_{i=3}^{\Delta(G)} V_{i}(G) \subseteq V(H)$;
(III) $|E(b)| \leqslant n+1$ for any branch b in $B(G) \backslash B_{H}(G)$;
(IV) $|E(b)| \leqslant n$ for any branch in $B_{1}(G)$.

Proof. Since the "only if" part is trivial, we only need to prove the "if" part of the theorem. It suffices to prove that the subgraph H satisfying the conditions (I)-(IV) also satisfies the conditions (i^{\prime})-(v^{\prime}). We will prove this by contradiction. If possible, suppose that H is a subgraph satisfying (I)-(IV) but $d_{G}\left(H_{1}, H-H_{1}\right) \geqslant n+2$ for some subgraph H_{1} of H, we claim that the shortest path P between H_{1} and $H-H_{1}$ is a branch in $B(G) \backslash B_{H}(G)$, by (ii'). Hence by (iv'), $|E(P)| \leqslant n+1$, a contradiction. This implies that (iii') holds for H. Thus we have completed the proof of Theorem 6.

The main purpose of this paper is to establish a formula for $f(G)$.

2. Branch-bonds

In this section, we will introduce some notation and terminology about branch-bonds [10], which will be used in next section. For any subset S of $B(G), G-S$ denotes the subgraph obtained from $G[E(G) \backslash E(S)]$ by deleting all internal vertices of degree 2 in any branch of S. A subset S of $B(G)$ is called a branch cut if $G-S$ has more components than G. A branch-bond is a minimal branch cut. If G is connected, then a branch cut S of G is a minimal subset of $B(G)$ such that $G-S$ is disconnected. It is easily shown that, for a connected graph G, a subset S of $B(G)$ is a branch-bond if and only if $G-S$ has exactly two components. We denote by $B B(G)$ the set of branch-bonds of G. Given $S, T \subseteq V(G)$, let $[S, T]=\{u v \in E(G): u \in S$ and $v \in T\}$. An edge cut is an edge set of the form $[S, \bar{S}]$, where S is a nonempty proper subset of $V(G)$ and $\bar{S}=V(G) \backslash S$. A minimal edge cut of G is called a bond. Note that a branch-bond of G is also a bond of G when every branch in the branch-bond is an edge.

McKee gave the following characterization of eulerian graphs.
Theorem 7 (McKee [8]). A connected graph is eulerian if and only if each bond contains an even number of edges.
The following characterization of eulerian graphs involves branch-bonds.
Theorem 8 (Xiong et al. [10]). A connected graph is eulerian if and only if each branch-bond contains an even number of branches.

3. A formula for $\boldsymbol{f}(\boldsymbol{G})$

In this section we will establish a formula for $f(G)$, which relates to the concept of odd branch-bonds. A branch-bond is called odd if it consists of an odd number of branches. The length of a branch-bond $S \in B B(G)$, denoted by $l(S)$, is the length of a shortest branch in it. Let $B B_{2}(G)=\left\{S \in B B(G) \backslash B B_{1}(G): S\right.$ is odd $\}$ where $B B_{1}(G)=B_{1}(G)$, and, for $i=1,2$,

$$
h_{i}(G)= \begin{cases}\max \left\{l(S): S \in B B_{i}(G)\right\} & \text { if } B B_{i}(G) \neq \emptyset, \\ 0 & \text { if } B B_{i}(G)=\emptyset .\end{cases}
$$

We will give a formula for $f(G)$ involving $h_{i}(G)$. First we present a lower bound for it.

Theorem 9. Let G be a connected graph that is not a path. Then

$$
f(G) \geqslant \max \left\{h_{1}(G), h_{2}(G)-1\right\} .
$$

Proof. If $f(G)=0$, then the definition of a 2-factor implies that $h_{1}(G)=0$, i.e., $B B_{1}(G)=\emptyset$. Obviously $l(S) \leqslant 1$ for any branch-bond S with $|S|=1$.

We further claim that $h_{2}(G) \leqslant 1$, which implies that Theorem 9 holds. We will prove this by contradiction. If possible, suppose that $h_{2}(G) \geqslant 2$, then there exists an odd branch-bond S_{0} with $\left|S_{0}\right| \geqslant 3$ and $l\left(S_{0}\right) \geqslant 2$. Let F be a 2 -factor of G. By the definition of a branch-bond, each cycle of F contains an even number of branches of S_{0}. Hence there exists a branch b_{0} in the odd branch-bond S_{0} such that b_{0} is not in any cycle of F. However $\left|E\left(b_{0}\right)\right| \geqslant l\left(S_{0}\right) \geqslant 2$ implies that there exists a vertex u, of degree 2 , such that u is in b_{0} but u is not in any cycle of F, a contradiction. This settles the case that $f(G)=0$.

