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The need to evaluate expressions of the form f (A)v, where A is a

large sparse or structured symmetric matrix, v is a vector, and f

is a nonlinear function, arises in many applications. The extended

Krylov subspacemethod can be an attractive scheme for computing

approximations of such expressions. This method projects the ap-

proximationproblemontoanextendedKrylov subspaceK�,m(A) =
span{A−�+1v, . . . , A−1v, v, Av, . . . , Am−1v} of fairly small dimen-

sion, and then solves the small approximation problem so obtained.

We review available results for the extended Krylov subspace

method and relate them to properties of Laurent polynomials. The

structure of the projectedproblem receives particular attention.We

are concerned with the situations whenm = � and m = 2�.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let A ∈ Rn×n be a large, possibly sparse or structured, symmetric matrix, and let v ∈ Rn. We are

interested in computing approximations of expressions of the form

w := f (A)v, (1.1)

where f is anonlinear functiondefinedon the spectrum {λj}nj=1 ofA. Thematrix f (A) canbedetermined

via the spectral factorization,

A = UΛUT , U ∈ Rn×n, UTU = In, Λ = diag[λ1, λ2, . . . , λn] ∈ Rn×n, (1.2)
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where In denotes the n × n identity matrix. Then

f (A) = Uf (Λ)UT , f (Λ) = diag[f (λ1), f (λ2), . . . , f (λn)].
Functions of interest in applications include

f (t) := exp(t), f (t) := √
t, f (t) := ln(t).

A recent thorough discussion on the evaluation of f (A), as well as of (1.1), is provided by Higham [13].

Applications and numerical methods also are described in, e.g., [1,2,5,7–10,14,23]. An early discussion

on the approximation of large-scale expressions of the form (1.1) is presented by van der Vorst [26];

see also [27, Chapter 11].

For small matrices A, one can evaluate expressions of the form (1.1) by first computing the spectral

factorization (1.2), then evaluating f (A) by using this factorization, and finally multiplying f (A) by the

vector v.When f is rational andA is symmetric positive definite, itmay be attractive to use the Cholesky

factorization of A instead of the spectral factorization.

The computation of the spectral factorization of A is not attractive when this matrix is large and

sparse. The present paper is concernedwith this situation. Then one typically first reduces A to a small

symmetric matrix Tm and evaluates f (Tm), e.g., by determining the spectral or Cholesky factoriza-

tions of Tm. For instance, m steps of the Lanczos process applied to A with initial vector v yields the

decomposition

AVm = VmTm + gmem
T , (1.3)

where Vm = [v1, v2, . . . , vm] ∈ Rn×m, VT
mVm = Im, v1 = v/‖v‖, Tm := VT

mAVm ∈ Rm×m is symmetric

and tridiagonal, gm ∈ Rn, and VT
mgm = 0. Here and below ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the jth

axis vector and ‖ · ‖ the Euclidean vector norm. We tacitly assume that m is chosen small enough so

that a decomposition of the form (1.3) exists. The columns of Vm form an orthonormal basis for the

Krylov subspace

Km(A, v) = span{v, Av, . . . , Am−1v}. (1.4)

The expression (1.1) now can be approximated by

wm := Vmf (Tm)e1‖v‖; (1.5)

see, e.g., [4,10,14,21] for discussions on this approach. Indeed, if gm = 0, then wm = w. Moreover, let

Pm−1 denote the set of all polynomials of degree atmostm − 1. Then f ∈ Pm−1 implies thatwm = w;

see, e.g., [10] or [22, Proposition 6.3].

The decomposition (1.3) and the fact that range(Vm) = Km(A, v) show that:

(i) The columns vj of Vm satisfy a three-term recurrence relation. This follows from the fact that

Tm is tridiagonal. The vectors vj therefore are quite inexpensive to compute; only one matrix

vector-product evaluationwith A and a few vector operations are required to compute vj+1 from

vj and vj−1.

(ii) The columns vj can be expressed as

vj = pj−1(A)v, j = 1, 2, . . . ,m, (1.6)

for certain polynomials pj−1 ∈ Pj−1. This property shows that the right-hand side of (1.5) is of

the form p(A)v, where p ∈ Pm−1.

(iii) The polynomials p0, p1, . . . , pm−1 are orthogonal with respect to the inner product

(q, r) := (q(A)v)T (r(A)v) = vTUq(Λ)r(Λ)UTv =
n∑

j=1

q(λj)r(λj)ω
2
j , (1.7)
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with UTv = [ω1,ω2, . . . ,ωn]T , which is defined for q, r ∈ Pd, where d is the number of distinct

eigenvalues of A. The property

(xq, r) = (q, xr) (1.8)

secures that the orthogonal polynomials pj satisfy a three-term recurrence relation. Hence, the

three-term recurrence relation for the vectors vj is a consequence of the fact that polynomials

orthogonal with respect to an inner product defined by a nonnegative measure on the real axis

satisfy such a recursion.

It follows from (ii) that if f cannot be approximated accurately by a polynomial of degreem − 1 on

the spectrum of A, then, generally, the expression (1.5) will be a poor approximation of (1.1). For this

reason Druskin and Knizhnerman [11] proposed the Extended Krylov Subspace (EKS) method, which

allows for the approximation of f by a rational function with a fixed pole, say at the origin.

