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Abstract A simple, efficient and catalyst-free method has been developed for the synthesis of 2,4,5-

triaryl and 1,2,4,5-tetraaryl imidazole derivatives in glycerol as green solvent at 90 �C. It is notewor-
thy that in this protocol the yields of products were comparable to or better than, those in conven-

tional media. The use of green reaction media makes this methodology simple, safe and cost-

effective.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The imidazole scaffold is an important heterocyclic nucleus due
to its wide spectrumof applications in the field of biology, chem-
istry as well as in pharmaceutical products. It is found in a large

number of pharmacologically active compounds such as Ome-
prazole (Lindberg et al., 1986), Pimobendan (Mannhold,
1985), Cimetidine and lansoprazole (Beggs et al., 1981; Delgado
et al., 1998). Moreover, many of the substituted diaryl imida-

zoles are known as inhibitors of P38 MAP kinase, fungicides,
herbicides and plant growth regulators (Schmierer et al.,
1988). Recent advances in green chemistry and organometallic
catalysis have extended the applicationof imidazoles as ionic liq-
uids and N-heterocyclic carbenes (Balalaei and Arabanian,

2000; Keim, 2000; Hermann et al., 1997; Hang et al., 1999).
Several methods are reported in the literature for the synthe-

sis of 2,4,5-triaryl-1H-imidazoles and 1,2,4,5-tetraaryl-1H-imi-

dazoles by condensation of benzil/benzoin with a wide variety
of aldehydes, aromatic primary amines and ammonium acetate
using different catalysts such as N-methyl-2-pyrrolidonium

hydrogen sulfate (Shaterian and Ranjbar, 2011), nano-TiCl4–
SiO2 (Mirjalili et al., 2012), zeolite HY/silica gel (Sivakumar
et al., 2010), cellulose supported sulfuric acid (Shelke et al.,

2010), NiCl2Æ6H2O (Heravi et al., 2007), ultrasonic irradiation
(Zang et al., 2010), cyclic phosphoric acid (Wang et al., 2012),
potassium dihydrogen phosphate (Joshi et al., 2010), Amberlyst
A-15 (Sangshetti et al., 2008), L-proline (Samai et al., 2009) and

PEG-400 (Wang et al., 2009).Given these proven applications in
the field of medicinal, biological and synthetic organic chemis-
try, there has been tremendous interest in developing an efficient

method for the synthesis of imidazoles.
Recently, the trend toward ‘‘green chemistry’’ has gone in

to reduce the use of toxic and corrosive reagents and stop

the formation of inorganic waste (Sheldon, 1997; Muzart,
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1992). However, it has also been observed that the catalysts
employed are not always ecofriendly and because of this, seri-
ous environmental pollution often results. Therefore, the de-

sign of catalyst-free reactions is a crucial goal for chemists
(Anastas and Williamson, 1996). In this regard, the use of glyc-
erol as a promising medium for organic reaction was recently

demonstrated (Wolfson et al., 2009; Perin et al., 2010; Radatz
et al., 2011; Nandre et al., 2010; Bachhav et al., 2011). Glycerol
due to its unique combination of physical and chemical prop-

erties such as polarity, low toxicity and flammability, high boil-
ing point, ability to form strong hydrogen bonds and to
dissolve both organic and inorganic compounds, and easy
availability has recently emerged as a green solvent in organic

synthesis. According to our interest in the green protocols (Ne-
mati and Kiani, 2011), we describe in this study the use of glyc-
erol as green solvent in the catalyst-free synthesis of 2,4,5-

triaryl-1H-imidazoles and 1,2,4,5-tetraaryl-1H-imidazoles by
one-pot condensation of benzil with a wide variety of alde-
hydes, aromatic primary amines and ammonium acetate.

2. Results and discussion

As a part of our program to find improved synthetic routes for

the preparation of organic compounds (Nemati and Kiani,
2011; Nemati et al., 2011; Nemati and Elhampour, 2012; Ne-
mati et al., 2012), herein we would like to report our investiga-

tion into a environmental friendly and highly efficient
procedure for the synthesis of 2,4,5-trisubstituted and
1,2,4,5-tetrasubstituted imidazoles. This transformation was
carried out without a catalyst only in glycerol as a green reac-

tion medium at 90 �C (Scheme 1). To the best of our knowl-
edge the synthesis of imidazoles in glycerol to accomplish
such transformation has not been reported in the literature.