If $f(G)=1$, then, by Theorem 2 , there exists a k-system Γ that dominates. Obviously $h_{1}(G) \leqslant 1$ and $l(S) \leqslant 2$ for any branch-bond $S \notin B B_{1}(G)$ with $|S|=1$. We furthermore claim that $h_{2}(G) \leqslant 2$, which implies that Theorem 9 holds. We will prove this by contradiction. If possible, suppose that $h_{2}(G) \geqslant 3$, then there exists an odd branch-bond S_{0} with $\left|S_{0}\right| \geqslant 3$ and $l\left(S_{0}\right) \geqslant 3$. By the definition of a branch-bond, any circuit of Γ contains an even number of branches of S_{0}. Hence there exists a branch b_{0} in the odd branch-bond S_{0} such that b_{0} is not in any circuit of Γ. However, $\left|E\left(b_{0}\right)\right| \geqslant l\left(S_{0}\right) \geqslant 3$ implies that there is an edge $u v$, with $d(u)=d(v)=2$, such that u and v in b_{0} but $u v$ is neither in one of stars of Γ nor has a vertex in one of the circuits of Γ, a contradiction. This settles the case that $f(G)=1$.

It remains to consider the case that $f(G) \geqslant 2$. We can take an $S_{i} \in B B_{i}(G)$ such that $h_{i}(G)=l\left(S_{i}\right)$ for every $i \in\{1,2\}$. For any subgraph $H \in F_{f(G)}(G)$, it is obvious that $E(b) \cap E(H)=\emptyset$ for any $b \in S_{1}$. The definitions of S_{2} and H imply that there exists at least one branch $b \in S_{2}$ such that $E(b) \cap E(H)=\emptyset$. Hence by Theorem 6, we obtain $f(G) \geqslant h_{1}(G)$ by (IV) and $f(G) \geqslant h_{2}(G)-1$ by (III). So $f(G) \geqslant \max \left\{h_{1}(G), h_{2}(G)-1\right\}$, which completes the proof of Theorem 9.

Now we state a formula for $f(G)$. Let

$$
\beta(G)=\max \left\{h_{1}(G), h_{2}(G)-1\right\} .
$$

Theorem 10. Let G be a connected graph that is not a path such that $\beta(G) \geqslant 2$. Then $f(G)=\beta(G)$.
Proof. It suffices to prove that $f(G) \leqslant \beta(G)$ by Theorem 9 . This theorem also implies $f(G) \geqslant \beta(G) \geqslant 2$. Hence by Theorem 6 we can assume that $H \in F_{f(G)}(G)$ is a subgraph with a maximal number of branches $b \in B_{H}(G)$ such that $|E(b)| \geqslant \beta(G)+2$. Then we obtain the following fact.

Claim 1. If S is a branch-bond in $B B(G)$ which contains at least three branches, then $|E(b)| \leqslant \beta(G)+1$ for any branch $b \in S \backslash B_{H}(G)$.

Proof of Claim 1. We will prove this by contradiction. If possible, suppose that there is a branch-bond S with $|S| \geqslant 3$ and $b_{0} \in S \backslash B_{H}(G)$ such that $\left|E\left(b_{0}\right)\right| \geqslant \beta(G)+2$. Obviously b_{0} is not a cycle. Let u and v be two end vertices of b_{0}. Let $S\left(u, b_{0}\right)$ be a branch-bond containing b_{0} such that any branch of $S\left(u, b_{0}\right)$ has u as an end vertex. Obviously $\left|S\left(u, b_{0}\right)\right| \geqslant 2$.

By the following algorithm, we will first find a cycle of G that contains b_{0} and then obtain a contradiction.
Algorithm b_{0}.

1. If $\left|S\left(u, b_{0}\right)\right|$ is even, then select a branch $b_{1} \in S\left(u, b_{0}\right) \backslash\left(B_{H}(G) \cup\left\{b_{0}\right\}\right)$ by Theorem 8. Otherwise, since $\left|E\left(b_{0}\right)\right| \geqslant$ $\beta(G)+2$, select a branch $b_{1} \in S\left(u, b_{0}\right)$ with

$$
\left|E\left(b_{1}\right)\right|=l\left(S\left(u, b_{0}\right)\right) \leqslant h_{2}(G) \leqslant \beta(G)+1
$$