Let A be nonsingular and consider the extended Krylov subspace

K�,m(A, v) = span{A−�+1v, . . . , A−1v, v, Av, . . . , Am−1v}. (1.9)

Thus,K1,m(A, v) = Km(A, v). Druskin and Knizhnerman [11] showed that projecting the problem (1.1)

onto the subspace (1.9), instead of onto (1.4), can be attractive for many functions f . An algorithm for

computing such approximations also is presented in [11]. This algorithm first determines an orthonor-

mal basis {qj}�j=1 for K�,1(A, v). Since K�,1(A, v) = K�(A−1, v), this basis can be generated by the

Lanczos process applied to A−1 with initial vector v. In particular, a three-term recursion formula can

beused; see (i) above. Subsequently this basis is augmented to yield an orthonormal basis {qj}�+m−1
j=1 of

K�,m(A, v). The augmentation also allows the use of a three-term recursion relation. A shortcoming of

this algorithm for the EKS method is that the parameter � has to be prespecified; the scheme does not

allow for efficient computationof anorthonormalbasis forK�+1,m(A, v) fromanavailableorthonormal

basis for K�,m(A, v).
Recently, Simoncini [24] described an approach to generating orthonormal bases for the sequence

of nested spaces

K1,1(A, v) ⊂ K2,2(A, v) ⊂ · · · ⊂ Km,m(A, v) ⊂ · · · ⊂ Rn. (1.10)

The derivation uses numerical linear algebra techniques and reveals the existence of short recursion

formulas for the orthonormal basis {qj}2m−1
j=1 of Km,m(A, v)when A is symmetric. These recursions are

applied to determine bases for the nested spaces (1.10). Simoncini [24] also discusses the situation

when A is a general square nonsingular matrix, but then there are no short recursion formulas, and

describes an application to the solution of Lyapunov equations. Knizhnerman and Simoncini [17] apply

the method in [24] to the approximation of expressions (1.1) and improve the error analysis in [11].

The present paper explores the connection between the EKSmethod and Laurent polynomials. The

short recursion relations for the orthonormal basis {qj}2m−1
j=1 of Km,m(A, v) is a consequence of the

short recursion relations for orthogonal Laurent polynomials. The latter recursions were first derived

byNjåstad and Thron [18], and are reviewed by Jones andNjåstad [15].We are particularly interested in

the structure of the projected problem. Short recursion formulas for orthonormal bases for the nested

Krylov subspaces

K1,2(A, v) ⊂ K2,4(A, v) ⊂ · · · ⊂ Km,2m(A, v) ⊂ Rn (1.11)

also are presented. These spaces are of interest when the evaluation of A−1w for vectors w ∈ Rn is

significantly more cumbersome than the computation of Aw.

This paper is organized as follows. Section 2 discusses the situation when A is symmetric positive

definite and determines the structure of the analog of the symmetric tridiagonal matrix Tm in the

Lanczos decomposition (1.3) from the recursion formulas for Laurent polynomials.We also investigate
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the structure of the inverse of this matrix. Section 3 is concerned with symmetric indefinite matrices

A. While we in Section 2 obtain pairs of three-term recursion formulas for the Laurent polynomials,

the indefiniteness of A makes it necessary to use a five-term recursion formula in some instances.

Recursion formulas for an orthonormal basis for extended Krylov subspaces of the form (1.11) are

discussed in Section 4, and a few computed examples are presented in Section 5. Concluding remarks

can be found in Section 6.

Error bounds for the computed rational approximants are derived in [4,12,17]. Many results on

orthogonal rational functions can be found in [6]. The possibly first application of rational Krylov

subspaces reported in the literature is to eigenvalue problems; see Ruhe [19,20]. The extended Krylov

subspace method of the present paper also can be applied in this context.

2. The positive definite case,m = �

We assume in this section that A is symmetric and positive definite. Let the Laurent polynomials

φ0,φ1,φ−1,φ2,φ−2, . . . of the form

φj(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xj + j−1∑

k=−j+1

cj,kx
k , j = 0, 1, . . . ,

xj + −j∑
k=j+1

cj,kx
k , j = −1,−2, . . .

(2.1)

be orthogonal with respect to the inner product (1.7). We refer to these Laurent polynomials as monic,

because their leading coefficient is unity. The coefficients cj,−j+1 of φj with j � 1, and cj,−j of φj with

j � 1, are said to be trailing. Many properties of orthogonal Laurent polynomials are established in

[15,16,18]. In particular, Njåstad and Thron [18] show that Laurent polynomials that are orthogonal

with respect to a nonnegative measure on the real axis satisfy recursion relations with few terms. We

will use these recursions in the present paper.

Introduce, analogously to (1.6), the vectors

vj := φj(A)v

‖φj(A)v‖
, j = 0, 1,−1, 2,−2, . . .

Due to the orthogonality of the φj with respect to the inner product (1.7), the vectors {vj}mj=−m+1 form

an orthonormal basis for the extended Krylov subspace Km,m+1(A, v). Analogously to the matrix Vm

in the Lanczos decomposition (1.3), we define the matrices

V2m−1 = [v0, v1, v−1, v2, . . . , vm−1, v−m+1] ∈ Rn×(2m−1),

V2m = [V2m−1, vm] ∈ Rn×(2m).
(2.2)

We are interested in the structure of the matrices

H2m−1 := VT
2m−1AV2m−1 (2.3)

and

G2m := VT
2mA

−1V2m, (2.4)

which are analogs of the symmetric tridiagonal matrix Tm in (1.3). The structure of H2m−1 and G2m is

a consequence of the recursion relations for the orthogonal Laurent polynomials φj . Simoncini [24]

investigated the structure of H2m−1 by other means.

In order to expose the structure of H2m−1 and G2m, we derive certain properties of orthogonal

Laurent polynomials φj . The derivations allow us to introduce suitable notation and make the paper

self-contained. For other proofs and related results, we refer to [15,18,24]. The following property of

the trailing coefficients of the φj is required in our derivation of three-term recursion formulas for the

vectors vj .
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Proposition 2.1. Let the matrix A be definite. Then the coefficients cj,−j+1 of φj , for 1� j �m, and the

coefficients cj,−j of φj , for −m + 1� j � −1, are nonvanishing.

Proof. Wefirst show that cj,−j+1 /= 0 for j � 1. Consider the Laurent polynomial x−1φj(x), j � 1. By the

definition of the inner product (1.7) and the definiteness of A, we have

(φj , x
−1φj) = wj

TA−1wj /= 0.

On the other hand,

(φj , x
−1φj) = (φj , cj,−j+1x

−j + ψ),

whereψ is a Laurent polynomial in span{φ0,φ1,φ−1, . . . ,φ−j+1}. Hence,
(φj , x

−1φj) = cj,−j+1(φj , x
−j)

and therefore cj,−j+1 /= 0.

