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1. Introduction

Let A € R™*" be a large, possibly sparse or structured, symmetric matrix, and let v € R". We are
interested in computing approximations of expressions of the form

w:=f(A)v,

(11)

where f is a nonlinear function defined on the spectrum {)\.]'}}1:1 of A. The matrix f (A) can be determined

via the spectral factorization,

A=UAU", Ue R™",
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where I, denotes the n x n identity matrix. Then

FA) = UF(A)UT, f(A) = diaglf (1), f (), - - .f hn)]-

Functions of interest in applications include

F@©) =exp(t), f(t) =t f(©):=In(0).
A recent thorough discussion on the evaluation of f(A), as well as of (1.1), is provided by Higham [13].
Applications and numerical methods also are described in, e.g., [1,2,5,7-10,14,23]. An early discussion
on the approximation of large-scale expressions of the form (1.1) is presented by van der Vorst [26];
see also [27, Chapter 11].

For small matrices A, one can evaluate expressions of the form (1.1) by first computing the spectral
factorization (1.2), then evaluating f (A) by using this factorization, and finally multiplying f (A) by the
vector v. Whenf is rational and A is symmetric positive definite, it may be attractive to use the Cholesky
factorization of A instead of the spectral factorization.

The computation of the spectral factorization of A is not attractive when this matrix is large and
sparse. The present paper is concerned with this situation. Then one typically first reduces A to a small
symmetric matrix T, and evaluates f(Ty,), e.g., by determining the spectral or Cholesky factoriza-
tions of Tp,. For instance, m steps of the Lanczos process applied to A with initial vector v yields the
decomposition

AV = Vi T + g el (13)
where Vi, = [v,v,,...,v, ] € R™™ VIV, = Imvy =v/|Iv|l, T == VI AV, € R™™ is symmetric
and tridiagonal, g,, € R", and V,Egm = 0.Here and below ¢; = [0,...,0,1,0,... ,0]7 denotes the jth
axis vector and || - || the Euclidean vector norm. We tacitly assume that m is chosen small enough so

that a decomposition of the form (1.3) exists. The columns of V};, form an orthonormal basis for the
Krylov subspace

K™ (A, v) = span{v,Av, ..., A" y}. (1.4)
The expression (1.1) now can be approximated by
W i = Vinf (Tm)eq || ]l; (15)

see, e.g., [4,10,14,21] for discussions on this approach. Indeed, if g,, = 0, then w,, = w. Moreover, let

Pm—1 denote the set of all polynomials of degree at most m — 1.Thenf € Py, implies thatw,, = w;
see, e.g., [10] or [22, Proposition 6.3].
The decomposition (1.3) and the fact that range(V;;) = K™ (A, v) show that:

(i) The columns Vi of Vi, satisfy a three-term recurrence relation. This follows from the fact that
Ty, is tridiagonal. The vectors Vi therefore are quite inexpensive to compute; only one matrix
vector-product evaluation with A and a few vector operations are required to compute v; ; from
v and Vi_q-

(ii) The columns vj can be expressed as

vi=pi-1(Ay, j=12,....m, (1.6)

for certain polynomials pj_; € [Pj_1. This property shows that the right-hand side of (1.5) is of

the form p(A)v, where p € P, 1.
(iii) The polynomials pg, p1,. . . , Pm—1 are orthogonal with respect to the inner product

(q.7) := (@AW (rA)w) = v Ug(Dr( DUy =Y qa)r(y)e?, (1.7)
j=1
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with UTy = [w1, @y, . . ., ws]T, which is defined for g, r € Py, where d is the number of distinct
eigenvalues of A. The property

(xq,1) = (q,xr) (1.8)

secures that the orthogonal polynomials p; satisfy a three-term recurrence relation. Hence, the

three-term recurrence relation for the vectors v is a consequence of the fact that polynomials
orthogonal with respect to an inner product defined by a nonnegative measure on the real axis
satisfy such a recursion.

It follows from (i) that if f cannot be approximated accurately by a polynomial of degree m — 1 on
the spectrum of A, then, generally, the expression (1.5) will be a poor approximation of (1.1). For this
reason Druskin and Knizhnerman [11] proposed the Extended Krylov Subspace (EKS) method, which
allows for the approximation of f by a rational function with a fixed pole, say at the origin.

Let A be nonsingular and consider the extended Krylov subspace

K™ (A, v) = spanfA~ 1y, ... ATy, v, Av, .. AT ), (1.9)

Thus, K™ (A, v) = K™(A, v). Druskin and Knizhnerman [11] showed that projecting the problem (1.1)
onto the subspace (1.9), instead of onto (1.4), can be attractive for many functions f. An algorithm for
computing such approximations also is presented in [11]. This algorithm first determines an orthonor-

mal basis {qj}f:1 for IK“1(A, v). Since K41 (A, v) = K¢(A™ 1, »), this basis can be generated by the
Lanczos process applied to A~! with initial vector . In particular, a three-term recursion formula can

be used; see (i) above. Subsequently this basis is augmented to yield an orthonormal basis {qj }f:lm_l of
Kem (A, v). The augmentation also allows the use of a three-term recursion relation. A shortcoming of
this algorithm for the EKS method is that the parameter £ has to be prespecified; the scheme does not
allow for efficient computation of an orthonormal basis for [er1m (A, v) froman available orthonormal
basis for K¢ (A, v).

