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Abstract

Rank aggregation, originally an important issue in social choice theory, has becomemore andmore
important in information retrieval applications over the Internet, such as meta-search, recommenda-
tion system, etc. In this work, we consider an aggregation function using a weighted version of the
normalized Kendall-� distance. We propose a polynomial time approximation scheme, as well as a
practical heuristic algorithm with the approximation ratio two for the NP-hard problem. In addition,
we discuss issues and models for the dynamic rank aggregation problem.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The rank aggregation problem finds a “consensus” ranking on a set of alternatives, based
on preferences of individual voters. The topic is the focus of social choice theory. Its
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applications have included elections, and most recently, the meta-search problem on the
Internet. The on-line version is especially useful for such applications, in that the top few
ranks may be constructed and be presented to the users before the orders of the rest of the
candidates are sorted out.
Dwork et al.[10] studied the rank aggregation problem in the context of Web searching

with an eye towards reducing spam in meta-search. They applied the criterion of Kendall-�
distance to evaluate the aggregated rank.TheKendall-�distance between two ranking lists is
the total number of pairs of alternatives that areassigned todifferent relativeorders in the two
ranking lists. Given a collection of partial rankings�1, �2, . . . , �k of alternative web pages,
they are interested in the complete ranking� that minimizes the average of the Kendall-�
distance between� and�i (i = 1,2, . . . , k). The problem was shown to be NP-hard for
fixed evenk�4 (that is, even for aggregation of a small number of ranking lists) and an
effective procedure “local Kemenization” was developed to obtain a local Kemeny optimal
ranking which satisfies the extended Condorcet criterion. A two-approximation algorithm
was obtained for full list rank aggregation but no proven approximation algorithm was
known for partial list rank aggregation[10].
In reality, however, different voters (search engines in our discussion) may not rank the

same candidate list. The metric of Kendall-� distance may not be the best for such cases of
partial rankings. If two partial rankings overlap over a small number of alternatives (and
thus their Kendall-� distance is small), onemay not have full confidence to conclude that the
two rankings differ a little. Dwork et al., further proposed a normalized Kendall-� distance
to deal with this problem with partial ranking lists. We follow the main idea embedded in
this approach and propose to consider both Kendall-� distance and the size of overlap of the
partial ranking lists for an alternative measure for partial ranking aggregation. That is, our
measure prorates the normalized Kendall-� distance by the number of common elements in
the two measured rank lists.
Therefore, for a given collection of partial rankings�1, �2, . . . , �k with different ranking

lengths, we are interested in finding a final ranking� of all the candidates such that the

sum of|N�i ∩N�|
(
1− D(�i ,�)

(
|N�i ∩N�|

2
)

)
is maximized, whereN�i is the set of alternatives in�i ,

N� is the set of alternatives in� andD(�i ,�) is the Kendall-� distance between� and�i
(i = 1,2, . . . , k). We use the convention that the above term will be evaluated to zero if
theN�i ∩N� is empty.We comment that this problem is equivalent to Kemeny aggregation
problem[10] in a weighted version. Here, the weight of each partial ranking is determined
by its overlap with the final ranking.
A particular feature of the rank aggregation problem on the web is that the number of

voters is much less than the number of alternatives. As of September 2002, there were
only 11 major general purpose search engines, and on the other hand, it was estimated that
Google1 has indexed about 968 million web pages by March 2002.2 Secondly, each voter
ranks a different set of alternatives, determined by the different coverage of web search

1 http://www.google.com.
2 http://www.searchengineshowdown.com.
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engines. Therefore, we should focus on this case where the number of voters is bounded by
a constant.
We focus on the new aggregationmethod (we call it the Coherence aggregation problem).