(obviously $\left.b_{1} \neq b_{0}\right)$ and let $u_{1}(\neq u)$ be the other end vertex of b_{1}. If $u_{1}=v$, then set $t:=1$ and stop. Otherwise $i:=1$.
2. Select a branch-bond $S\left(u, u_{i}, b_{0}\right)$ in G which contains b_{0} but not $b_{1}, b_{2}, \ldots, b_{i}$ such that any branch in $S\left(u, u_{i}, b_{0}\right)$ has exactly one end vertex in $\left\{u, u_{1}, u_{2}, \ldots, u_{i}\right\}$. If $\left|S\left(u, u_{i}, b_{0}\right)\right|$ is even, then, by Theorem 8 , select a branch

$$
b_{i+1} \in S\left(u, u_{i}, b_{0}\right) \backslash\left(B_{H}(G) \cup\left\{b_{0}\right\}\right)
$$

Otherwise, since $\left|E\left(b_{0}\right)\right| \geqslant \beta(G)+2$, select a branch $b_{i+1} \in S\left(u, u_{i}, b_{0}\right)$ such that

$$
\left|E\left(b_{i+1}\right)\right|=l\left(S\left(u, u_{i}, b_{0}\right)\right) \leqslant h_{2}(G) \leqslant \beta(G)+1
$$

(obviously $b_{i+1} \neq b_{0}$), and let u_{i+1} be the end-vertex of b_{i+1} that is not in $\left\{u, u_{1}, u_{2}, \ldots, u_{i}\right\}$.
3. If $u_{i+1}=v$, then set $t:=i+1$ and stop. Otherwise replace i by $i+1$ and return to step 2 .

Note that $|B(G)|$ is finite, and $d_{G}(v) \geqslant 2$ implies that the Algorithm b_{0} will stop after a finite number of steps. It is easy to see that $G\left[\bigcup_{i=0}^{t} E\left(b_{i}\right)\right]$ is connected. Furthermore, since $u_{t}=v$ and $\left|S\left(u, u_{i}, b_{0}\right)\right| \geqslant 2, G\left[\bigcup_{i=0}^{t} E\left(b_{i}\right)\right]$ has a cycle of G which contains b_{0}. Hence we have established the following fact.

Claim 1.1. b_{0} is in a cycle C_{0} of $G\left[\bigcup_{i=0}^{t} E\left(b_{i}\right)\right]$.
Let H^{\prime} be the subgraph of G obtained from

$$
G\left[\left(E(H) \cup\left(E\left(C_{0}\right) \backslash E(H)\right)\right) \backslash\left(E(H) \cap E\left(C_{0}\right)\right)\right]
$$

by adding the remaining vertices of $\bigcup_{i=3}^{\Lambda(G)} V_{i}(G)$ as isolated vertices in H^{\prime}.
Obviously $|E(b)| \leqslant h_{2}(G) \leqslant \beta(G)+1$ for $b \in B_{H}(G) \cap\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$. Hence, by Claim 1.1, H^{\prime} satisfies (III). Obviously H^{\prime} satisfies (I), (II) and (IV), and this implies that H^{\prime} is also in $F_{f(G)}(G)$. But H^{\prime} contains b_{0} which contradicts the maximality of H. Thus Claim 1 is true.
Now we will complete the proof of Theorem 10. By the definition of $\beta(G),|E(b)| \leqslant h_{1}(G) \leqslant \beta(G)$ for any branch $b \in B_{1}(G)$ and $|E(b)| \leqslant h_{2}(G) \leqslant \beta(G)+1$ for the branch b in a branch-bond $S \notin B B_{1}(G)$ such that $|S|=1$. The last fact and Claim 1 implies that $|E(b)| \leqslant \beta(G)+1$ for any branch $b \in B(G) \backslash B_{H}(G)$. It follows that $H \in F_{\beta(G)}(G)$, and so $f(G) \leqslant \beta(G)$. Therefore we have completed the proof of Theorem 10 .

Remark 11. Note that Theorem 10 does not hold for a graph G with $\beta(G) \leqslant 1$. To see this, let G_{0} be the graph depicted in Fig. 1. It is easy to see that $h_{1}\left(G_{0}\right)=0$ and $h_{2}\left(G_{0}\right)=2$, hence $\beta\left(G_{0}\right)=1$. By Theorem $12, f\left(G_{0}\right) \leqslant 2$. We claim that $f\left(G_{0}\right)=2$. To see this, it suffices to show that G_{0} has no k-system that dominates for any k. We will prove this by contradiction. If possible, suppose that G_{0} has a k-system that dominates. It is easy to see that the unique cycle with all branches of length 4 of G_{0} should be contained in Γ. Hence none of the vertices u_{i} is a center of some star since u_{i}

Fig. 1. A graph G_{0} with $f\left(G_{0}\right)=2$ and $\beta\left(G_{0}\right)=1$.
has degree exactly three. So x_{i} should be a center of some star in S and hence w should not be a center of some star for $w x_{1}, w x_{2}, w x_{4}$ should be in the stars with centers x_{1}, x_{2}, x_{4}, respectively. The edge $w w^{\prime}$, however, is not contained in any star in Γ. This shows that Γ is not any k-system that dominates. This implies that $f\left(G_{0}\right)=2$ by Theorem 2 . If we replace some of these branches of length 4 by branches of length $l \geqslant 4$, then we can get infinite graph G with $f(G)=2$ and $\beta(G)=1$.