Recently, Simoncini [24] described an approach to generating orthonormal bases for the sequence
of nested spaces

KM@y c K*2?@A v c---c K™@Av) C--- C R (1.10)

The derivation uses numerical linear algebra techniques and reveals the existence of short recursion
formulas for the orthonormal basis {g; }]-2;"1_1 of K™™(A, v) when A is symmetric. These recursions are
applied to determine bases for the nested spaces (1.10). Simoncini [24] also discusses the situation
when A is a general square nonsingular matrix, but then there are no short recursion formulas, and
describes an application to the solution of Lyapunov equations. Knizhnerman and Simoncini [17] apply
the method in [24] to the approximation of expressions (1.1) and improve the error analysis in [11].

The present paper explores the connection between the EKS method and Laurent polynomials. The
short recursion relations for the orthonormal basis {qj}jzfl_1 of K™™(A, v) is a consequence of the
short recursion relations for orthogonal Laurent polynomials. The latter recursions were first derived
by Njdstad and Thron [18], and are reviewed by Jones and Njastad [15]. We are particularly interested in
the structure of the projected problem. Short recursion formulas for orthonormal bases for the nested
Krylov subspaces

KM@, v) c K*Av) C--- c K™™Av) C R (111)

also are presented. These spaces are of interest when the evaluation of A~!w for vectors w € R" is

significantly more cumbersome than the computation of Aw.

This paper is organized as follows. Section 2 discusses the situation when A is symmetric positive
definite and determines the structure of the analog of the symmetric tridiagonal matrix Ty, in the
Lanczos decomposition (1.3) from the recursion formulas for Laurent polynomials. We also investigate
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the structure of the inverse of this matrix. Section 3 is concerned with symmetric indefinite matrices
A. While we in Section 2 obtain pairs of three-term recursion formulas for the Laurent polynomials,
the indefiniteness of A makes it necessary to use a five-term recursion formula in some instances.
Recursion formulas for an orthonormal basis for extended Krylov subspaces of the form (1.11) are
discussed in Section 4, and a few computed examples are presented in Section 5. Concluding remarks
can be found in Section 6.

Error bounds for the computed rational approximants are derived in [4,12,17]. Many results on
orthogonal rational functions can be found in [6]. The possibly first application of rational Krylov
subspaces reported in the literature is to eigenvalue problems; see Ruhe [19,20]. The extended Krylov
subspace method of the present paper also can be applied in this context.

2. The positive definite case, m = ¢

We assume in this section that A is symmetric and positive definite. Let the Laurent polynomials
®0, 91,91, $2,$—2, .. . of the form

i—1
X+ ]Z cj‘kxk, j=01,...,
g =1 (21)
¥4+ Y gk, j=-1,-2,...
k=j+1
be orthogonal with respect to the inner product (1.7). We refer to these Laurent polynomials as monic,
because their leading coefficient is unity. The coefficients ¢j _j+1 of ¢; with j > 1, and ¢j _; of ¢; with
j <1, are said to be trailing. Many properties of orthogonal Laurent polynomials are established in
[15,16,18]. In particular, Njastad and Thron [18] show that Laurent polynomials that are orthogonal
with respect to a nonnegative measure on the real axis satisfy recursion relations with few terms. We
will use these recursions in the present paper.
Introduce, analogously to (1.6), the vectors

9y
yji=
lli (Al

Due to the orthogonality of the ¢; with respect to the inner product (1.7), the vectors {vj jm:_m 41 form
an orthonormal basis for the extended Krylov subspace IK™™1(A, v). Analogously to the matrix Vi,
in the Lanczos decomposition (1.3), we define the matrices

j=01-12-2,...

Vom—1 = [vg, V1,V 1, VgV Vgl € Rmx@m=1)
nx(Zm)m " (2‘2)
Vom = [Vam—1,v,,] € R .
We are interested in the structure of the matrices
Hom—1 := Vg _1AVom—1 (23)
and
Gom := V3 A" W, (2.4)

which are analogs of the symmetric tridiagonal matrix Ty, in (1.3). The structure of Hyp,—1 and Gy, is
a consequence of the recursion relations for the orthogonal Laurent polynomials ¢;. Simoncini [24]
investigated the structure of Hy,;,—1 by other means.

In order to expose the structure of Hy,—1 and Gy, we derive certain properties of orthogonal
Laurent polynomials ¢;. The derivations allow us to introduce suitable notation and make the paper
self-contained. For other proofs and related results, we refer to [15,18,24]. The following property of
the trailing coefficients of the ¢; is required in our derivation of three-term recursion formulas for the

vectors Vj.



C. Jagels, L. Reichel / Linear Algebra and its Applications 431 (2009) 441-458 445

Proposition 2.1. Let the matrix A be definite. Then the coefficients cj _j+1 of ¢j, for 1 <j <m, and the
coefficients ¢j _j of ¢, for —m + 1 < j < —1, are nonvanishing.

Proof. We first show that ¢j _j;1 # 0forj > 1. Consider the Laurent polynomial x1 ¢j(x),j = 1.By the
definition of the inner product (1.7) and the definiteness of A, we have

(@ x ") =w A" w, £ 0.

On the other hand,
(@ X ') = (B, Gjrx T + ),
where v is a Laurent polynomial in span{¢o, ¢1,¢_1, ..., ¢_j1}. Hence,

(@57 ¢) = Gy ($.x7)
and therefore ¢j _j1 # 0.
The fact that the coefficients ¢j; are nonvanishing for j < —1 follows similarly by considering

(B, x¢j) = w;"Aw; 0. O

Njdstad and Thron [18] refer to orthogonal Laurent polynomials with nonvanishing trailing co-
efficients as nonsingular, and show that their finite zeros are real and simple. Moreover, successive
nonsingular Laurent polynomials have no common zeros; see also [15,16] for related results.