In order to investigate the feasibility of the strategy, we se-
lected the one-pot reaction of benzil (1 mmol), benzaldehyde
(1 mmol) and ammonium acetate (2 mmol) as a simple model

substrate. Different solvents like methanol, ethanol, acetoni-
trile, DMF and PEG-400 were screened in the catalyst-free
model reaction. As could be seen in Table 1, glycerol at room

temperature helped obtain the desired product in 52% yield.
To increase the yield of the reaction, the same reaction was
conducted at different reaction temperatures. It was observed
that an optimum yield was obtained in glycerol at 90 �C (Ta-

ble 1, entry 8). No significant improvement in the yield was ob-
tained beyond that point, so 90 �C was chosen as the reaction
temperature for all further studies.

Having these optimal conditions in hand, a number of
2,4,5-trisubstituted imidazoles were synthesized and the results
are represented in Table 2. Commercially available aromatic
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Scheme 1 Synthesis of 2,4,5-triaryl and 1,2,4,5-tetra aryl-1H-

imidazoles.
aldehydes bearing electron-withdrawing groups (Table 3, en-
tries 2, 3, 6, 7, 8, 10, 12, 14), electron-donating groups (Table 3,
entries 4, 5, 9, 11, 13), heteroaromatic aldehyde (Table 3, entry

15) and high steric hindrance aldehyde (Table 3, entry 16) were
all found to be suitable for the reaction and did not show any
remarkable difference in the yield of product and duration of

the reactions (Table 3). However, aliphatic aldehydes were un-
able to provide the desired product in an acceptable yield.

Next, in order to explore the applicability of this methodol-

ogy, we have applied the same reaction conditions for the four-
component one-pot synthesis of 1,2,4,5-tetrasubstituted imida-
zoles by condensing benzil (1 mmol), arylaldehydes (1 mmol),
aromatic amines (1 mmol) and ammonium acetate (1 mmol)

in 6 mL of glycerol at 90 �C. The results are illustrated in Ta-
ble 4. The yields were good to excellent. Reaction profile is
very clean without the formation of any side products such

as oxidized products of anilines and aldehydes, which are ob-
served under the influence of acid catalysts.

The role of glycerol in this multi component reaction was

established by the fact that in the absence of glycerol, the reac-
tion proceeded sluggishly (Table 1, entry 10). Obviously, glyc-
erol is an essential component of the reaction. In addition, as

shown in Table 1 (entries 1 and 2), the reaction did proceed in
reflux EtOH or MeOH as protic solvents, but the yield was low
even after 5 h. The poor yields in hydroxylic and polar solvents
are probably due to the lower solubility of the starting materi-

als in these solvents, coupled with the fact that ammonium ace-
tate is solvated in hydroxylic solvents, thereby reducing its
effective reactivity with ammonia. We suggest that the hydro-

gen of the hydroxyl group of glycerol through the formation of
powerful hydrogen bonding activated the carbonyl com-
pounds, while the oxygen of the hydroxyl group of glycerol

formed a hydrogen bond with the hydrogen of amine, which
makes the N–H bond weaker enhancing the nucleophilicity
of nitrogen for addition to the carbonyl group of aldehyde

(Scheme 2a). Increasing the reaction temperature has de-
creased the yield of the products, because the hydrogen bonds
have been weak (Table 1, entry 9).

To establish the plausible mechanism, the reaction of benz-

aldehyde with equimolar 4-methylaniline was performed under
the reaction condition, and the imine was isolated as the inter-
mediate of this reaction [1H NMR (300 MHz, CDCl3): d (ppm)

8.44 (s, 1H), 7.90–7.84 (m, 2H), 7.39 (m, 3H), 7.25–7.12 (m,
4H), 2.34 (s, 3H)] (Tang et al., 2012). Then, it was reacted with
ammonium acetate and benzil to yield the expected tetra

substituted imidazole (Scheme 2b).
Table 4 compares the efficiency of our method for the syn-

thesis of 2,4,5-triphenyl-1H-imidazole with other published
works. Each of these methods has its own advantages, but

some of them often suffer from disadvantages such as use of
organic solvents (entries 1 and 3), long reaction times (entries
4 and 7) and employment of catalyst or reagent (entry 6), so

the present method could be economical than the other
methods.

3. Experimental

Chemicals were purchased from the Fluka, Merck and Aldrich
chemical companies. Melting points were determined on Elec-

tro thermal 9100 without further corrections. TLC on com-
mercial aluminum-backed plates of silica gel 60 F254 was



Table 1 Reaction conditions evaluation for imidazole synthesis.