In Section 2, we introduce the formal definitions. We generalize the extended Condorcet
criterion (ECC) to the weighted case, and show that the Coherence optimal ranking for
partial ranking aggregation satisfies the weighted ECC. In Section 3, we discuss the NP-
hardness of the Coherence aggregation problem and present a heuristic algorithm with
performance ratio 2, and with a proof that the heuristic solution satisfies the weighted ECC.
We note that although the Kemeny aggregation problem and the Coherence aggregation
problem are equivalent in the weighted case, they are not equal in approximation. There is
noapproximationalgorithmwith constant ratio forKemenyaggregation for partial rankings.
In Section 4, we derive a PTAS for the Coherence aggregation problem. Our approach is
motivated by techniques developed in[1,2]. Arora et al.[2] presented an unified framework
for designing polynomial time approximation schemes (PTASs) for “dense” instances of
many NP-hard optimization problems. Their unified framework begins with the idea of
exhaustive sampling: picking a small random set of elements, guessing where they go on
the optimum solution, and then using their placement to determine placement of other
elements. Arora et al.[2] applied this technique to some ‘smooth’ assignment problems by
shrinking the space of possible placements of the random sample. The unweighted version
of our model can be reduced to the maximum acyclic subgraph problem and the required
smoothness condition is satisfied. It follows that a PTAS can be obtained by their general
framework for the unweighted case. For the weighted case, the smoothness condition on
the coefficients in their unified approach is not satisfied. Our solution further extends and
exploits their general methodology and provides new insight into design and analysis of
PTAS.
In Section 5, we discuss the dynamic version which is interesting for application to the

meta search problem over the Internet, where rank aggregation is dynamic in nature and
involves in a large corpus of data. We discuss various algorithmic issues here and propose
interesting research problems. In Section 6, we conclude with remarks on our results and
discussion on future directions.

2. Definitions

Given a set of alternativesN = {1,2, . . . , n}, a ranking� with respect toN is a
permutation of some elements ofN which represents a voter’s or a judge’s preference
on these alternatives. If� orders all the elements inN , it is called a complete ranking;
otherwise, a partial ranking. For a ranking�, letN� denote the set of elements presented in
�, |�| = |N�| denote the number of elements in�, or the length of�. For eachi ∈ N�, �(i)
denote the position of the elementi in �, and for any two elementsi, j ∈ N�, �(i) < �(j)
implies thati is ranked higher thanj by �.
The rank aggregation problem is to combine a number of different rank orderings on a set

of alternatives, in order to obtain a ‘better’ ranking. The notion of ‘better’ depends on what
objective we strive to optimize. Among numerous ranking criteria, the methods based on
Kendall- � distanceare accepted and studied extensively[14,3–5,7]. The Kendall-� distance
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between two rankings� and� is defined as

D(�,�) = |{(i, j) : �(i) < �(j) but�(i) > �(j) ∀i, j ∈ N� ∩N�}|.
Given a collection of partial rankings�1, �2, . . . , �k, the Kemeny optimal aggregation is
a complete ranking� with respect to the union of the elements of�1, �2, . . . , �k which
minimizes the total Kendall-� distanceD(�; �1, . . . , �k) =∑k

i=1D(�, �i ).
For two partial rankings, if it is not the case that the elementsi andj appear in both

rankings, the pair(i, j) contributes nothing to their Kendall-� distance. This implies that
Kendall-� distance ignores the effect of the size of “overlap” in the measure of the dis-
crepancy of two partial rankings. In view of this, we consider another measurement based
on the size of “overlap” and normalized Kendall-� distance, calledcoherence, to further
characterize the relationship of two rankings.

Definition 2.1. For two partial rankings� and� with |N� ∩ N�|�2, the coherence of
� and� is defined as

�(�,�) = |N� ∩N�|

1− D(�,�)( |N�∩N�|

2

)

 .

When|N� ∩N�|�1, we define the coherence�(�,�) = 0.

Definition 2.2. For a collection of partial rankings�1, �2, · · · , �K and a complete ranking
� with respect toN = N�1 ∪ · · · ∪ N�K , |�s | = ns�2 (s = 1,2, . . . , K), we denote the
total coherence by

�(�; �1, . . . , �K) =
K∑
s=1

�(�, �s) =
K∑
s=1

ns

(
1− D(�, �s)(

ns
2

)
)
.

The Coherence optimal aggregation is a complete ranking of the elements inN which
maximizes the total coherence�(�; �1, . . . , �K) over all complete rankings�. The problem
of finding the Coherence optimal aggregations is called Coherence aggregation problem.

In the definition of coherence, the contribution of partial ranking�s (s = 1,2, . . . , K)

to the total coherence�(�; �1, . . . , �K) is

ns

(
1− D(�s ,�)(

ns
2

)
)
= 2

ns − 1

[(ns
2

)
−D(�s ,�)

]
.

Let

�s = 2

ns − 1
, s = 1,2, . . . , K.