The following result deals with these graphs G with small $\beta(G)$.
Theorem 12. Let G be a graph that is not a path such that $\beta(G) \leqslant 1$. Then $f(G) \leqslant 2$.
Proof. By Theorem 6, we only need to prove that $F_{2}(G) \neq \emptyset$. Let H be a subgraph of G with (I) and (II) and with a maximal number of branches $b \in B_{H}(G)$ such that $|E(b)| \geqslant 3$. Then, in a way similar to the one in Claim 1 in the proof of Theorem 10, we obtain the following claim.

Claim 12.1. If S is a branch-bond in $B B(G)$ which contains at least three branches, then $|E(b)| \leqslant 2$ for any branch $b \in S \backslash B_{H}(G)$.

For any branch b of G, if $G[E(b)]$ is not a cycle of G then there exists a branch-bond $S \in B B(G)$ with $b \in S$. By $\beta(G) \leqslant 1$, we have $|E(b)| \leqslant 1$ for $b \in B_{1}(G)$, which implies that H satisfies (IV). By Claim 12.1, H satisfies (III). Hence $H \in F_{2}(G)$, and so $f(G) \leqslant 2$. Thus we have completed the proof of Theorem 12.

A result in [4] implies the following.
Theorem 13 (Fujisawa et al. [4]). Let G be a graph that is not a path such that $\beta(G)=0$. Then $f(G) \leqslant 1$. It would be interesting to consider the following question.

Question 14. Which graph G satisfies $f(G)=\beta(G) \leqslant 1$.
Remark 15. Note that the graph G_{0} shown in Remark 11 is 2 -connected and $F_{1}\left(G_{0}\right) \neq \emptyset$ since $C_{0} \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}, w\right\}$ is a subgraph in $F_{1}\left(G_{0}\right)$ where C_{0} is the unique cycle with all branches of length 4. However $f\left(G_{0}\right)=2$, this shows that Theorem 6 does not hold for $n=1$ even for a 2 -connected graph.

Remark 16. Woeginger [9] pointed out that there is a polynomial algorithm to determine $h_{i}(G)$ of G. Hence there is a polynomial algorithm to determine $\beta(G)$. So if $\beta(G) \geqslant 2$ then there is a polynomial algorithm to determine $f(G)$ by Theorem 10.

Acknowledgement

The authors would like to thank Ronald Gould for providing his papers and are grateful to the referees for their valuable comments and careful reading.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Elsevier, Amsterdam, 1980.
[2] G. Chartrand, On hamiltonian line graphs, Trans. Amer. Math. Soc. 134 (1968) 559-566.
[3] M. Ferrara, R. Gould, The structure and existence of 2-factors in iterated line graphs, Preprint.
[4] J. Fujisawa, L. Xiong, K. Yoshimoto, S. Zhang, The upper bound of the number of cycles in a 2-factor of a line graph, J. Graph Theory, in press, doi: 10.1002/jgt. 20220.
[5] R. Gould, E. Hynds, A note on cycles in 2-factors of line graphs, Bull. ICA 26 (1999) 46-48.
[6] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710.
[7] H.-J. Lai, On the hamiltonian index, Discrete Math. 69 (1988) 43-53.
[8] T.A. Mckee, Recharacterizing eulerian: intimations of new duality, Discrete Math. 51 (1984) 237-242.
[9] G.J. Woeginger, Personal communication.
[10] L. Xiong, H.J. Broersma, X. Li, M. Li, The hamiltonian index of a graph and its branch-bonds, Discrete Math. 285 (2004) $279-288$.
[11] L. Xiong, Z. Liu, Hamiltonian iterated line graphs, Discrete Math. 256 (2002) 407-422.

[^0]: E-mail addresses: lmxiong@eyou.com (L. Xiong), li_mingchu@yahoo.com (M. Li).
 ${ }^{1}$ Supported by Nature Science Funds of China under Contract Grant No.: 10671014 and by Excellent Young Scholars Research Fund of Beijing Institute of Technology under Contract Grant No. 000Y07-28 and the Project-sponsored by SRF for ROCS, SEM.
 ${ }^{2}$ Supported by Nature Science Funds of China under Grant No. 60673046.