Entry Solvent Condition (�C) Time Yield (%)

1 MeOH 63 5 h 25

2 EtOH 75 5 h 47

3 Acetonitrile 78 5 h 40

4 DMF 110 5 h 43

5 PEG-400 120 1.5 h 88 (Wang et al., 2009)

6 Glycerol RT 1.5 h 52

7 Glycerol 70 1.5 h 69

8 Glycerol 90 43 min 94

9 Glycerol 110 43 min 83

10 Solvent-free 90 43 min Trace

Table 2 Catalyst-free synthesis of 2,4,5-trisubstituted imidazoles in glycerol at 90 �C.

Entry Ar–CHO Time (min) Yield (%)a Mp (Lit.) �C

1 Ph 43 94 267–269 (267–269) (Samai et al., 2009)

2 4-Br–C6H4 62 96 267–268 (261–263) (Wang et al., 2009)

3 3-Br–C6H4 63 91 >300

4 4-MeO–C6H4 81 93 220–222 (220–223) (Samai et al., 2009)

5 2-MeO–C6H4 50 93 213–214 (210–211) (Samai et al., 2009)

6 2-NO2–C6H4 60 96 233–235 (230–231) (Samai et al., 2009)

7 3-NO2–C6H4 51 96 319–321 (>300) (Samai et al., 2009)

8 4-NO2–C6H4 88 92 236–238 (235–238) (Heravi et al., 2007)

9 4-Me–C6H4 42 94 236–238 (233–235) (Samai et al., 2009)

10 2-Cl–C6H4 108 87 192–193 (190–191) (Samai et al., 2009)

11 2-OH–C6H4 30 81 204–205 (202–205) (Samai et al., 2009)

12 4-F–C6H4 39 89 190–191 (189–191) (Shaterian and Ranjbar, 2011)

13 3-OEt-4-OH–C6H3 79 93 268–269

14 4-CO2H–C6H4 53 92 >300

15 2-Thiophen 110 89 260–261 (260–261) (Shaterian and Ranjbar, 2011)

16 2-Naphthyl 80 90 241–243 (241–242) (Shaterian and Ranjbar, 2011)

a The products were characterized from their spectral data especially IR, 1H NMR or mp by comparison with reported samples and the yields

refer to isolated products.

Table 3 Catalyst-free synthesis of 1,2,4,5-tetrasubstituted imidazoles in glycerol at 90 �C.

Entry Ar–CHO Ar–NH2 Time(h) Yield (%) Mp (Lit.) �C

1 Ph Ph 3 96 218–219 (220–221) (Shaterian and Ranjbar, 2011)

2 4-MeO–C6H4 Ph 3 91 185–188 (183–185) (Wang et al., 2012)

3 3-OEt-4-OH–C6H3 Ph 3.15 95 206–207

4 Ph 4-Cl–C6H4 4 91 190–193

5 Ph 4-Me–C6H4 2.4 92 173–175

6 3-OEt-4-OH–C6H3 4-Me–C6H4 2.15 93 199–201

Table 4 Comparison of results using glycerol with results of other works for synthesis of 2,4,5-triphenyl-1H-imidazole.

Entry Reagents Conditions Time (min) Yield (%) Ref.

1 Ionic liquid/EtOH Ultrasonic/rt 45 87 (Zang et al., 2010)

2 – PEG-400/110 �C 90 88 (Wang et al., 2009)

3 KH2PO4 EtOH/Reflux 40 93 (Joshi et al., 2010)

4 L-Proline MeOH/60 �C 540 78 (Samai et al., 2009)

5 Cu(NO3)2–Zeolite Solvent free/80 �C 30 96 (Sivakumar et al., 2010)

6 Amberlyst A-15 MW 15 87 (Sangshetti et al., 2008)

7 SSAa Water/Reflux 240 70 (Shaabani and Rahmati, 2006)

8 – Glycerol/90 �C 43 94 This work

a Silica sulfuric acid.
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used to monitor the progress of reactions. Infrared spectra
were recorded on a Shimadzu 8400s spectrometer with KBr
plates. Only representative absorptions are given. NMR spec-

tra were taken in CDCl3 on a Bruker Avance 3–400 MHz
instrument at 20–25 �C.