Letm > 0 and suppose that A~y ¢ K™ +1 (A, v). We would like to determine a vector v_,..such
that

L7700 JEPTS VYU SR e

is an orthonormal basis for IK™ 1™ +1(A, ). The vector v_,, will be a multiple of ¢_, (A)v, where ¢_,
is a Laurent polynomial of the form (2.1). In particular,

Cm—m+19—m(X) = X' dm(x) € span{eo, o1, -1, .. P—m+1, bm) (2.5)
and, therefore,
m
Cm—m+19—m(X) — Xﬁ]¢m(X) = - Z YmkPk (%),
k=—m-+1
where the Fourier coefficients are given by

(X_1¢m- 1) . (¢m-x_l¢k) .

Ymk = = (2.6)
T (G i) (1 i)
Moreover, since
X1 (x) € span{go, $1, 01, - .. m—1,P—mi1}, k=—m+2,...,m—1,
it follows that at most two of the Fourier coefficients are nonvanishing. Thus, we obtain
Cm.—m+1¢—m(x) = X_l¢m (x) — Ymm®Pm (x) — Vin,—m+1P—m+1 (x), (2.7)
which yields the three-term recursion relation
Sem¥_py = (A" = Bl ¥y — Bomt1¥ iy (2.8)

with B = Ymm and 6_p, > 0is a normalization factor to make v__ a unit vector.
A similar argument shows that c_; m@m+y1(x) — x¢p_(x) is a linear combination of ¢_p,(x) and
¢m(x) and this gives the three-term recursion formula

8m+1vm+] =A—-a_ply)v_, —anpv,. (2.9)
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The recursion relations (2.8) and (2.9) are the foundation for the following algorithm for computing
an orthonormal basis for K™ +1 (A, v). The algorithm is analogous to the standard Lanczos process
for determining an orthonormal basis for the Krylov subspace (1.4).

Algorithm 2.1 (Orthogonalization process).
Input: m, v, functions for evaluating matrix-vector products and solving linear systems of equa-
tions with A;
Output: orthogonal basis {v, };L ., of K™MH1(A, v);
8o 1= [Iv|l; vy :=v/80;
T
u = Avy; 0 = Voll; U 1= U — QgVy;
81 := |lull; vy :=u/dq;
fork=1,2,...,m—1do

wi=A"y,;
. T . .
Bokt1 :=V_ (Wi W i=w— By i1V g
T
Bk i=wwiwi=w— Bv,;
Sk=|wlsv_y :==w/d_x;
u:=Av_,;
T
Qg =V_ W U=U—_V_;
T
Qe 1= VU U= U — OV,
Ok+1 = |lull; Vi = u/ky1;
end
The recursion coefficients generated by Algorithm 2.1 can be used to construct a matrix Hop—1 =
[hjx] € RZ™* @M=D) such that
AVom—1 = VomHom—1, (2.10)

whAere the matrices V,,—1 and V5, are given by (2.2). The leading submatrix Hy;,—1 € R@m—1x(2m=1)

of Hyp,—1 is given by (2.3). We will now show that Ho,—1 is pentadiagonal. The (2k + 1)st column of

AVym—1is Av_,, and by relation (2.9) with m replaced by k, or by the recursion formulas of Algorithm
2.1, we obtain

Av_p = apv oV + SV, k=12,....m—1. (2.11)
Hence, the only nontrivial entries of the (2k 4+ 1)st column of Hy,, 1 are

hokak+1 = @k hok41,2641 = @k, h2kt22k+1 = Sk+1-
Symmetry of Hyp,— yields two entries of the (2k)th column,

hok12k = ke hok—12k = Sk—1-

In order to determine the remaining nonvanishing entries of this column, we first rewrite relation (2.8)
with m replaced by k,

S_wv_y = A_]vk - ,3—k+1V_k+1 = By (212)

Multiplying the above equation by A and making the appropriate substitutions for Av_, and Av_, |
yields
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BrAV, = —Bkt10k—1Vy_1 — Bok+10—k+1V_pq T (1 — Bk+10k — akd—k) vy,

—S,ka,kvik - 57k8k+1 Vk+1 .

T
It follows from (2.12) that By = va_1 v, and by the definiteness of A, we have B # 0. Hence,

Av = hor—22kVi_q + hok—12kY_ 1 + hok2kVy + hor1.2kV_j + hak2,26Vp 41 (2.13)
for certain coefficients hj . Orthonormality of the vectors Vi and symmetry of A and Hy;,—1 now give

8_k416k 1— B k10K — b
——, hyo = .
Br-1 Br

Consequently, the odd-numbered columns of Hy;,;,—1 have at most three nontrivial elements and the
even numbered columns contain at most five nonvanishing entries.

