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Let G be a connected regular graph of valence p + 1 where p is an odd prime.
Let 4 be a subgroup of Aut(G) which is s-regular (s > 0). We prove that s < 3
and the cases 5 =.0,1, 2, 3 do occur.

1. MAIN RESULT

In the whole paper G denotes a connected regular graph (finite or infinite)
of valence p + 1 where p is an odd prime. We assume that there is a subgroup
A of Aut (G) which is s-regular for some s > 0.

We have proved in [3] that s < 7 and 5 # 6. A short beautiful proof of a
moré general result (the valence being replaced by p*n + 1 where n <p,
k =1)was gwen later by R. M. Weiss [5]. We also proved {4} that if 5 > 2
then the pnme P must be a Mersenne prime, i.e., p -+ 1 = 2" for some posi-
tive 1nteger n.

In this paper we ﬁmsh off this problem by proving the following:

THEOREM. Under the above:hypotheses we have s < 3.

2. PROOF OF s # 7

" Assume-thats ==7. Let a, b, ¢, d, e, f, g be consecutive vertices of a 6-arc.§
in G. If v; ,..., v, arevertices of G we denote by 4(v, ,..., v;) the subgroup of 4
consisting of all « € 4 such that «(v;) = v;, 1 <7 <k and we say that this
subgroup is thé fixer in A of the set {vy,..., v;;. On the other hand, the
stabilizer of {v, ,..., v,} in A-is the subgroup of A consisting of all x € 4 such
that {«(vy)s..., AVp)} == {Ug 5oer V- It is clear that a fixer in 4 of a set of
vertices is a normal subgroup of the stabilizer in 4 of the same set of vertices.
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We have the following diagram of various fixers:

Ald)
Ale,d} Ald,e)

Alb,d) Alc,e) Ald,f)

N

Ala,d) Alb,e) Ale,f) Ald,g)

N,

Ala,e) Alb,f) Alc,g)
Ala,f) Alb,g)

Ala,d,q)

Note that the girth of G is >2s — 2 = 12 and consequently A(b, d) =
A, ¢, d), A(a, d) = A(a, b, ¢, d), etc. (See [1] Prop. 17.2, p. 113).

Since A is 7-regular the orders of all subgroups in this diagram are known:

| 4(d) = (p + D5,
| A(c, d)| = p% | A(c, &)l = P,
| A(b, )| = p*, | A, ) = p®,
| Ala, /)l =p? | A(a, d, )l = p

The subgroups in the same row of this diagram (say A(c, d) and A(d, ¢)) are
conjugate in 4 to each other.

It follows from [3, section 4] that the groups A(a, d), A(b, ), Alc, f),
A(d, g) are elementary abelian but the groups A(b, d), A(c, €), A(d, f) are
non-abelian. In fact when s = 7 the inequality

—D<k<is+2

from [3, p. 259] gives &k = 4. This means that the fixer in A of a 3-arc
(3 = s — k) is abelian (necessarily elementary abelian) but the fixer in 4 of a
2-arc is not abelian.

Since A(c, e) is generated by A(b, e) and A(c, f) the above facts imply
that A(b, 1) is the center of A(c, e). This follows also from Lemma 2 of [3].
Moreover, that Lemma gives that the center of A(c, d) is A(a, ) and the
center of A(d) is A(a, d, g).

For each vertex v of G let Z(v) be the center of A(v). We have just seen that
Z(v) coincides with the fixer in 4 of any 6-arc S such that S(3) = v. Hence
we have

LemMA 1. Z(v) consists of all « € A(v) which fix every vertex at distance
<3 from v. If o€ Z(v), o 5= 1 then o moves every vertex at distance 4 from v.
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Proof. The first statement had been proved above. The second follows
from 7-regularity of 4.

Given a vertex v of G we shall denote by 9 a fixed nontrivial element of
Z{v).

LEmMA 2. We have

A(a, d, g) = Z(d) = <d),
Aa, f) = <& &>,
A, f) = <& d, 2,
A, €) =<b, & d, &,

A(c,e)-( Ejmaf
A(c,d)=<,l7 & d, &P,
A(d) = <@, b, ¢, d, &, f, .

Proof. Since Z(d), has order p and d # 1 is in Z(d) we have Z(d) =<d ).
Clearly, & de A(a, f) by Lemma 1 and hence <& d> C A(a, f). Since

both <z, 4) and A(a, f) have order p? they are equal. All other equalities
can be proved similarly.

We denote by (x, ¥) = xyx~ty~! the commutator of two elements x, y
of a group.

LemMa 3. We have (b, f) = d for some r = 0 (mod p).

