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Let G be a connected regular graph of valence p + I where p is an odd prime. 
Let A be a subgroup of AU(G) which is s-regular (S > 0). We prove that s < 3 
and the cases s = .O, 1, 2, 3 do occur. 

1. MAIN RESULT 

In the whole paper G denotes a connected regular graph (finite or infinite) 
of valencep + 1 wherep is an odd prime. We assume that there is a subgroup 
A of Aut (G) which &s-regular for some s > 0. 

We have proved in [3] that s < 7 and s # 6. A short beautiful proof of a 
more’ general ,reshlt (the valence being replaced by p% + 1 where FZ < pg 
k > 1) was given later by IX. M. Weiss [5]. We also proved [4] that if s 3 2 
tben’the prime p must be a,Mersenne prime, i.e., p + 1 = 2” for some posk- 
tive integer n:’ 

In this paper we finish off this problem by proving the following: 

THEOREM. Under the above hypotheses we hme s < 3. 

2. PROOF OF s # 7 

Assume that s *#7. Let a, b, c, d, e,f, g be consecutive vertices of a S-arc 3 
in G. Ifv, ,..., vk are vertices of G we denote by A(v, ,..., uk) the subgroup ofI$ 
consisting of all a: E A such that a(~) = vi , 1 < i < k and we say that this 
subgroup is tlzk $xer in A of the set (ul ,...) vie). On the other hand, the 
stabilizer of (vl ,..., vk} in A is the subgroup of A consisting of all a E A such 

that (c&) ,..., o&)} = (vl ,..., vk}. It is clear that a fixer in A of a set of 
vertices is a normal subgroup of the stabilizer in A of the same set of vertices. 
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We have the following diagram of various fixers: 

Atd) 

A(a 

Note that the girth of G is 22s - 2 = 12 and consequently A@, d) = 
A@, c, d), A+, d) = A(a, b, c, d), etc. (See [l] Prop. 17.2, p. 113). 

Since A is 7-regular the orders of all subgroups in this diagram are known: 

I 44 = (P + l)P6, 

I A@, 41 = p6, I A@, 41 = p5, 

I A@, 4 = p4, I A(b,f)l = p3, 

I &f)l = p2, I A@, d, g)l = P 

The subgroups in the same row of this diagram (say A(c, d) and A(d, e)) are 
conjugate in A to each other. 

It follows from [3, section 41 that the groups A(a, d), A(b, e), A(c, f), 
A(d, g) are elementary abelian but the groups A(b, d), A(c, e), A(d,f) are 
non-abehan. In fact when s = 7 the inequality 

$(s - 1) < k < fr(s + 2) 

from [3, p. 2.591 gives k = 4. This means that the fixer in A of a 3-arc 
(3 = s - k) is abelian (necessarily elementary abelian) but the fixer in A of a 
2-arc is not abelian. 

Since A(c, e) is generated by A(b, e) and A(c,f) the above facts imply 
that A(b,f) is the center of A(c, e). This follows also from Lemma 2 of [3]. 
Moreover, that Lemma gives that the center of A(c, d) is A(a,f) and the 
center of A(d) is A@, d, g). 

For each vertex z, of G let Z(V) be the center of A(v). We have just seen that 
Z(v) coincides with the fixer in A of any 6-arc S such that S(3) = v. Hence 
we have 

LEMMA 1. Z(v) consists of all 01 E A(v) which jix every vertex at distance 
<3 from v. If 01 E Z(v), OL # 1 then 01 moves every vertex at distance 4 from v. 
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Proof. The first statement had been proved above. The second follows 
from 7-regularity of A. 

Given a vertex II of G we shall denote by d a fixed nontrivial element of 
%J>. 

LEMMA 2. We have 

&a, 4 g) = Z(d) = (6, 

A&f) = (6 6, 

A@,f) = <C & a>, 
A(b, e) = (& 2, $ S}, 

A(c, e) = <6, 2, o?, t?, f), 

A(c, d) = ((z, 6, iY9 L?, t?, f>, 

A(d) = (2, 6, E, 2, ?, f, 2). 

Proof. Since Z(d), has order p and d” f 1 is in Z’(d) we have Z(d) = cd”)* 
Clearly, 2, d” E A(a, f) by Lemma 1 and hence (Z9 d”) C A@, f). Since 

both (Z, 2) and A(a, f) have order p2 they are equal. All. other equalities 
can be proved similarly. 

We denote by (x, v) = xyx+-’ the commutator of two elements X, y 
of a group. 