hak—22k = hokok—2 = —

Example 2.1. The matrix Hyp,—q is of the form

2 81 0 0 0 0 0 0 0 7
S hyy o =% 0 0 0 0 0
0 (051 o_q 52 0 0 0 0 0
818 828
0 —ﬁ 52 h4,4 (0%) # 0 0 0
0 0 0 (0%) oa_) 53 0 0 0
0 0 0 — 5_;253 83 h6,6 o3 —6_/3%64 0 ’
0 0 0 0
0 0 0 0 s 0 * Sm—1 * Om—1
L O 0 0 0 cee 0 0 0 Om—1  CO—m+1]
where the entries marked by * and * are hyp;—22m—4 and hyp,—22m—2, respectively.
The matrix Hyp—1 in (2.10) is given by
-~ H2m71
Hym—1 = [ T :|
th—l
with
5—m+1 5m 2m—1
hyp, = — Bs €yn_y + Omey,_y € R
n—
and we can write (2.10) in the form
T
AVom—1 = Vom—1Ham—1 + v, 4. (2.14)

This expression is analogous to the decomposition (1.3) obtained by the standard Lanczos process. Note
that each leading principal submatrix of Hy,,—1 of even order is block-tridiagonal with block-size two

T
and the matrix v h, ., generically has two nonvanishing columns. Thus, our Lanczos-like process
bears some similarity to the standard block Lanczos process with block-size two.
We also can use the recursion relations (2.11) and (2.12) to derive a decomposition of the form
A" Wom = Vam11Gam (215)

for some matrix Gom = [gik] € REm+1Dx M e remark that the matrix G,m has to have an even

number of columns in order to accommodate the fact that A~! v_, isexpressed as a linear combination
of five orthogonal vectors. The decomposition (2.15) is analogous to (2.10).
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The first 2m rows of Gy, make up the matrix Gy, given by (2.4). Arguing similarly as for Hyp,—1,
the nontrivial elements of the (2k)th column of Gy, are

82k—12k = B—k+1, 2k2k = B Gak+12k = Sk

and those of the (2k — 1)st column are given by

10k

82k—3,2k—1
O —f+2

82k—22k—1 = O—j41,
1 —ag—10_k+1 — B—k+10k

82k—1,2k—1 =
O k+1
S2k2k—1 = B—k+1
kb
&2k+12k—1 — — .
O —k+1

Thus, the matrix G, is symmetric and pentadiagonal. Moreover, leading principal submatrices of even
order are block-tridiagonal with block-size two.

The block-structure implies that the product of principal submatrices of Hyp,—1 and Gy, of (the
same) even order is a rank-one modification of the identity. This property can be seen as follows.
Assume for the moment that2m — 1 = nin(2.3)and 2m = nin(2.4). Then the matrix V}, in (2.3) and
(2.4) is orthogonal, and we obtain that

HnGn = (ViAV,) (VA" V) = I,

Let sz and Ezk denote leading principal submatrices of order 2k of H,, and G, respectively. Due to the
special form of the subdiagonal blocks, we have

~ o~ T
HagGok = Dok + ey lty, (2.16)
where only the last two entries of u,, € R may be nonvanishing.

3. The indefinite case, m = ¢

In this section the nonsingular symmetric matrix A is not required to be definite. The derivation of
the three-term recurrence formulas in Section 2 requires that the trailing coefficients of the Laurent
polynomials ¢; be nonvanishing. This property followed from the definiteness of A. Now assume
that, for some k > 1, the trailing coefficients of the Laurent polynomials ¢o, ¢1, d—1,. .., d—k+1, Pk
are nonvanishing, but that the trailing coefficient, c_, of ¢y is zero. Thus,

—k —k+1 k—1
Gk (X) =X 4 g k41X e+ Cokk—1X" .

Njastad and Thron [18] refer to orthogonal Laurent polynomials with vanishing trailing coefficient as
singular, and show that two consecutive orthogonal Laurent polynomials cannot both be singular; see
also [15,16]. This result also follows from our discussion below.

Analogously to (2.7), we have

Ch—kr 1Dk (®) = X P(X) — Yk (X) — Vi—kr 1641 (%), a1
where the coefficients yx x and yx —k+1 are given by (2.6), and
He(X) = X+ o1+ o prx KL

Comparing coefficients for the x*-terms in the right-hand side and left-hand side of (3.1) shows that
vk = 0. This is equivalent to (x_1¢k, ¢r) = 0; cf. (2.6).
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Let ¢ € span{¢o, p1,¢—1,...,Pk—1,$—k+1}. Then
0=""dd) = (Drx "+ V) = (P x™")
and, therefore,
B x " p_i41) = (P x ) = 0.

Since the left-hand side is proportional to ¥ k1, cf. (2.6), it follows that yk —k+1 vanishes. Thus, the
recursion formula (3.1) simplifies to

Ch—ke4 19—k (%) = X Py (%),
which, analogously to (2.8), yields
Sykv_p = A_lvk

or, equivalently,

Av_, = —,

K (S K " (3.2)

Thus, the only non-zero element of the (2k 4 1)st column of Hyp—1 is hogok+1 = 1/6—k-
We turn to the recursion relation for ¢y . Since c_gx = 0, we must modify the technique used in
Section 2. Instead of (2.5), we consider

D1 (%) — xPr(x) € span{go, P1,d—1,. .., D1, P—i}.