The fact that the coefficients cj,−j are nonvanishing for j � −1 follows similarly by considering

(φj , xφj) = wj
TAwj /= 0. �

Njåstad and Thron [18] refer to orthogonal Laurent polynomials with nonvanishing trailing co-

efficients as nonsingular, and show that their finite zeros are real and simple. Moreover, successive

nonsingular Laurent polynomials have no common zeros; see also [15,16] for related results.

Letm > 0 and suppose that A−mv /∈ Km,m+1(A, v). We would like to determine a vector v−m, such

that

{v0, v1, v−1, v2, . . . , v−m+1, vm, v−m}
is an orthonormal basis forKm+1,m+1(A, v). The vector v−m will be amultiple ofφ−m(A)v, whereφ−m

is a Laurent polynomial of the form (2.1). In particular,

cm,−m+1φ−m(x)− x−1φm(x) ∈ span{φ0,φ1,φ−1, . . . ,φ−m+1,φm} (2.5)

and, therefore,

cm,−m+1φ−m(x)− x−1φm(x) = −
m∑

k=−m+1

γm,kφk(x),

where the Fourier coefficients are given by

γm,k = (x−1φm,φk)

(φk ,φk)
= (φm, x

−1φk)

(φk ,φk)
. (2.6)

Moreover, since

x−1φk(x) ∈ span{φ0,φ1,φ−1, . . . ,φm−1,φ−m+1}, k = −m + 2, . . . ,m − 1,

it follows that at most two of the Fourier coefficients are nonvanishing. Thus, we obtain

cm,−m+1φ−m(x) = x−1φm(x)− γm,mφm(x)− γm,−m+1φ−m+1(x), (2.7)

which yields the three-term recursion relation

δ−mv−m = (A−1 − βmIn)vm − β−m+1v−m+1 (2.8)

with βm = γm,m and δ−m > 0 is a normalization factor to make v−m a unit vector.

A similar argument shows that c−m,mφm+1(x)− xφ−m(x) is a linear combination of φ−m(x) and
φm(x) and this gives the three-term recursion formula

δm+1vm+1 = (A − α−mIn)v−m − αmvm. (2.9)
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The recursion relations (2.8) and (2.9) are the foundation for the following algorithm for computing

an orthonormal basis for Km,m+1(A, v). The algorithm is analogous to the standard Lanczos process

for determining an orthonormal basis for the Krylov subspace (1.4).

Algorithm 2.1 (Orthogonalization process).

Input: m, v, functions for evaluating matrix–vector products and solving linear systems of equa-

tions with A;

Output: orthogonal basis {vk}mk=−m+1 of Km,m+1(A, v);
δ0 := ‖v‖; v0 := v/δ0;

u := Av0;α0 := v
T

0u; u := u − α0v0;
δ1 := ‖u‖; v1 := u/δ1;
for k = 1, 2, . . . ,m − 1 do

w := A−1vk;

β−k+1 := v
T

−k+1w; w := w − β−k+1v−k+1;

βk := v
T

kw; w := w − βkvk;

δ−k := ‖w‖; v−k := w/δ−k;

u := Av−k;

α−k := v
T

−ku; u := u − α−kv−k;

αk := v
T

ku; u := u − αkvk;

δk+1 := ‖u‖; vk+1 := u/δk+1;

end

The recursion coefficients generated by Algorithm 2.1 can be used to construct a matrix Ĥ2m−1 =
[hj,k] ∈ R2m×(2m−1), such that

AV2m−1 = V2mĤ2m−1, (2.10)

where thematricesV2m−1 andV2m are given by (2.2). The leading submatrixH2m−1 ∈ R(2m−1)×(2m−1)

of Ĥ2m−1 is given by (2.3). We will now show that H2m−1 is pentadiagonal. The (2k + 1)st column of

AV2m−1 is Av−k , and by relation (2.9) withm replaced by k, or by the recursion formulas of Algorithm

2.1, we obtain

Av−k = αkvk + α−kv−k + δk+1vk+1, k = 1, 2, . . . ,m − 1. (2.11)

Hence, the only nontrivial entries of the (2k + 1)st column of H2m−1 are

h2k,2k+1 = αk , h2k+1,2k+1 = α−k , h2k+2,2k+1 = δk+1.

Symmetry of H2m−1 yields two entries of the (2k)th column,

h2k+1,2k = αk , h2k−1,2k = δk−1.

In order to determine the remaining nonvanishing entries of this column,we first rewrite relation (2.8)

withm replaced by k,

δ−kv−k = A−1vk − β−k+1v−k+1 − βkvk. (2.12)

Multiplying the above equation by A and making the appropriate substitutions for Av−k and Av−k+1
yields
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βkAvk = −β−k+1αk−1vk−1 − β−k+1α−k+1v−k+1 + (1 − β−k+1δk − αkδ−k)vk
−δ−kα−kv−k − δ−kδk+1vk+1.

It follows from (2.12) that βk = v
T

kA
−1vk , and by the definiteness of A, we have βk /= 0. Hence,

Avk = h2k−2,2kvk−1 + h2k−1,2kv−k+1 + h2k,2kvk + h2k+1,2kv−k + h2k+2,2kvk+1 (2.13)

for certain coefficients hj,2k . Orthonormality of the vectors vj and symmetry of A and H2m−1 now give

h2k−2,2k = h2k,2k−2 = −δ−k+1δk

βk−1

, h2k,2k = 1 − β−k+1δk − αkδ−k

βk
.

Consequently, the odd-numbered columns of H2m−1 have at most three nontrivial elements and the

even numbered columns contain at most five nonvanishing entries.

Example 2.1. The matrix H2m−1 is of the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 δ1 0 0 0 0 0 0 · · · 0

δ1 h2,2 α1 − δ−1δ2
β1

0 0 0 0 · · · 0

0 α1 α−1 δ2 0 0 0 0 · · · 0

0 − δ−1δ2
β1

δ2 h4,4 α2 − δ−2δ3
β2

0 0 · · · 0

0 0 0 α2 α−2 δ3 0 0 · · · 0

0 0 0 − δ−2δ3
β2

δ3 h6,6 α3 − δ−3δ4
β3

· · · 0

0 0 0
. . .