LEMMA 3. We have (5, j) = &for some r + 0 (mod p)- 

Proof. (6,f) f 1 because A(c, e) is non-abelian. An easy inspection 
shows that (6, f’) fixes a and g and hence belongs to the fixer of S, i.e., to 
2J?). 

LEMMA 4. We have 

but 
(2, f ) E (6, 2, $ Z) = A(b, e) 

Proof. By Lemma 1 the distance between f-l(b) and a is 3. Therefore 
pf-l(b) =f-l(b), &J-f---l(b) = b and (6, J)(b) = Z(b) = tp. Thus (6, p> 
fixes b and similarly, it fixes e. 

On the other hand the distance between Z--‘(f) andfis 4. 
haveJi@(f) # P(f) and consequently 

Therefore (& f”) # A(f) and (&, fl) $ A(b, f). 
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Now, A(c,.e) 4 A(d), see [4, section 51. Since A(b, f) is the center of 
A(c, e) we have A@, f) d A(d). Thus we have an action of A(d) on V = 
A(c, e)/A(b,‘f) induced by conjugation. For T E A(c, e) let 7’ be its canonical 
image in V. Similarly, the canonical images of b” and f”in V will be denoted by 
6 and f: respectively. The above action of A(d) on V is given explicitly as 
follows 

u * 6 = (m-u-l)A 

where u E A(d) and T E A(c, e). Thus we use the star to denote this action. 
Note that the elements 0 E A(c, e) act trivially on V, i.e., 0 x + = + for such 0 
and all 7- E A(c, e). 

The fixer of (a, d, g} is Z(d) = (2). The stabilizer of {a, d, g} has order 2p 
because there exist automorphisms in A which map S to its opposite 6-arc. 
Let 01 be any element of order 2 in this stabilizer. Then we have 

a(u) = g, a(b) =f, a(c) = e. 

From now on we shall assume that $ b, C, g, f; g” have been chosen so that 
a& = 8, C& =f, elk = K This can be done because we- can use these 
equations to define g”, J’, d in terms of 6, 8, c” which are still arbitrary. 

Thus oI*J =fand Olaf’= 6”. 
Let B be a Sylow 2-subgroup of A(d) containing 01. We know by [4, 

Theorem 41 that B is elementary abelian of order 2” = p + 1 and that 
A(c, b)B u A(d). 

By Lemma 4 we have 

&C-l 2 gkf” mod A@, *f) 

where k g 0 (mod p). Thus 

a” * j = @@-I)- = @f, 

a” * 6” = (a”&-‘)-- zzz 6. 

Since 
z-1 = p-1 

we have 
c-1 *f = (,$k)z+lf = ,$--kf. 

Let /3 = EC&~. Then 

Lxp * p = aa”acr-1 * f = L&x * <s-y> 

= &i * (b-f-k) 

= a jx (&&$)-k) = 01 si: (&-k2f-“) 
(1) 

= ,--k(f),-k2 



REGULAR GRAPHS VI 38'3 

and 

But /3 E A(c, e)B because CL E B and A(c, e)B 4 A(d). We can write ,8 = ya 
with y E A(c, e) and CJ f B. Since B is abelian, 0: and CY commute and hence 

because y E A(c, e) acts trivially on ZI. 
From (I), (2) and (3) we obtain that 6 2k = 1, i.e., thatp divides 2k. This is a 

contradiction because p is an odd prime and we know that k f 0 (mod p). 
Thus s = 7 is impossible. 

3. PROOF OF s # 5 

Assume that s = 5. Let a, b, c, d, e be consecutive vertices of a 4-arc S in 
G. Nsw we have the diagram 

where ! A(c)\ = (p + 1) p4, / A(b, c)l = p*, 1 A(b, d)] = p3, / A(a, d)j = p2, 
I A@, c, 41 = P. 

As in the previous case, one knows that A@, d) is elementary abehan, 
A@, c) is non-abelian, A(a, d) is the center of A(b, c) and A(a, c, e) is the 
center of A(e). Again we shall write Z(c) = A(a, c, e). For each vertex v of G 
let 6 be a non-trivial element of Z(U), thus Z(V) = (5). The elements of 
Z(V) fur every vertex of G at distance <2 from v and this property characterizes 
Z(V). Moreover, u” moves every vertex at distance 3 from U. 

Again we have an element OL E A(c) such that O? = 1, a(a) = e and a(b) = d: 
We shall assume that rZ, 6, 2, e” have been chosen so that C&Y = d and C&X = d”. 
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Note that we have 

4% c, 4 = cc”>, 
A(u, d) = (6, c”}, 

A(b, d) = {6, z, a), 

A(b, c) = (4 l?, z, a), 

A(c) = (C, J, 2, a, e-). 