3.1. Typical procedure for the synthesis of 2,4,5-triphenyl-1H-
imidazole

A mixture of benzil (0.21, 1 mmol), benzaldehyde (0.154 g,
1.1 mmol) and NH4OAc (0.154, 2 mmol) was poured into

6 ml of glycerol, and stirred at 90 �C for the appropriate time
under ambient conditions (Table 2). After completion of the
reaction (monitored by TLC) the reaction mixture was poured

into water. The separated solid was filtered and the product
was crystallized with ethanol or 2-propanol to afford the pure
product. The yield was 0.27 g (94%), m.p. 267–269 �C (Ref.

Muzart, 1992 m.p. 267–269 �C).

3.2. Glycerol could be recycled according to this procedure

After the completion of the reaction, the reaction mixture was

extracted with n-hexane and the retained glycerol phase was
reused. The hexane layer was washed with water (2 mL) and
dried over MgSO4. The organic solvent was removed under re-
duced pressure to give the crude product. Crystallization from
EtOH or 2-propanol provided the pure product.

Other products were characterized by comparison of their

spectral (IR, 1H NMR), TLC and melting point data with
authentic samples.

The spectral (IR, 1H NMR, 13C NMR) and analytical data
of new compounds:

2-(3-Bromophenyl)-4,5-diphenyl-1H-imidazole (entry 3,
Table 2): m.p. >300 �C, 1H NMR (400 MHz, DMSO-d6) d
7.23–7.59 (m, 12H), 8.1 (d, J = 7.6 Hz, 1H), 8.30 (s, 1H),

12.97 (s, br); 13CNMR (100 MHz, DMSO-d6) d: 123.33,
126.41, 127.00, 127.45, 125.52, 129.30, 129.97, 133.11, 131.42,
131.64, 132.97, 146.36; IR (KBr) m: 3031, 2962, 1581,

1134 cm�1; Anal. calcd for C21H15N2Br: C 67.21, H 4.00, N
7.46; found: C 67.17, H 4.15, N 7.39.

2-Ethoxy-4-(4,5-diphenyl-1H-imidazol-2-yl)phenol (entry

13, Table 2): m.p. 268–269 �C, 1H NMR (400 MHz, DMSO-
d6) d: 1.39 (t, J= 7.2 Hz, 3H), 4.11 (q, J= 6.8 Hz, 2H),
6.87 (d, J = 8.4 Hz, 1H), 7.22–7.55 (m, 11H), 7.63 (d,
J= 1.6 Hz, 1H), 9.23 (s, br), 12.43 (s, br); 13CNMR

(100 MHz, DMSO-d6) d: 14.81, 64.01, 112.51, 114.03, 122.55,
126.52, 127.04, 127.94, 128.15, 128.24, 128.30, 129.99, 130.84,
131.26, 134.56, 138.19, 145.27, 146.05, 147.21; IR (KBr) m:
3224 (br.), 1589, 1473, 1180 cm�1; Anal. calcd for
C23H20N2O2: C 77.52, H 5.61, N 7.86; found: C 77.55, H
5.68, N 7.81.



Glycerol as a green solvent for efficient, one-pot and catalyst free synthesis of 2,4,5-triaryl S507
4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid (entry 14,
Table 2): m.p. >300 �C, 1H NMR (400 MHz, DMSO-d6) d
7.35–7.54 (m, 5H), 8.05 (d, J= 8.4 Hz, 1H), 8.22 (d,

J = 8.1 Hz, 1H), 12.97 (s, br); 13CNMR (100 MHz, DMSO-
d6) d: 125.50, 127.62, 128.95, 130.00, 130.09, 130.32, 130.40,
134.52, 144.85, 167.45; IR (KBr) m: 3400–2545 (br.), 1689,

1434, 1180 cm�1; Anal. calcd for C22H16N2O2: C 77.64, H
4.70, N 8.23; found: C 77.59, H 4.75, N 8.19.