An argument similar to that of Section 2 shows that ¢y satisfies a five-term recursion formula

Pre1(X) = Xk (X) — Vit 1,—kD—k (x) — Vi+1kPk (x)
Ykt 1,k 1P—k+1(X) — Vir1,k—1Pk—1(X). (3.3)

This formula also is shown in [18]. It follows from (3.3) that the vector v, , ; satisfies a recursion relation
of the form

Skk1 Vi = AV — Qi 1V — Qe—1Vy_q — ALV — GV,
which we also express as
AV = a1V 1t A—kt1V_pqq F AV + gV F Skt 1V (3.4)

The coefficients yield the entries of the (2k)th column of Hy;;,—1 and are easy to determine from the
expression above. Three of the coefficients have been evaluated previously, namely

ag—1 = harok—2, A—k+1 = hog2k—1, a— = hapit1,

and ay is computed by means of an inner product,
T
ag = hay ok = v, Av,.

The recursion formulas of this section require that four n-vectors be retained in fast computer memory
at any given time.
An examination of Eq. (3.3) reveals that the trailing coefficient is nonvanishing, and the next

orthogonal vector, v_,_,, therefore can be computed by a three-term recursion formula analogous
to (2.8).

T
Recall that By4+1 = "1<+1A_1"k+1- If Bk+1 # 0, then the coefficients in the expansion

Av = hak kv + hok1,26+2V g + hak2,2k+2V) 4

+ hokt32k+2V_g_1 + hak+a2k+2vis
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adhere to the same pattern as in the definite case, with the exceptions
1 — p18—k—1
Br+1

These exceptions stem from (3.2). On the other hand, if Bx+1 vanishes, then recursion formulas similar
to those derived in the beginning of this section can be applied.

hok+12k42 = 0, hok422k42 =

Example 3.1. When 8 = 0, the matrix Hy; € R®7 is given by

_Olo 81 0 0 0 0 0 7
51 hzyz (051 —% 0 0 0
0 o1 o1 82 0 0 0
g -0 5% & e /5, 5 0
0 0 0 1/6_, 0 0 0
0 0 0 83 0 h6,6 o3
0 0 0 0 0 (0%} a_3
K 0 0 0 S

Since A is indefinite, the coefficient o_y1 = V1AV May vanish. In this situation, we use
arguments similar to those for the case when yxx = 0 to obtain that ay—1 = 0 and v, = Av_p -
The vector v_, then is computed from the five-term formula

5,kv7k = A_]v7k+] + bkvk + b_k+1 V_ 1 + b]<,1vl<71 + b,k+2v7k+2. (3.5)

Analogously to the case discussed above, three of the coefficients have been determined previously,
namely

~ Bokr2bk—1
Be—1

The remaining coefficient is computed by evaluating

by =1/8k, b1 =08 r41, bry2=

T -1
bojer1 =V_j ATV g

Note that, since by > 0in (3.5), the trailing coefficient of ¢_ is non-zero and the vector v ; can
be computed by using the three-term recursion formula (2.11), similarly as in the definite case. An
expression for Av, analogous to that found in (2.13) can be derived by multiplying equation (3.5) by
A, making the appropriate substitutions for Avj,j =—k+2,k—1,—k + 1, —k, and gathering terms
associated with the same power. The entries in the (2k)th column of Hypm_1 follow the same pattern
as that in the definite case with the exceptions,

hakok = =0k (b—_kg18k—1 + okS—_k + S_kr1hok2k—2), hokt22k = —OkS—_kBk41-

Example 3.2. When a_, = 0, the matrix Hy; € R¥7 s given by

_Ol() (Sl 0 0 0 0 0 7]
51 hz,z o —675%62 0 0 0
0 (03] o_q 52 0 0 0
-0 e PR VR 0
0 0 0 0 0 03 0

0 0 0 —8_/3%83 83 h5'6 a3

0 0 0 0 0 o3 o_3

Lo 0 0 0 0 —838_384 4
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4. The positive definite case, m = 2¢

We derive short recursion formulas for orthogonal Laurent polynomials for the Krylov subspaces
(1.11) and investigate the structure of the reduced problems. The matrix A is assumed to be positive defi-

nite. We consider the generation of orthogonal basis vectors Vi inan order commensurate with the nest-

ing(1.11). To this end, introduce monic orthogonal Laurent polynomials ¢, ¢1, ¢2, ¢—1, @3, P4, ¢—2, Ps, . . .

of the form
) j—1
¥+ Y gt j=012...,
k=—1(G—-1)/2
¢j(x) — ' <_2j\.(l 1)/2] (41)
¥t Y gk, j=-1,-2....,
k=j+1

where |« | denotes the integer part of @ > 0.In particular, ¢g(x) = 1.These polynomials are orthogonal
with respect to the inner product (1.7), similarly as the Laurent polynomials (2.5) used in Sections 2
and 3, but they are of different form.

Define the vectors

i(A)v
v = BBy 012 -1.3.4 2.5, (42)
llp;(A)v]]
Then
Do V1oV V30 Y Vo)

is an orthonormal basis for the extended Krylov subspace I<™>™ (4, v). We assume this basis to be
available and describe how to compute an orthonormal basis for K™12™+2(A y) by using recursion
formulas with few terms. For ease of exposition, all Krylov subspaces considered are assumed to be
of maximal dimension, i.e., dim(IK“™(A, »)) = £ + m — 1. Our derivation of the recursion relations is
similar to that of Section 2 and some details therefore are omitted.