. . .
. . .

. . .
. . . · · · 0

...
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 · · · 0 � δm−1 ∗ αm−1

0 0 0 0 · · · 0 0 0 αm−1 α−m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the entries marked by � and ∗ are h2m−2,2m−4 and h2m−2,2m−2, respectively.

The matrix Ĥ2m−1 in (2.10) is given by

Ĥ2m−1 =
[
H2m−1

h
T

2m−1

]
with

h2m−1 = −δ−m+1δm

βm−1

e2m−2 + δme2m−1 ∈ R2m−1

and we can write (2.10) in the form

AV2m−1 = V2m−1H2m−1 + vmh
T

2m−1. (2.14)

This expression is analogous to the decomposition (1.3) obtained by the standard Lanczos process. Note

that each leading principal submatrix of H2m−1 of even order is block-tridiagonal with block-size two

and the matrix vmh
T

2m−1 generically has two nonvanishing columns. Thus, our Lanczos-like process

bears some similarity to the standard block Lanczos process with block-size two.

We also can use the recursion relations (2.11) and (2.12) to derive a decomposition of the form

A−1V2m = V2m+1Ĝ2m (2.15)

for some matrix Ĝ2m = [gj,k] ∈ R(2m+1)×(2m). We remark that the matrix Ĝ2m has to have an even

number of columns in order to accommodate the fact that A−1v−k is expressed as a linear combination

of five orthogonal vectors. The decomposition (2.15) is analogous to (2.10).
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The first 2m rows of Ĝ2m make up the matrix G2m given by (2.4). Arguing similarly as for H2m−1,

the nontrivial elements of the (2k)th column of G2m are

g2k−1,2k = β−k+1, g2k,2k = βk , g2k+1,2k = δ−k

and those of the (2k − 1)st column are given by

g2k−3,2k−1 = −δk−1δ−k+1

α−k+2

,

g2k−2,2k−1 = δ−k+1,

g2k−1,2k−1 = 1 − αk−1δ−k+1 − β−k+1δk

α−k+1

,

g2k,2k−1 = β−k+1,

g2k+1,2k−1 = − δkδ−k

α−k+1

.

Thus, thematrixG2m is symmetric and pentadiagonal.Moreover, leading principal submatrices of even

order are block-tridiagonal with block-size two.

The block-structure implies that the product of principal submatrices of H2m−1 and G2m of (the

same) even order is a rank-one modification of the identity. This property can be seen as follows.

Assume for themoment that 2m − 1 = n in (2.3) and 2m = n in (2.4). Then thematrix Vn in (2.3) and

(2.4) is orthogonal, and we obtain that

HnGn = (VT
n AVn)(V

T
n A

−1Vn) = In.

Let H̃2k and G̃2k denote leading principal submatrices of order 2k of Hn and Gn, respectively. Due to the

special form of the subdiagonal blocks, we have

H̃2kG̃2k = I2k + e2ku
T

2k , (2.16)

where only the last two entries of u2k ∈ R2k may be nonvanishing.

3. The indefinite case,m = �

In this section the nonsingular symmetric matrix A is not required to be definite. The derivation of

the three-term recurrence formulas in Section 2 requires that the trailing coefficients of the Laurent

polynomials φj be nonvanishing. This property followed from the definiteness of A. Now assume

that, for some k � 1, the trailing coefficients of the Laurent polynomials φ0,φ1,φ−1, . . . ,φ−k+1,φk

are nonvanishing, but that the trailing coefficient, c−k,k , of φ−k is zero. Thus,

φ−k(x) = x−k + c−k,−k+1x
−k+1 + · · · + c−k,k−1x

k−1.

Njåstad and Thron [18] refer to orthogonal Laurent polynomials with vanishing trailing coefficient as

singular, and show that two consecutive orthogonal Laurent polynomials cannot both be singular; see

also [15,16]. This result also follows from our discussion below.

Analogously to (2.7), we have

ck,−k+1φ−k(x) = x−1φk(x)− γk,kφk(x)− γk,−k+1φ−k+1(x), (3.1)

where the coefficients γk,k and γk,−k+1 are given by (2.6), and

φk(x) = xk + ck,k−1x
k−1 + · · · + ck,−k+1x

−k+1.

Comparing coefficients for the xk-terms in the right-hand side and left-hand side of (3.1) shows that

γk,k = 0. This is equivalent to (x−1φk ,φk) = 0; cf. (2.6).
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Letψ ∈ span{φ0,φ1,φ−1, . . . ,φk−1,φ−k+1}. Then
0 = (x−1φk ,φk) = (φk , x

−k + ψ) = (φk , x
−k)

and, therefore,

(φk , x
−1φ−k+1) = (φk , x

−k) = 0.

Since the left-hand side is proportional to γk,−k+1, cf. (2.6), it follows that γk,−k+1 vanishes. Thus, the

recursion formula (3.1) simplifies to

ck,−k+1φ−k(x) = x−1φk(x),

which, analogously to (2.8), yields

δ−kv−k = A−1vk
or, equivalently,

Av−k = 1

δ−k

vk. (3.2)

Thus, the only non-zero element of the (2k + 1)st column of H2m−1 is h2k,2k+1 = 1/δ−k .