If �s is considered as the weight of the corresponding ranking, the Coherence aggregation
problem isequivalent to theKemenyaggregationproblem in theweighted version,where the
weight of each partial ranking is determined by its overlap with the final ranking.When the
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lengths of all partial rankings are equal, the Coherence aggregation problem is equivalent to
the Kemeny aggregation problem proposed by Dwork et al.[10]. Kemeny optimal rankings
are of particular interest because they satisfy the extended Condorcet criterion (ECC): if
there is a partition(P, P̄ ) of the elements inN such that for anyi ∈ P andj ∈ P̄ , the
majority prefersi to j , theni must be ranked higher thanj . Recently, Dwork et al.,[10]
studied the Kemeny optimal aggregation problem in the context of the Web and showed
that ECC has excellent “spam-fighting” properties in the context of meta-search. When
the weights are imposed upon the rankings, we can generalize the ECC to the following
weighted version.

2.1. Weighted ECC

Given partial rankings�1, �2, . . . , �K and the corresponding weights�1, �2, . . . , �K . Let
� be a complete ranking of their aggregation. For any partition(P, P̄ ) of the elements of
N , and for alli ∈ P andj ∈ P̄ , if we have

∑
s:�s (i)<�s (j) �s >

∑
s:�s (i)>�s (j) �s , then in the

aggregation�, i is ranked higher thanj . We call� satisfying the weighted (ECC).

Proposition 2.1. Let � be a coherence optimal aggregation for partial rankings
�1, �2, . . . , �K . Then� satisfies the weighted extended Condorcet criterion with respect to
�1, �2, . . . , �K and their weights�1,�2, . . . ,�K .

Proof. Suppose that there is a partition(P, P̄ ) of N such that for alli ∈ P andj ∈ P̄ we
have that

∑
s:�s (i)<�s (j) �s >

∑
s:�s (i)>�s (j) �s , but there exist two elementsi∗ ∈ P and

j∗ ∈ P̄ such that�(j∗) < �(i∗). Let (i∗, j∗) be an adjacent such pair in�. Let �′ be the
ranking obtained by transposing the positions ofi∗ andj∗. Then we have that

�(�′; �1, . . . , �K)− �(�; �1, . . . , �K) = ∑
s:�s (i∗)<�s (j∗)

�s − ∑
s:�s (j∗)<�s (i∗)

�s > 0,

which contradicts to the optimality of�. �

3. Complexity and Heuristic algorithm

For partial rankings of length 2, finding Coherence optimal aggregation is exactly the
same problem as finding an acyclic subgraph with maximumweight in a weighted digraph,
and hence is NP-hard[13]. Bartholdi et al.[5] proved that the Kemeny aggregation problem
is NP-hard for an unbounded number of complete rankings. Their proof can also derive the
proof of NP-hardness for the Coherence aggregation problem for an unbounded number of
partial rankings with unbounded length. On the other hand, Dwork et al.[10] discussed the
hardness in the setting of interest in meta-search: many alternatives and very few voters.
They showed that computing a Kemeny optimal ranking is still NP-hard for any fixed even
K�4. Their result derives directly the NP-hardness of the Coherence aggregation problem
for all integerK�4, since oddnumber of partial rankings canbeobtained fromevennumber
of complete rankings by splitting one complete ranking into two partial rankings.
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Theorem 3.1. The Coherence aggregation problem for a given collection ofK partial
rankings, for integerK�4, is NP-hard.

In the rest of this paper, when the given collection of rankings{�1, . . . , �K} is clear
from the context, we will denote�(�; �1, . . . , �K) by �(�). The following proposition
gives a relationship between an aggregation and its reversal for a given collection of partial
rankings, which derives the performance ratio of our heuristic algorithm.

Proposition 3.2. Let� and�r be an aggregation total ranking and its reversal with respect
to a collection of rankings�1, �2, . . . , �K , respectively. Then

�(�)+ �(�r ) =
K∑
s=1

ns.

Proof. By the definition of coherence,

�(�)+ �(�r )=
K∑
s=1

ns

(
1− D(�, �s)(

ns
2

)
)
+

K∑
s=1

ns

(
1− D(�r , �s)(

ns
2

)
)

=
K∑
s=1

2

ns − 1

[
2
(ns
2

)
−D(�, �s)−D(�r , �s)