We show how to determine the vectors v, v_ ., and v, ,, defined by (4.2), in order. Since the
orthogonal Laurent polynomials (4.1) are monic, we have

@am(x) — XPpom—1(x) € span{¢o, P1, P2, P—1,. .., P2m—2, P—m+1, P2m—1}. (43)

This expression is orthogonal to all Laurent polynomials (4.1) except for ¢om—1, d—m+1, and ¢om—2.
Let the y,,—1, denote the coefficient of ¢; in a Fourier expansion of the Laurent polynomial (4.3) in
terms of the Laurent polynomials (4.1). Then the only nonvanishing coefficients in this expansion are
Y2am—12m—1, ¥V2m—1,—m+1, and Y2m—12m—2. This yields the four-term recursion relation

SomVym = (A — com—12m—11,)Vam_1 — @2m—1,—m+1Y_pypq — X2am—12m—2Vom_p M > 2, (44)

. T
with ajy 1= v; Av,.
Next we consider the computation of v_ .. Arguments similar to those used in the proof of Propo-
sition 2.1 ensure that the coefficient ¢, —m+1 of ¢ is non-zero. It follows that
-1
Cm—m+1P—m(X) — X~ ¢am(x) € span{do, P1, 02, -1, .., d—m+1, P2m—1, P2m}-

Similarly as above, we find that all coefficients y,n; in the Fourier expansion of this expression in
terms of the Laurent polynomials (4.1) vanish except for Yo, —m+1, Y2m2m—1, and Yamam. Here yop;j is
the coefficient for ¢;. Thus,

Com—mt1D—m(®) = X' Pam(X) — Vamam®P2m (X) — Vam—mi1P—m+1(X)
— Yoam2m—192m—1(X),



452 C. Jagels, L. Reichel / Linear Algebra and its Applications 431 (2009) 441-458

which yields the four-term recursion relation
-1
SomV_p = (A7 — Bamamln)Vy, — Bam—m+1 Y _mt+1 — Bam2am—1Vom_q (4.5)

. T _
with B 1= vjA 1vk.
Lastly, consider the computation of the vector v, , ;. Proposition 2.1 guarantees that the trailing
coefficient of ¢_;4+1 is nonvanishing and therefore

C—m2m$2m1(%) — x¢_m(x) € span{go, P1,¢2, 91, .., 2m, P—m}.

All Fourier coefficients y_p,; of this expression vanish with the exceptions of Yy, and y—mom,
where y_p,j is the coefficient of ¢;. We conclude that

Com2amPam+1(X) = XP—m(X) — Y—m—m®P—m(X) — Y—m2mPam(X),
which, for m > 2, yields the three-term recursion relation
82m+1 Vom+1 = A— 05—m,—m1)v,m — U—m2mVy- (4.6)

The recursion relations (4.4), (4.5), and (4.6) are the foundation for the following algorithm for com-
puting an orthonormal basis for K™2™ (A, v).

Algorithm 4.1 (Orthogonalization process for K™2™(A, v)).

Input: m, v, functions for evaluating matrix-vector products and solving linear systems of equa-
tions with A;
Output: orthogonal basis {vk}fm_m 4q0f IK™2M(A, v);

8o 1= [Iv|l; vy 1= v/80;

u:=Avy;, 0gp := vgu; u:i=u— ooV,
81 := llull; vy := u/dy;

u:=Av;; g := vgu; Uu:i=u—oagv,
oy = v?u; U:=u—oy vy,

8 = |lull; vy :=u/8;
fork=1,2,...,m— 1do

wi=A"r,;
. T . .
Bak2k—2 1= Vop_oWi W i= W — Borok—2Vop_s;
T
Bok2k—1 1= Vo _1W; W =W — Bok2k—1Vp_q;
T
Bokak = Vo ws W i= W — BoroiVyys
Sk = |wlsv_, :==w/d_x;
u:=Av_,,
T
Ok 2k i= Voully U= U — Q2K Vo
T
Ok = V_( WU =U— O —|V_}s
Sak1 = llulls vy i= /82415
u:.= Av2k+1:
T . .
O2k412k “= Vo ll; U 1= U — 02k+1,2k Vs

T
Cok+1,—k = V_j U U 1= U — O2k4+1,—kV_j»
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T
OO2kA1.2k+1 2= Vop U5 U i= U — O2%41,2k+1V )41

Sokt2 = llull; vypyy = u/82k+2;
end

Given the orthonormal basis for the subspace K™2™(A, v), analogously to (2.2), we define the
matrices

nx(3m+1
Vamt1 = [V, v, ¥,V _qhe Vo Vgl € RrxGm+1)

4.7
Vamsz = [Vamp1, Py ] € RO, (4.7)

Similarly to the construction in Section 2, the recursion coefficients generated by Algorithm 4.1 can be
used to determine a matrix Hyp41 = [hjx] € ROM+2)xGm+1) "guch that

AV3mi1 = VamyaHami1, (4.8)
where the matrices V3p41 and Vipyp are given by (4.7). The leading submatrix Hszpmyq €
ROMHDXCm+D) of {4 satisfies

T
H3m+1 = V35, 1AV3m41. (4.9)
We note that even though four-term recursions occur in Algorithm 4.1, the matrix Hzp,41 is pentadiag-

onal. The (3k — 2)th column of AV3ny1 isAv_,, ;, and by the relation (4.6), with m replaced by k — 1,
or by the recursion formulas of Algorithm 4.1, we obtain, fork = 2,3,...,m — 1,

AV | = Ok 12k—2V g T Okt 1 —k+1V_ g g T S2k—1Vop_q- (4.10)
Hence, the only nontrivial entries of the (3k — 2)th column of H3;;,1 are
h3k—33k—2 = A—k+12k—2, N3k—23k—2 = A—pt1,—k+1, P3k—13k—2 = F2k—1-