Proof. (b,f) # 1 because A(c, e) is non-abelian. An easy inspection
shows that (&, f) fixes ¢ and g and hence belongs to the fixer of S, i.e., to
Z(d).

LevMma 4. We have

@,7)e<b, & d, &y = Ab, ¢
but

@ f)¢<ze, d, & = AD, f).

Proof. By Lemma 1 the distance between f~(b) and a is 3. Therefore
afp) = fUb), fEAUb) =b and (4 f)(b) = ab) =b. Thus (4 1)
fixes & and similarly, it fixes e.

On the other hand the distance between (/) and f'is 4. By Lemma 1 we
have fa-%(f) s a%(f) and consequently

@ ) = afa™ () + 1.
Therefore (@, f) ¢ A(f) and (@, f) ¢ A, f).
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Now, A(c,.e) <1 A(d), see [4, section 5]. Since A(b, f) is the center of
A(e, e) we have A(b, f) <1 A(d). Thus we have an action of A(d) on V =
A(c, e){A(d, ) induced by conjugation. For v e A(c, e) let + be its canonical
image in V. Similarly, the canonical images of & and /in ¥ will be denoted by
b and f, respectively. The above action of A(d) on V is glven exphcltly as
follows

g%+ = (oro™ )"

where o € A(d) and 7 € A(c, €). Thus we use the star to denote this action.
Note that the elements o € A(c, €) act trivially on V, i.e., o % # = # for such o
and all = € A{c, e). _

The fixer of {a, d, g} is Z(d) = {d). The stabilizer of {a, d, g} has order 2p
because there exist automorphisms in 4 which map S to its opposite 6-arc.
Let « be any element of order 2 in this stabilizer. Then we have

ala) = g, ab) = f, afc) = e.

From now on we shall assume that 4, b, ¢, &, f, # have been chosen so that
affe = §, abo = f, aéa = é. This can be done because we can use these
equations to define §, £, &in terms of 4, 4, & which are still arbitrary.

Thus aox b = f and axf = b.

Let B be a Sylow 2-subgroup of A(d) containing «. We know by [4,
Theorem 4] that B is elementary abelian of order 2 =p -+ 1 and that
A(c, b)B <1 A(d).

By Lemma 4 we have

afa = bkf mod A(b, f)
where k == 0 (mod p). Thus
= (@) = b,
= (aba‘l)" = b.

Since
~1 ar—1

[\

we have
3 f = (Byf — 5,
Let B = dud~1. Then
o *f = adodt *f = odo (Z;*kf)
% od ‘* E[;{‘_jc) ) (1)
= a % (B(B*F)F) = a % (bl—k2f—7c)
= (e
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and
[ga*f”:ﬁ*[}:éocd—l*ézéa.*é

= dxf= b

But B € A(c, )B because « € B and A(c, €)B <1 A(d). We can write £ = vo
with y € A(c, ¢) and o € B. Since B is abelian, o and o commute and hence

af xf = ay x(c*f) = a (o % f)
=ao*f=ocaxf=yx(caxf) (3)
= yoq *f = Bu *f
because v e A(c, ¢) acts trivially on v.
From (1), (2) and (3) we obtain that 62 = 1, i.e., that p divides 2k. Thisisa

contradiction because p is an odd prime and we know that k& = 0 (mod p).
Thus 5 = 7 is impossible.

3. PROOF OF § # 5

Assume that s = 5. Let a, b, ¢, d, e be consecutive vertices of a 4-arc § in
. Now we have the diagram

Alc)
Alb,c) “Ale,d}
\
Ala,c} Alb,d) Alg e
/
Ala,d) A{b,e)
Alac,e)

where | A(e)| = (p -+ D p*, | A, o) = p*, | A(b, DI = p°, | Ala, )| = p?,
| A(a, ¢, &)] = p.

As in the previous case, one knows that A(b, d) is elementary abelian,
A(b, ¢) is non-abelian, A(a, d) is the center of A(b, ¢) and A{a, ¢, ¢) is the
center of A(c). Again we shall write Z(c) = A(a, ¢, ¢). For each vertex v of G
let ¥ be a non-trivial element of Z(v), thus Z(v) = {¥). The elements of
Z(v) fix every vertex of G at distance <2 from v and this property characterizes
Z(v). Moreover, ¥ moves every vertex at distance 3 from v.