We turn to the recursion relation for φk+1. Since c−k,k = 0, we must modify the technique used in

Section 2. Instead of (2.5), we consider

φk+1(x)− xφk(x) ∈ span{φ0,φ1,φ−1, . . . ,φk ,φ−k}.
An argument similar to that of Section 2 shows that φk+1 satisfies a five-term recursion formula

φk+1(x)= xφk(x)− γk+1,−kφ−k(x)− γk+1,kφk(x)

−γk+1,−k+1φ−k+1(x)− γk+1,k−1φk−1(x). (3.3)

This formula also is shown in [18]. It follows from (3.3) that the vector vk+1 satisfies a recursion relation

of the form

δk+1vk+1 = Avk − a−k+1v−k+1 − ak−1vk−1 − a−kv−k − akvk ,

which we also express as

Avk = ak−1vk−1 + a−k+1v−k+1 + akvk + a−kv−k + δk+1vk+1. (3.4)

The coefficients yield the entries of the (2k)th column of H2m−1 and are easy to determine from the

expression above. Three of the coefficients have been evaluated previously, namely

ak−1 = h2k,2k−2, a−k+1 = h2k,2k−1, a−k = h2k,2k+1,

and ak is computed by means of an inner product,

ak = h2k,2k = v
T

kAvk.

The recursion formulas of this section require that four n-vectors be retained in fast computermemory

at any given time.

An examination of Eq. (3.3) reveals that the trailing coefficient is nonvanishing, and the next

orthogonal vector, v−k−1, therefore can be computed by a three-term recursion formula analogous

to (2.8).

Recall that βk+1 = v
T

k+1A
−1vk+1. If βk+1 /= 0, then the coefficients in the expansion

Avk+1 = h2k,2k+2vk + h2k+1,2k+2v−k + h2k+2,2k+2vk+1

+ h2k+3,2k+2v−k−1 + h2k+4,2k+2vk+2
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adhere to the same pattern as in the definite case, with the exceptions

h2k+1,2k+2 = 0, h2k+2,2k+2 = 1 − αk+1δ−k−1

βk+1

.

These exceptions stem from (3.2). On the other hand, if βk+1 vanishes, then recursion formulas similar

to those derived in the beginning of this section can be applied.

Example 3.1. When β2 = 0, the matrix Ĥ7 ∈ R8×7 is given by

Ĥ7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 δ1 0 0 0 0 0

δ1 h2,2 α1 − δ−1δ2
β1

0 0 0

0 α1 α−1 δ2 0 0 0

0 − δ−1δ2
β1

δ2 h4,4 1/δ−2 δ3 0

0 0 0 1/δ−2 0 0 0

0 0 0 δ3 0 h6,6 α3
0 0 0 0 0 α3 α−3

0 0 0 0 0 − δ−3δ4
β3

δ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since A is indefinite, the coefficient α−k+1 = v
T

−k+1Av−k+1 may vanish. In this situation, we use

arguments similar to those for the case when γk,k = 0 to obtain that αk−1 = 0 and δkvk = Av−k+1.

The vector v−k then is computed from the five-term formula

δ−kv−k = A−1v−k+1 + bkvk + b−k+1v−k+1 + bk−1vk−1 + b−k+2v−k+2. (3.5)

Analogously to the case discussed above, three of the coefficients have been determined previously,

namely

bk = 1/δk , bk−1 = δ−k+1, b−k+2 = −β−k+2δk−1

βk−1

.

The remaining coefficient is computed by evaluating

b−k+1 = v
T

−k+1A
−1v−k+1.

Note that, since bk > 0 in (3.5), the trailing coefficient of φ−k is non-zero and the vector vk+1 can

be computed by using the three-term recursion formula (2.11), similarly as in the definite case. An

expression for Avk analogous to that found in (2.13) can be derived by multiplying equation (3.5) by

A, making the appropriate substitutions for Avj , j = −k + 2, k − 1,−k + 1,−k, and gathering terms

associated with the same power. The entries in the (2k)th column of Ĥ2m−1 follow the same pattern

as that in the definite case with the exceptions,

h2k,2k = −δk(b−k+1δk−1 + αkδ−k + δ−k+1h2k,2k−2), h2k+2,2k = −δkδ−kδk+1.

Example 3.2. When α−2 = 0, the matrix Ĥ7 ∈ R8×7 is given by

Ĥ7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 δ1 0 0 0 0 0

δ1 h2,2 α1 − δ−1δ2
β1

0 0 0

0 α1 α−1 δ2 0 0 0

0 − δ−1δ2
β1

δ2 h4,4 0 − δ−2δ3
β2

0

0 0 0 0 0 δ3 0

0 0 0 − δ−2δ3
β2

δ3 h6,6 α3
0 0 0 0 0 α3 α−3

0 0 0 0 0 −δ3δ−3δ4 δ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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4. The positive definite case,m = 2�

We derive short recursion formulas for orthogonal Laurent polynomials for the Krylov subspaces

(1.11) and investigate the structureof the reducedproblems. ThematrixA is assumed tobepositivedefi-

nite.Weconsider thegenerationof orthogonal basis vectorsvj in anorder commensuratewith thenest-

ing (1.11). To thisend, introducemonicorthogonal Laurentpolynomialsφ0,φ1,φ2,φ−1,φ3,φ4,φ−2,φ5, . . .
of the form

φj(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xj + j−1∑

k=−�(j−1)/2�
cj,kx

k , j = 0, 1, 2, . . . ,

xj + −2j∑
k=j+1

cj,kx
k , j = −1,−2, . . . ,

(4.1)

where�α�denotes the integerpart ofα � 0. Inparticular,φ0(x) = 1. Thesepolynomials areorthogonal

with respect to the inner product (1.7), similarly as the Laurent polynomials (2.5) used in Sections 2

and 3, but they are of different form.

Define the vectors

vj := φj(A)v

‖φj(A)v‖
, j = 0, 1, 2,−1, 3, 4,−2, 5, . . . (4.2)

Then

{v0, v1, v2, v−1, v3, . . . , v−m+1, v2m−1}
is an orthonormal basis for the extended Krylov subspace Km,2m(A, v). We assume this basis to be

available and describe how to compute an orthonormal basis for Km+1,2m+2(A, v) by using recursion

formulas with few terms. For ease of exposition, all Krylov subspaces considered are assumed to be

of maximal dimension, i.e., dim(K�,m(A, v)) = �+ m − 1. Our derivation of the recursion relations is

similar to that of Section 2 and some details therefore are omitted.