The (3k — 1)th column of AV3, 11 is Av,,_ 4, and by relation (4.4) with m replaced by k, we obtain, for
k=23,....m—1,

Avy 1 = Ok—12k—2Vp_p Tt Q2k—1,—k+1V_p 1 T O2k—12k—1Vpp_1 T S2kVy-
It follows that the (3k — 1)th column of H3;,+1 only has the nontrivial entries

h3g—33k—1 = a2k—12k—2,  M3k—23k—1 = A2U—1,—k+1,
h3g—13k—1 = @ak—12k—1,  h3k3k—1 = Sop1-

The nonvanishing entries of the (3k)th column are derived by multiplying expression (4.5) by the
matrix A and replacing m by k. The derivation of an expression of A, in terms of vectors v; is analogous
to the derivation of (2.13). We obtain

Avy, = h3k—33kVo_3 + h3k—23kV_j 1 + M3k—13kVo_1 + N3k3kVo
+ hsk41,36Y_ g + h3k+23kY 2410
T . . .
where we have used the fact that B 2k = v, A~ v, > 0, which follows from the positive definiteness
of A. Orthonormality of the vectors v and symmetry of A and H3p4-1 now give

h3k—33k = h3k—23k = 0, h3k—13k = h3k3k—1 = S2k+1,

as well as
S kot _k—k 3 —kB2k+1
haky13k = ————, hskp23k = ——7—7—,
Bak2k Bak2k
1 — Bok2k—162k — X 2k0—k
h3kzk = .

Bak,2k
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We also observe that, as a consequence of the symmetry of H3p41,

hag13c = h3k3kr1 = g2k h3k23c = h3kskr2 = ookg1,2k-

Example 4.1. Let m = 3. The matrix Hyg is of the form

(00 &1 0 0 0 0 0 0 0 0
31 11 82 0 0 0 0 0 0 0
0 52 h3’3 o2 —1 23 0 0 0 0 0
0 0 2 —1 o_1,—1 o_13 0 0 0 0 0
0 0 23 53 33 54 0 0 0 0
0 0 0 0 34 h6,6 4,2 45 0 0
0 0 0 0 0 Oy —2 od_2 2 d_25 0 0
0 0 0 0 0 45 55 55 86 0
0 0 0 0 0 0 0 85 hg‘g 6, —3
L 0 0 0 0 0 0 0 0 g,—3 05_3'_3_

Moreover, the matrix ﬁm in (4.8) is given by

_ [H
iy = [ %O}
hlo

with
8§_3687

Be6

hy=— eq + 87,5 € R,

5. Numerical examples

The computations in this section are performed using MATLAB with about 15 significant decimal
digits. In all examples, except when explicitly stated otherwise, A € R109%1000 and the vector v €
[R1000 has normally distributed random entries with mean zero and variance one. We will refer to the

rational Lanczos method that uses the Krylov subspace Kem (A, v) as Lanczos(£, m).
In all computed examples, we use Krylov subspaces of dimension 42. A reason for this is that 42 is
divisible by both 2 and 3, and this slightly simplifies the implementation of the rational Krylov subspace

methods considered. We determine the actual value w, given by (1.1), as well as approximations

W4 = Vaof (Ha)e ||Vl
obtained by the Lanczos(21, 22) method of Sections 2 and 3 and by the Lanczos(14, 29) method of

Section 4. For comparison, we also compute the approximation w,,, defined by (1.5) with m = 42, and
evaluated by using the (standard) Lanczos decomposition (1.3) with m = 42. We refer to this method
as Lanczos(42) in the tables, which display the errors ||w — Wy3|| for Lanczos(21, 22) and Lanczos(14,
29), as well as the error [|w — w,, || for Lanczos(42), for several functions f.

All matrix functions are computed by means of the spectral decomposition of the matrix. For the

function f(x) = exp(x)/x, we evaluate (1.1)as exp(A)A~ v, where A~ vis computed by solving a linear
system of equations. The rational Lanczos(21, 22) method yields the approximation

Wiy = Vap exp(Hax)Hp'e, |17,

with the symmetric and pentadiagonal matrix H4y defined by (2.3). The vector H;zlq is determined
by evaluating the first column of the pentadiagonal matrix G4 given by (2.4). Computations with
Lanczos(14, 29) are carried out similarly. The standard Lanczos(42) method determines the Lanczos
decomposition (1.3) with m = 42, which yields the approximation

Wy = Vap exp(Taa) o ¢, |17l
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This expression is evaluated by first solving a linear system of equations for the vector T4_21e1.

The following examples show the approximations computed by using the rational Lanczos(21, 22)
and Lanczos(14, 29) methods to be superior to approximations determined by the standard Lanczos(42)
method. For most examples Lanczos(14, 29) yields as accurate an approximation as Lanczos(21, 22).
This is interesting because for many matrices that arise in applications, matrix-vector products can
be evaluated faster than solutions of linear systems of equations with the matrix.

Example 5.1. We compute approximations of f (A)v determined by the standard and rational Lanczos
methods for the symmetric positive definite tridiagonal matrix A = n’[—1, 2, —1] of order n = 1000.
The approximation errors are reported in Table 5.1. Note that the rational Lanczos methods yield
significantly smaller approximation errors for many of the functions f than the standard Lanczos
method. Moreover, both rational Lanczos methods, Lanczos(21, 22) and Lanczos(14, 29), determine
approximations of about the same quality.