]
=

K∑
s=1

ns,

where the last equality holds becauseD(�, �s)+D(�r , �s) =
(
ns
2

)
. �

Followed from Proposition3.2, for any aggregation� and its reversal�r with respect
to �1, �2, . . . , �K , a simple 2-approximation algorithm can be obtained by comparing the
coherence values of� and �r . In this section, we investigate heuristic procedures that
construct a better aggregation while taking into account the data of the given instance of
the problem. The algorithm consists of two parts: Initial Ranking and Adjustment.
Given a collection of partial rankings�1, . . . , �K with |�s | = ns�2 (s = 1,2, . . . , K)

andN = N�1 ∪ · · · ∪N�K = {1,2, . . . , n}, the weight of each partial ranking is defined as
�s = 2/(ns − 1), s = 1,2, . . . , K. For each ordered pair(i, j)(i, j ∈ N), we define the
preference valuerij as the sum of weights of the partial rankings which ranki higher than
j , that is,

rij = ∑
s:�s (i)<�s (j)

�s .

Thus, the Coherence aggregation problem is to find a ranking� of N that maximizes the
total Coherence�(�) =∑(i,j):�(i)<�(j) rij .

For each elementi ∈ N , denote

P(i) = ∑
j :j �=i

rj i and Q(i) = ∑
j :j �=i

rij .

Wenote thatP(i)andQ(i)are the contributions to the total Coherence by assigning element
i in the lowest position and the highest position of the ranking, respectively. The main idea
of initial ranking procedure is, in every iteration, to arrange some element to the lowest or
highest position, according to their contributionsP(i) andQ(i). In adjustment procedure, if
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there are two adjacent ordered elementsik andik+1 such thatrikik+1 < rik+1ik in the ranking
obtained already, we transpose the positions of them to get a better ranking.

Initial ranking procedure
1. SetS ← N , u← 1 andv← n.
2. Compute� = maxi∈S{|P(i)−Q(i)|}, and denotei∗ the element with the largest�.
If P(i∗)�Q(i∗), set�(i∗) ← u, u ← u + 1; if P(i∗) > Q(i∗), set�(i∗) ← v,

v← v − 1. For each elementj ∈ S\{i∗}, let
P(j)← P(j)− ri∗j and Q(j)← Q(j)− rji∗ .

And setS ← S\{i∗}.
3. If v > u, go to Step 2; else, stop and output the ranking�.

Adjustment procedure Given a ranking� = i1, i2, . . . , in.
1. Set�∗ ← j1← i1 andl← 1.

2. Computek∗ =
{
0 ∀1�k�l, rjkil+1�ril+1jk
max{k : 1� k� l, rjkil+1 > ril+1jk } otherwise.

Insert elementil+1 at positionk∗ + 1 and get a new ranking withl + 1 elements:
Fork� k∗, setjk ← jk.
Fork = k∗ + 1, setjk ← il+1.
Fork∗ + 1< k� l + 1, setjk ← jk−1.
Set�∗ ← j1, . . . , jl+1, andl← l + 1.

3. If l < n, go to Step 2; else, stop and output the ranking�∗.
The coherence preserved by the initial ranking procedure is at least one-half of the total

value
∑K

s=1 ns , since this property holds in every iteration with respect to the coherence
incurred by the elementi∗. We remark that there may be some other rules for choosing
the elementi∗ in the initial ranking procedure for choosing and ranking the corresponding
element, such as, according to the value (1)� = maxi∈S{P(i)} = P(i∗); or (2) � =
maxi∈S{Q(i)} = Q(i∗). The main idea of our adjustment procedure is similar to the local
Kemenization procedure investigated in[10], which computes a locally Kemeny optimal
aggregation of�1, �2, . . . , �K being maximally consistent with the initial ranking. Since
in adjustment procedure, insertion of a new element in each iteration can be viewed as a
number of consecutive swaps of neighboring elements in the original ranking, following
from the definition of weighted ECC and Proposition2.1, we have

Proposition 3.3. Let�∗ be a ranking obtained from adjustment procedure with respect to
�1, �2, . . . , �K and their weights�1,�2, . . . ,�K . Then�∗ satisfies the weighted ECC.