We show how to determine the vectors v2m, v−m, and v2m+1, defined by (4.2), in order. Since the

orthogonal Laurent polynomials (4.1) are monic, we have

φ2m(x)− xφ2m−1(x) ∈ span{φ0,φ1,φ2,φ−1, . . . ,φ2m−2,φ−m+1,φ2m−1}. (4.3)

This expression is orthogonal to all Laurent polynomials (4.1) except for φ2m−1,φ−m+1, and φ2m−2.

Let the γ2m−1,j denote the coefficient of φj in a Fourier expansion of the Laurent polynomial (4.3) in

terms of the Laurent polynomials (4.1). Then the only nonvanishing coefficients in this expansion are

γ2m−1,2m−1, γ2m−1,−m+1, and γ2m−1,2m−2. This yields the four-term recursion relation

δ2mv2m = (A − α2m−1,2m−1In)v2m−1 − α2m−1,−m+1v−m+1 − α2m−1,2m−2v2m−2, m > 2, (4.4)

with αj,k := v
T

j Avk .
Next we consider the computation of v−m. Arguments similar to those used in the proof of Propo-

sition 2.1 ensure that the coefficient c2m,−m+1 of φ2m is non-zero. It follows that

c2m,−m+1φ−m(x)− x−1φ2m(x) ∈ span{φ0,φ1,φ2,φ−1, . . . ,φ−m+1,φ2m−1,φ2m}.
Similarly as above, we find that all coefficients γ2m,j in the Fourier expansion of this expression in

terms of the Laurent polynomials (4.1) vanish except for γ2m,−m+1, γ2m,2m−1, and γ2m,2m. Here γ2m,j is

the coefficient for φj . Thus,

c2m,−m+1φ−m(x)= x−1φ2m(x)− γ2m,2mφ2m(x)− γ2m,−m+1φ−m+1(x)

− γ2m,2m−1φ2m−1(x),
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which yields the four-term recursion relation

δ−mv−m = (A−1 − β2m,2mIn)v2m − β2m,−m+1v−m+1 − β2m,2m−1v2m−1 (4.5)

with βj,k := v
T

j A
−1vk .

Lastly, consider the computation of the vector v2m+1. Proposition 2.1 guarantees that the trailing

coefficient of φ−m+1 is nonvanishing and therefore

c−m,2mφ2m+1(x)− xφ−m(x) ∈ span{φ0,φ1,φ2,φ−1, . . . ,φ2m,φ−m}.
All Fourier coefficients γ−m,j of this expression vanish with the exceptions of γ−m,−m and γ−m,2m,

where γ−m,j is the coefficient of φj . We conclude that

c−m,2mφ2m+1(x) = xφ−m(x)− γ−m,−mφ−m(x)− γ−m,2mφ2m(x),

which, form > 2, yields the three-term recursion relation

δ2m+1v2m+1 = (A − α−m,−mI)v−m − α−m,2mv2m. (4.6)

The recursion relations (4.4), (4.5), and (4.6) are the foundation for the following algorithm for com-

puting an orthonormal basis for Km,2m(A, v).

Algorithm 4.1 (Orthogonalization process for Km,2m(A, v)).
Input: m, v, functions for evaluating matrix–vector products and solving linear systems of equa-

tions with A;

Output: orthogonal basis {vk}2mk=−m+1 of Km,2m(A, v);
δ0 := ‖v‖; v0 := v/δ0;

u := Av0;α0,0 := v
T

0u; u := u − α0,0v0;
δ1 := ‖u‖; v1 := u/δ1;

u := Av1;α1,0 := v
T

0u; u := u − α1,0v0;

α1,1 := v
T

1u; u := u − α1,1v1;
δ2 := ‖u‖; v2 := u/δ2;
for k = 1, 2, . . . ,m − 1 do

w := A−1v2k;

β2k,2k−2 := v
T

2k−2w; w := w − β2k,2k−2v2k−2;

β2k,2k−1 := v
T

2k−1w; w := w − β2k,2k−1v2k−1;

β2k,2k := v
T

2kw; w := w − β2k,2kv2k;

δ−k := ‖w‖; v−k := w/δ−k;

u := Av−k;

α−k,2k := v
T

2ku; u := u − α−k,2kv2k;

α−k,−k := v
T

−ku; u := u − α−k,−kv−k;

δ2k+1 := ‖u‖; v2k+1 := u/δ2k+1;

u := Av2k+1;

α2k+1,2k := v
T

2ku; u := u − α2k+1,2kv2k;

α2k+1,−k := v
T

−ku; u := u − α2k+1,−kv−k;
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α2k+1,2k+1 := v
T

2k+1u; u := u − α2k+1,2k+1v2k+1;

δ2k+2 := ‖u‖; v2k+2 := u/δ2k+2;

end

Given the orthonormal basis for the subspace Km,2m(A, v), analogously to (2.2), we define the

matrices

V3m+1 = [v0, v1, v2, v−1, . . . , v2m, v−m+1] ∈ Rn×(3m+1),

V3m+2 = [V3m+1, v2m+1] ∈ Rn×(3m+2).
(4.7)

Similarly to the construction in Section 2, the recursion coefficients generated by Algorithm 4.1 can be

used to determine a matrix Ĥ3m+1 = [hj,k] ∈ R(3m+2)×(3m+1), such that

AV3m+1 = V3m+2Ĥ3m+1, (4.8)

where the matrices V3m+1 and V3m+2 are given by (4.7). The leading submatrix H3m+1 ∈
R(3m+1)×(3m+1) of Ĥ3m+1 satisfies

H3m+1 = VT
3m+1AV3m+1. (4.9)

We note that even though four-term recursions occur in Algorithm 4.1, thematrixH3m+1 is pentadiag-

onal. The (3k − 2)th column of AV3m+1 is Av−k+1, and by the relation (4.6), withm replaced by k − 1,

or by the recursion formulas of Algorithm 4.1, we obtain, for k = 2, 3, . . . ,m − 1,

Av−k+1 = α−k+1,2k−2v2k−2 + α−k+1,−k+1v−k+1 + δ2k−1v2k−1. (4.10)

Hence, the only nontrivial entries of the (3k − 2)th column of H3m+1 are

h3k−3,3k−2 = α−k+1,2k−2, h3k−2,3k−2 = α−k+1,−k+1, h3k−1,3k−2 = δ2k−1.