2-Ethoxy-4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol (entry

3, Table 3) m.p. 206–207 �C, 1H NMR (400 MHz, DMSO-d6)
d 7.62 (dd, J= 7.8 Hz, J = 1.2 Hz, 2H), 7.31–7.19 (m, 7H),
7.16–7.066 (m, 4H), 7.02 (d, J = 1.6 Hz, 1H), 6.88 (dd,
J = 82 Hz, J= 1.6 Hz), 6.78 (d, J = 8.4 Hz, 1H), 5.85 (s,

br, 0.85 H), 3.92 (q, J= 6.8 Hz, 2H), 1.36 (t, J= 6.8 Hz,
3H); 13CNMR (100 MHz, DMSO-d6) d: 14.57, 64.36, 112.36,
114.03, 122.36, 122.57, 126.58, 127.44, 127.84, 128.05, 128.14,

128.22, 129.31, 130.75, 130.84, 131.61, 133.56, 134.31, 137.83,
138.10, 145.74, 146.01, 147.0; IR (KBr) m: 3517, 1596, 1496,
1272 cm�1; Anal. calcd for C29H24N2O2: C 80.55, H 5.55, N

6.48; found: C 80.61, H 5.49, N 6.42.
1-(4-chlorophenyl)-2,4,5-triphenyl-1H-imidazole (entry 4,

Table 3) m.p. 190–193 �C, 1H NMR (400 MHz, DMSO-d6) d
7.61 (d, J= 7.2 Hz, 2H), 7.55–7.24 (m, 13H), 7.15 (dd,
J = 7.6 Hz, J= 1.2 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H);
13CNMR (100 MHz, DMSO-d6) d: 123.31, 123.74, 127.49,
127.53, 128.11, 128.91, 129.24, 129.31, 129.82, 130.64, 131.97,

133.15, 133.76, 135.53, 144.92; IR (KBr) m: 3035, 1596, 1396,
1087 cm�1; Anal. calcd for C27H19N2Cl: C 79.70, H 4.67, N
6.88; found: C 79.63, H 4.61, N 6.92.

2,4,5-Triphenyl-1-p-tolyl-1H-imidazole (entry 5, Table 3)
m.p. 173–175 �C, 1H NMR (400 MHz, DMSO-d6) d 8.05 (d,
J = 7.8 Hz, 2H), 7.54 (d, J = 8 Hz, 2H), 7.49–7.36 (m, 6H),

7.30–7.08 (m, 8H), 2.31 (s, 3H); 13CNMR (100 MHz,
DMSO-d6) d: 24.1, 121.31, 123.45, 127.32, 127.54, 127.81,
128.45, 129.32, 129.46, 129.53, 130.02, 130.71, 131.89, 133.09,

133.21, 134.45, 137.94, IR (KBr) m: 3031, 1512, 1396 cm�1;
Anal. calcd for C28H22N2: C 87.04, H 5.69, N 7.25; found: C
86.99, H 5.63, N 7.31.

2-Ethoxy-4-(4,5-diphenyl-1-p-tolyl-1H-imidazol-2-yl)phe-

nol (entry 6, Table 3): m.p. 199–201 �C, 1H NMR (400 MHz,
CDCl3) d: 1.36 (t, J = 6.8 Hz, 3H), 2.34 (s, 3H), 3.94 (q,
J = 6.8 Hz, 2H), 5.91 (s, br, 1H), 6.77 (d, J= 8.4 Hz, 1H),

6.87 (dd, J= 8.2 Hz, J= 1.6 Hz, 1H), 6.95 (d, J = 9.6 Hz,
2H), 7.04–7.19 (m, 5H), 7.22–7.29 (m, 5H), 7.61 (d,
J = 7.6 Hz, 2H); 13CNMR (100 MHz, CDCl3) d: 14.82,

21.16, 64.31, 112.57, 114.03, 122.36, 122.70, 126.52, 127.44,
127.84, 128.15, 128.24, 128.32, 129.71, 130.55, 130.84, 131.16,
134.56, 134.74, 137.83, 138.10, 145.31, 146.00, 147.05; IR
(KBr) m: 3525, 3047, 2977, 1596, 1188 cm�1; Anal. calcd for

C30H26N2O2: C 80.71, H 5.82, N 6.27; found: C 80.69, H
5.85, N 6.31.

4. Conclusion

In conclusion, we have developed a green and efficient multi
component reaction of benzil, arylaldehydes and ammonium

acetate or primary aromatic amines for the synthesis of trisub-
stituted and tetrasubstituted imidazole derivatives under cata-
lyst-free conditions in glycerol at 90 �C. The present reaction

showed the following salient characteristics: (1) avoiding the
use of any catalyst, (2) suitable reaction rates which enable
the reaction to be completed within 40–110 min for trisubsti-
tuted imidazoles and 2–4 h for tetrasubstituted imidazoles,
(3) convenient workup requiring only simple filtration since

the products precipitate upon dilution of the reaction mixture
with water. Further investigation into the application of glyc-
erol for other reactions is underway in our laboratory.
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