Since (2, J) E A(a, d) = (6, c”) and since (4 2) moves e it follows that 

&&-l&l s b”7c mod (c”). 

Now let V = A@, d)/A( a, c, e) and let A(c) act on V by conjugation. 
Using the notation analogous to that which we used in the previous section, 
we have 

a” * 6 = 6, a” * a = &if, 

a*L=a,a*a=b. 

The elements of A@, d) act trivially in V. 
Let /I = &xP1. Then 

a/3 * a = a!d&-1 * a = a&x * pa) 

= ollz * (U-*) = a * (6(6ka)-k) 

= 01 * ((a)- a-“) 

= $-k(d)l-k2, 

We get now a contradiction in the same way as in section 2. 

4. PROOF OF s # 4 

Assume that s = 4. Let 0, 1, 2, 3, 4 be consecutive vertices of a 4-arc in G. 
Denote the edges (0, 11, (1, 2}, (2, 3}, (3, 4) by a, b, c, d, respectively. The girth 
of G is 2 6. We now have the diagram 

A(2) 

’ ‘A,,,, All.2) 



REGULAR GRAPHS VI 315 

where A(0, 2, 4) is the trivial group. The orders are given by 

l42)l = (P + 1)P3, I413 2ll = P”9 
I AU, 3)/ = p2, I A@, 2, 3)l = PO 

It foHows from 13, Lemma 21 that A(0, 2, 3) is the center of A(B, 2) and 
A(0, 2, 4) is the center of A(2). 

LEMMA 5. The elements of A(0, 2, 3) aye characterized by the property 
that they J?fix every vertex at distance <I from the edge b. Moreover, if 6” is 
any non-trivial element of A(0, 2, 3) then b moves every vertex at distance 2 
from the edge b. 

Proof. Let OL E A(0, 2, 3) and let 5 be a vertex at distance 1 from b, say 5 
is adjacent to 1. By 4-regularity of A there exists /3 E A(1, 2) such that ,8(O) = 
5. Then since 01 belongs to the center of A(1, 2) we have c@ = /Ia and 
a(5) = c@(O) = /&z(O) = p(O) = 5. This proves the first assertion. The second 
follows from the kegularity of A. 

Now, it is easy to check that 

40, 2, 3) = (b, 
A(1, 3) = {6, c”), 

A(l, 2) = (5, b”, c”)? 

A(2) = (E, 6, C, 2). 

From now on let cx E A(2) be defined by or(O) = 4, a(4) = 0. Then 012 = I, 
01 # 1. We assume that (1; 6, ?, d have been chosen so that C&X = c?, & = C. 

The group A(2) acts on A(1, 3) by conjugation 

for 0 E A(2) and T E A(l, 3). 
The commutator ((2, c”) is not the identity because A(I, 2) is non-abehan, 

Hence (L?, c”) = @ for some k + 0 (mod p). 
Thus we have 
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Now, we get a contradiction in the same way as in section 2. 
This completes the proof of,our Theorem. 

5. SOME EXAMPLES 

Now we shall show that the cases s = 1, 2, 3 can occur by constructing 
few simple examples. The case s = 0 iswell-known to occur since we can use 
Cayley graphs as examples. 

EXAMPLE 1. Let P be a sharply doubly transitive subgroup of the sym- 
metric group S, . It is well-known [2, section 20.71 that YE must be a power of a 
prime, say, n = q7c, q prime, k 3 1. Let V = {I, 2 ,..., n] be the set on which P 
acts. Let P’ be another copy of P and V’ = (1’, 2’,..., ~1’1 another copy of V 
and we assume that P’ acts on ,V. Let G = K,,, be thecomplete bipartite 
graph whose vertex set is the disjoint union V u v’; two vertices being adja- 
cent only if one of them is in V and the other in Y’. Let k be the subgroup of 
A&(G) which is generated by P, P’ and the involution y = (1 i’)(22’) ... (nn’). 
It is clear that A is 3-regular 

The valence of G is y1 = q”. This will be of the form p + 1, p prime, if and 
only if q = 2 and p = 2” - 1 is a Mersenne prime. 

EXAMPLE 2. Let P be a sharply transitive subgroup of S, . Define G and A 
as in Example 1. Then A is l-regular. 

EXAMPLE 3. Let G = & . Then, Aut(G) = S, has a subgroup A = A, 
of index 2. This A is 2-regular 
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