The (3k − 1)th column of AV3m+1 is Av2k−1, and by relation (4.4) withm replaced by k, we obtain, for

k = 2, 3, . . . ,m − 1,

Av2k−1 = α2k−1,2k−2v2k−2 + α2k−1,−k+1v−k+1 + α2k−1,2k−1v2k−1 + δ2kv2k.

It follows that the (3k − 1)th column of H3m+1 only has the nontrivial entries

h3k−3,3k−1 = α2k−1,2k−2, h3k−2,3k−1 = α2k−1,−k+1,

h3k−1,3k−1 = α2k−1,2k−1, h3k,3k−1 = δ2k+1.

The nonvanishing entries of the (3k)th column are derived by multiplying expression (4.5) by the

matrixA and replacingmby k. The derivation of an expression ofAv2k in terms of vectors vj is analogous
to the derivation of (2.13). We obtain

Av2k = h3k−3,3kv2k−3 + h3k−2,3kv−k+1 + h3k−1,3kv2k−1 + h3k,3kv2k
+ h3k+1,3kv−k + h3k+2,3kv2k+1,

wherewehaveused the fact thatβ2k,2k = v
T

2kA
−1v2k > 0,which follows fromthepositivedefiniteness

of A. Orthonormality of the vectors vj and symmetry of A and H3m+1 now give

h3k−3,3k = h3k−2,3k = 0, h3k−1,3k = h3k,3k−1 = δ2k+1,

as well as

h3k+1,3k = −δ−kα−k,−k

β2k,2k
, h3k+2,3k = −δ−kδ2k+1

β2k,2k
,

h3k,3k = 1 − β2k,2k−1δ2k − α−k,2kδ−k

β2k,2k
.
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We also observe that, as a consequence of the symmetry of H3m+1,

h3k+1,3k = h3k,3k+1 = α−k,2k , h3k+2,3k = h3k,3k+2 = α2k+1,2k.

Example 4.1. Letm = 3. The matrix H10 is of the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0,0 δ1 0 0 0 0 0 0 0 0

δ1 α1,1 δ2 0 0 0 0 0 0 0

0 δ2 h3,3 α2,−1 α2,3 0 0 0 0 0

0 0 α2,−1 α−1,−1 α−1,3 0 0 0 0 0

0 0 α2,3 δ3 α3,3 δ4 0 0 0 0

0 0 0 0 δ4 h6,6 α4,−2 α4,5 0 0

0 0 0 0 0 α4,−2 α−2,−2 α−2,5 0 0

0 0 0 0 0 α4,5 δ5 α5,5 δ6 0

0 0 0 0 0 0 0 δ6 h9,9 α6,−3

0 0 0 0 0 0 0 0 α6,−3 α−3,−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Moreover, the matrix Ĥ10 in (4.8) is given by

Ĥ10 =
[
H10

h
T

10

]
with

h10 = −δ−3δ7

β6,6
e9 + δ7e10 ∈ R10.

5. Numerical examples

The computations in this section are performed using MATLAB with about 15 significant decimal

digits. In all examples, except when explicitly stated otherwise, A ∈ R1000×1000 and the vector v ∈
R1000 has normally distributed random entries with mean zero and variance one. We will refer to the

rational Lanczos method that uses the Krylov subspace K�,m(A, v) as Lanczos(�,m).
In all computed examples, we use Krylov subspaces of dimension 42. A reason for this is that 42 is

divisible byboth2and3, and this slightly simplifies the implementationof the rationalKrylov subspace

methods considered. We determine the actual value w, given by (1.1), as well as approximations

ŵww42 = V42f (H42)e1‖v‖
obtained by the Lanczos(21, 22) method of Sections 2 and 3 and by the Lanczos(14, 29) method of

Section 4. For comparison, we also compute the approximationw42, defined by (1.5) withm = 42, and

evaluated by using the (standard) Lanczos decomposition (1.3) withm = 42. We refer to this method

as Lanczos(42) in the tables, which display the errors ‖w − ŵww42‖ for Lanczos(21, 22) and Lanczos(14,

29), as well as the error ‖w − w42‖ for Lanczos(42), for several functions f .

All matrix functions are computed by means of the spectral decomposition of the matrix. For the

function f (x) = exp(x)/x, we evaluate (1.1) as exp(A)A−1v, whereA−1v is computedby solving a linear

system of equations. The rational Lanczos(21, 22) method yields the approximation

ŵww42 = V42 exp(H42)H
−1
42 e1‖v‖,

with the symmetric and pentadiagonal matrix H42 defined by (2.3). The vector H
−1
42 e1 is determined

by evaluating the first column of the pentadiagonal matrix G42 given by (2.4). Computations with

Lanczos(14, 29) are carried out similarly. The standard Lanczos(42) method determines the Lanczos

decomposition (1.3) withm = 42, which yields the approximation

w42 = V42 exp(T42)T
−1
42 e1‖v‖.
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This expression is evaluated by first solving a linear system of equations for the vector T
−1
42 e1.

The following examples show the approximations computed by using the rational Lanczos(21, 22)

andLanczos(14, 29)methods tobe superior to approximationsdeterminedby the standardLanczos(42)

method. For most examples Lanczos(14, 29) yields as accurate an approximation as Lanczos(21, 22).

This is interesting because for many matrices that arise in applications, matrix–vector products can

be evaluated faster than solutions of linear systems of equations with the matrix.

Example 5.1. We compute approximations of f (A)v determined by the standard and rational Lanczos

methods for the symmetric positive definite tridiagonal matrix A = n2[−1, 2,−1] of order n = 1000.

The approximation errors are reported in Table 5.1. Note that the rational Lanczos methods yield

significantly smaller approximation errors for many of the functions f than the standard Lanczos

method. Moreover, both rational Lanczos methods, Lanczos(21, 22) and Lanczos(14, 29), determine

approximations of about the same quality.