Again we have an element « € A(c) such that o® = 1, a{@) = eand ob) = 4.
We shall assume that &, 5, 4, ¢ have been chosen so that adx = ¢and aba = 4.
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Note that we have
Ala, ¢, e) = <K&,
Aa, d) = b, &,
A, d) = <b, & ),
A, ¢) =<4, b, ¢ d>,
A(c) = 4d, b, ¢, d, &>.
Since (g, d) € A(a, d) = {b, &> and since (4, d) moves e it follows that
ada-'d-' = b*  mod <{&>.
Now let V = A(b, d)/A(a, ¢, e) and let A(c) act on ¥V by conjugation.

Using the notation analogous to that which we used in the previous section,
we have

The elements of A(b, d) act trivially in V.
Let 8 = dad-'. Then

aB x d = adod' « d = ado * (b7%d)
= ad * (bd*) = o x (b(btd))
= ax (B} d")

— 5—k(j)l—»7c2,
Basd =Bxb=daa"xb=aduxb
—axd = b

We get now a contradiction in the same way as in section 2.

4, PROOF OF § # 4

Assume that s = 4. Let 0, 1, 2, 3, 4 be consecutive vertices of a 4-arc in G.
Denote the edges {0, 1}, {1, 2}, {2, 3}, {3, 4} by 4, b, ¢, d, respectively. The girth
of G is == 6. We now have the diagram

Al2)
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where A(0, 2, 4) is the trivial group. The orders are given by

LAQ) = (p + D5 140, 2)] = p°,
LA(L, 3) = p?, 1 400, 2, 3)| = p.

1t foliows from [3, Lemma 2] that A(0, 2, 3) is the center of A(1, 2) and
A(0, 2, 4) is the center of A(2).

LeMMA 5. The elements of A0, 2, 3) are characterized by the property
that they fix every vertex at distance <1 from the edge b. Moreover, if b is
any non-trivial element of A(0, 2, 3) then b moves every vertex at distance 2
Jfrom the edge b.

Proof. Let ae A0, 2, 3) and let 5 be a vertex at distance 1 from b, say 5
is adjacent to 1. By 4-regularity of 4 there exists 8 € 4(1, 2} such that 8(0) =
5. Then since « belongs to the center of A(l, 2) we have off == S« and
af5) = af(0) = Ba(0) = B(0) = 5. This proves the first assertion. The second
follows from the 4-regularity of 4.

Now, it 18 easy to check that

4(0,2,3) = by,
AL, 3) = <b, &),

AQ,2) =<4, b, &,
AQ) = <4, b, & d>.

From now on let o & A(2) be defined by «(0) = 4, «(4) = 0. Then o2 = |,
o # 1. We assume that d@, b, ¢, d have been chosen so that ade = d, abx = &
The group A4(2) acts on A(1, 3) by conjugation

ox T = gro

for o € A(2) and 7 € A(1, 3).

The commutator (g, ) is not the identity because A(l, 2) is non-abelian.
Hence (4, ¢) = b* for some k == 0 (mod p).

Thus we have

R
* ¥
D
Il
S
= 1

N

Il

':\2

* K

S O
li
S
B
M

I
S0

Let B = dad@-*. Then
af x & = adadlx & = ado * (b7%E)
= ad x (b&7%) = o x (B(b*&)")
— ok (B 2%) = b(ep,
Bouk é=PBxb=duadxbh=3douxb

=% § = b*,
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Now, we get a contradiction in-the'same way as in section 2.
This completes the proof of our Theorem.

5. SOME. EXAMPLES

Now we shall show that the cases s = 1, 2, 3 can occur by constructing
few simple examples. The case s = 0 is wéll-known to occur:since we can use
Cayley graphs as examples.

ExampLE 1. Let P be a sharply doubly transitive subgroup of the sym-
metric group S, . It is well-known [2, section 20.7] that » must be a power of a
prime, say, n = g%, g prime, k > 1. Let Vo= {1, 2,..., n} be the set on which P
acts. Let P’ be another copy of P and V' = {1, 2/,..., n’} another copy of V'
and we assume that P” acts on V. Let G = K, . be the complete bipartite
graph whose vertex set is the disjoint union ¥ U V; two vertices being adja-
cent only if one of them is in ¥ and the other in V. Let A be the subgroup of
Aut(G) which is generated by P, P’ and the involution y = (11 Q2 -+ (aw).
It is clear that 4 is 3-regular.

The valence of G is n = g*. This will be of the form p + 1, p prime, if and
onlyifg=2andp=2¢¥—1isa Mersenne prime.

ExampLE 2. Let P be a'sharply transitive subgroup of S, . Define G and 4
as in Example 1. Then 4 is 1-regular.

ExampLE 3. Let G = K;. Then Aut(G) =S, has a subgroup 4 = 4;
of index 2. This A4 is 2-regular
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