Example 5.2. Let A = [a;;] be the symmetric positive definite Toeplitz matrix with entries a;; =
1/(1 + |i — j|). Computed results are shown in Table 5.2. We remark that fast direct solution methods
are available for linear systems of equations with this kind of matrix; see, e.g., [3,25]. Approximations
of (1.1) determined by the rational Lanczos methods Lanczos(21, 22) and Lanczos(14, 29) are seen to
be of higher accuracy than approximations obtained with the standard Lanczos method. Both rational
Lanczos methods yield approximants of about the same accuracy.

Example 5.3. Let A = [ + X" X, where X € R'000%1000 a5 randomly generated normally distributed
entries with zero mean and variance one. Table 5.3 displays computed results and shows approxi-
mations of expressions (1.1) computed with the rational Lanczos methods to be more accurate than
approximations determined by the standard Lanczos method.

Example 5.4. The matrix used in this example is of the form Let A= — (I + X7X), where X € R1000x1000
is generated similarly as in Example 5.3. Table 5.4 shows the errors in approximations of (1.1) deter-
mined by the rational and standard Lanczos methods.

Table 5.1 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric positive
definite tridiagonal matrix A.

fx) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)
exp(—x) 2.3 x 1076 3.4 x 10713 3.8 x 1071
Jx 1.3 x 10° 2.1 x 1072 3.6 x 1072
exp(—/X) 1.0 x 1073 25x 1078 2.6 x 10713
In(x) 1.8 x 107! 3.4x 1074 7.1 x 107%
exp(—x)/x 2.4 x 1077 3.5 x 10716 3.9 x 10716

Table 5.2 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric positive
definite Toeplitz matrix A.

fx) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)
exp(—x) 82x 1071 82x10°P 8.1x10° P
N 1.9 x 1071 1.0 x 10714 1.0 x 1071
exp(—/X) 1.9 x 1071 6.9x 107 7.0 x 107
In(x) 3.0 x 10710 1.4 x 10714 1.3 x 1071

exp(—x)/x 7.6 x 107 1.6 x 1071 1.5 x 107
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Table 5.3 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric positive
definite matrix A = I + XX, with X randomly generated.

f(x) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)
N/ 2.0 x 1072 3.7 x 107> 5.0 x 107>
exp (—ﬂ) 1.3 x 1072 3.6 x 107 2.1 x 1076
In(x) 5.7 x 1072 1.4 x 107 2.7 x 107>

Table 5.4 Errors in approximations of f(A)v determined by the standard and rational Lanczos methods for the symmetric

negative definite matrix A = — (I + X"X), with X randomly generated.
f(x) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)
exp(x) 2.4 x 1072 1.3 x 1077 3.6 x 106
exp(x)/x 2.5 x 1072 3.0 x 1078 5.1 x 10~/

Table 5.5 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric indefinite
matrix.

fx) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)
exp(x) 24x1071 4.0 x 10710 28 %1078
exp(x)/x 2.1 x 103 2.8x 10710 3.8x 10710

Table 5.6 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric positive
definite matrix.

fx) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)

1//x 1.4 x 1072 5.6 x 10713 2.7 x 10712

Example 5.5. The matrix used in this example is symmetric indefinite and of the form

B C
5 S)
where B is a tridiagonal symmetric Toeplitz matrix of order 500 with a typical row [—1, 2, —1]. All
entries of C € R>%9%500 are zero with the exception of the entry 1 in the lower left corner of the matrix.
Table 5.5 shows the error in approximations of (1.1) determined by the rational and standard Lanczos
methods. The standard Lanczos method is seen to be unable to determine an accurate approximation

of f(t) = exp(t)/t.

Example 5.6. The matrix used in this example is obtained from the discretization of the self-adjoint
differential operator L(u) = f—ouxx — 100uyy in the unit square. Each derivative is approximated by
the standard three-point stencil with 40 equally spaced interior nodes in each space dimension.
Homogeneous boundary conditions are used. This yields a 1600 x 1600 symmetric positive definite
matrix A. The initial vector v for the polynomial and rational Lanczos processes is chosen to be the unit
vector with all entries 1/40. Table 5.6 shows the errors in approximations of (1.1) determined by the
standard and rational Lanczos methods.

6. Conclusion and extension

The computed examples of Section 5 show that for many approximation problems (1.1) rational
Lanczos methods can give significantly higher accuracy with the same number of steps than the
standard Lanczos method. This is in agreement with the analyses presented in [4,11,12,17]. Rational
Lanczos methods require the solution of linear systems of equations, and it depends on the size,
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sparsity or structure of A if the solution of these systems is feasible. Structures, besides sparsity, that
makes it possible to solve large linear systems of equations fairly rapidly include bandedness and
semiseparability; see Vandebril et al. [25] for an authoritative treatment of the latter. In particular,
Toeplitz matrices are semiseparable.

Many matrices of interest in applications allow faster computations of matrix-vector products than
solution of linear systems of equations. It therefore can be of interest to use a rational Lanczos method
that requires fewer linear systems to be solved than matrix-vector product evaluations. Section 4 illus-

trates that rational Lanczos methods for Krylov subspaces of the form bct2t (A, v) can be implemented
with short recursion formulas, and the computed examples of Section 5 show that these rational
Lanczos methods are competitive with regard to accuracy. We are presently investigating properties

of rational Lanczos methods for Krylov subspaces K™ (A, v) with different ratios m /L.
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