Example 5.2. Let A = [ai,j] be the symmetric positive definite Toeplitz matrix with entries ai,j =
1/(1 + |i − j|). Computed results are shown in Table 5.2.We remark that fast direct solutionmethods

are available for linear systems of equations with this kind of matrix; see, e.g., [3,25]. Approximations

of (1.1) determined by the rational Lanczos methods Lanczos(21, 22) and Lanczos(14, 29) are seen to

be of higher accuracy than approximations obtained with the standard Lanczos method. Both rational

Lanczos methods yield approximants of about the same accuracy.

Example 5.3. Let A = I + XTX , where X ∈ R1000×1000 has randomly generated normally distributed

entries with zero mean and variance one. Table 5.3 displays computed results and shows approxi-

mations of expressions (1.1) computed with the rational Lanczos methods to be more accurate than

approximations determined by the standard Lanczos method.

Example 5.4. Thematrixused in thisexample isof the formLetA=−(I + XTX),whereX∈ R1000×1000

is generated similarly as in Example 5.3. Table 5.4 shows the errors in approximations of (1.1) deter-

mined by the rational and standard Lanczos methods.

Table 5.1 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric positive

definite tridiagonal matrix A.

f (x) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)

exp(−x) 2.3 × 10−6 3.4 × 10−15 3.8 × 10−15√
x 1.3 × 100 2.1 × 10−2 3.6 × 10−2

exp(−√
x) 1.0 × 10−3 2.5 × 10−13 2.6 × 10−13

ln(x) 1.8 × 10−1 3.4 × 10−4 7.1 × 10−4

exp(−x)/x 2.4 × 10−7 3.5 × 10−16 3.9 × 10−16

Table 5.2 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric positive

definite Toeplitz matrix A.

f (x) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)

exp(−x) 8.2 × 10−15 8.2 × 10−15 8.1 × 10−15√
x 1.9 × 10−11 1.0 × 10−14 1.0 × 10−14

exp(−√
x) 1.9 × 10−11 6.9 × 10−15 7.0 × 10−15

ln(x) 3.0 × 10−10 1.4 × 10−14 1.3 × 10−14

exp(−x)/x 7.6 × 10−9 1.6 × 10−14 1.5 × 10−14
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Table 5.3 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric positive

definite matrix A = I + XTX , with X randomly generated.

f (x) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)

√
x 2.0 × 10−2 3.7 × 10−5 5.0 × 10−5

exp
(
−√

x
)

1.3 × 10−2 3.6 × 10−7 2.1 × 10−6

ln(x) 5.7 × 10−2 1.4 × 10−5 2.7 × 10−5

Table 5.4 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for the symmetric

negative definite matrix A = −(I + XTX), with X randomly generated.

f (x) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)

exp(x) 2.4 × 10−2 1.3 × 10−7 3.6 × 10−6

exp(x)/x 2.5 × 10−2 3.0 × 10−8 5.1 × 10−7

Table 5.5 Errors in approximations of f (A)vdeterminedby the standard and rational Lanczosmethods for a symmetric indefinite

matrix.

f (x) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)

exp(x) 2.4 × 10−13 4.0 × 10−10 2.8 × 10−13

exp(x)/x 2.1 × 103 2.8 × 10−10 3.8 × 10−10

Table 5.6 Errors in approximations of f (A)v determined by the standard and rational Lanczos methods for a symmetric positive

definite matrix.

f (x) Lanczos(42) Lanczos(21, 22) Lanczos(14, 29)

1/
√

x 1.4 × 10−2 5.6 × 10−13 2.7 × 10−12

Example 5.5. The matrix used in this example is symmetric indefinite and of the form

A =
[
B C

CT −B

]
,

where B is a tridiagonal symmetric Toeplitz matrix of order 500 with a typical row [−1, 2,−1]. All
entries of C ∈ R500×500 are zerowith the exception of the entry 1 in the lower left corner of thematrix.

Table 5.5 shows the error in approximations of (1.1) determined by the rational and standard Lanczos

methods. The standard Lanczos method is seen to be unable to determine an accurate approximation

of f (t) = exp(t)/t.

Example 5.6. The matrix used in this example is obtained from the discretization of the self-adjoint

differential operator L(u) = 1
10
uxx − 100uyy in the unit square. Each derivative is approximated by

the standard three-point stencil with 40 equally spaced interior nodes in each space dimension.

Homogeneous boundary conditions are used. This yields a 1600 × 1600 symmetric positive definite

matrix A. The initial vector v for the polynomial and rational Lanczos processes is chosen to be the unit

vector with all entries 1/40. Table 5.6 shows the errors in approximations of (1.1) determined by the

standard and rational Lanczos methods.

6. Conclusion and extension

The computed examples of Section 5 show that for many approximation problems (1.1) rational

Lanczos methods can give significantly higher accuracy with the same number of steps than the

standard Lanczos method. This is in agreement with the analyses presented in [4,11,12,17]. Rational

Lanczos methods require the solution of linear systems of equations, and it depends on the size,
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sparsity or structure of A if the solution of these systems is feasible. Structures, besides sparsity, that

makes it possible to solve large linear systems of equations fairly rapidly include bandedness and

semiseparability; see Vandebril et al. [25] for an authoritative treatment of the latter. In particular,

Toeplitz matrices are semiseparable.

Manymatrices of interest in applications allow faster computations ofmatrix–vector products than

solution of linear systems of equations. It therefore can be of interest to use a rational Lanczos method

that requires fewer linear systems to be solved thanmatrix–vector product evaluations. Section 4 illus-

trates that rational Lanczos methods for Krylov subspaces of the form K�,2�(A, v) can be implemented

with short recursion formulas, and the computed examples of Section 5 show that these rational

Lanczos methods are competitive with regard to accuracy. We are presently investigating properties

of rational Lanczos methods for Krylov subspaces K�,m(A, v)with different ratios m/�.
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