4. PTASs

Arora et al.[2] presented a unified framework for developing into PTASs for “dense”
instances of many NP-hard optimization problems, such as, maximum cut, graph bisection
and maximum 3-satisfiability. Their unified framework begins with the idea of exhaustive
sampling: picking a small random set of elements, guessing where they go on the optimum
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solution, and then using their placement to determine the placement of other elements.
Arora et al.[1] applied this technique to assignment problems by shrinking the space of
possible placements of the random sample. They designed PTASs for some ‘smooth’ dense
subcases of many well-known NP-hard arrangement problems, including minimum linear
arrangement,d-dimensional arrangement, betweenness, maximum acyclic subgraph, etc.
In this section, we show that the same techniques in[1] can also derive a PTAS for the
Coherence aggregation problem, though the coefficients do not satisfy the ‘smoothness’
condition.
In this section, we consider the Coherence aggregation problem forK partial rankings

�1, �2, . . . , �K , whereK is an integer independent ofn = |N | = |N�1 ∪ · · · ∪ N�K |,
|�s | = ns�3 (s = 1,2, . . . , K). The weight of each partial ranking�s and the preference
valuerij are defined as in Section 3.According to Proposition3.2, for any complete ranking
� and its reversal�r ,�(�)+�(�r ) =∑K

s=1 ns� n, the optimal value of this problem is no
less thann/2. Therefore, to obtain an optimal ranking with at least the value(1− �) times
the optimum, where� > 0 is arbitrary, it suffices to find a ranking whose value is within an
additional factor of�n from the optimal value of the optimal ranking for a suitable� > 0.
Our main result is presented in the following theorem.

Theorem 4.1. Suppose the ranking�∗ is the optimal solution of theCoherence aggregation
problem. Then for any fixed� > 0, in timenO(1/�

2) we can find a ranking� ofN such that

�(�)��(�∗)− �n.

Several Chernoff-style tail bounds are important in the analysis of randomized procedure.
The following result is needed repeatedly in this paper, which we present as a lemma for
completeness.

Lemma 4.2. (Arora et al. [1])Let X1, X2, . . . , Xn be n independent random variables
such that0�Xi�1.Then forX =∑n

i=1 Xi , 	 = E[X] and
�0,

Pr[|X − 	| > 
]�2e−2

2/n.

Let � be a given small positive, andt = c/� for some suitable large constantc > 0.
Here we assume for simplicity thatn is a multiple oft . Partition the positions{1,2, . . . , n}
in the final ranking into consecutive equal-sized intervalsI1, I2, . . . , It , each of sizen/t .
A placementis a mappingg : N → {1,2, . . . , t} from the setN to the set of intervals
I1, I2, . . . , It . A placement is calledproper if it mapsn/t elements ofN to each interval,
that is, for every 1� j� t , |{i ∈ N |g(i) = j}| = n/t . Every complete ranking corresponds a
proper placementwhich is called the induced placement. Two different rankingsmay induce
the same placement in which case they only differ “locally”. The value of a placementg,
denoted by�(g), is defined as

�(g) = ∑
(i,j):g(i)<g(j)

rij =
K∑
s=1

�s |{(i, j) : �s(i) < �s(j)andg(i) < g(j)}|.
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An optimal placement is a proper placementwhichmaximizes the value�(g) over all proper
placementg.

Lemma 4.3. If � is a ranking andg is its induced proper placement, then

�(g)��(�)��(g)+ 2Kn

t
.

Proof. The lower bound follows from the fact that�(�) − �(g) = ∑
�(i)<�(j),g(i)=g(j)

rij�0. For each partial ranking�s (s = 1,2, . . . , K), the elements in�s give additional
coherence value to the ranking� at most(

n/t

2

)
×
(
ns

n/t

)
× �s =

(n
t
− 1

)
× ns

ns − 1
� 2n

t
.

Therefore, the total difference between�(�) and�(g) is at mostK × (2n/t). �
Let �∗ be an optimal ranking andg∗ be its induced placement, and let�′ = (1− 2K

c
)�.

Assume thatg is a proper placement such that

�(g)��(g∗)− �′n,

and� is an arbitrary ranking such thatg is the placement induced by�. By Lemma4.3,
we have that

�(�)��(g)��(g∗)− �′n��(�∗)− 2Kn

t
− �′n = �(�∗)− �n.

Therefore, finding an optimal ranking to our problem can be reduced to the problem of
finding a proper placement within an additive factor of�′n from the optimal placement.
The optimal placement problem can be formulated as a quadratic arrangement problem

Max
K∑
s=1

[∑
ijkl

csijklxikxjl

]

s.t.
n∑

i=1
xik = n/t, k = 1,2, . . . , t,

t∑
k=1

xik = 1, i = 1,2, . . . , n,

xik = 0,1, i = 1,2, . . . , n; k = 1,2, . . . , t.

Here,csijkl =
{

�s if �s(i) < �s(j) and 0< k < l,

0 otherwise.
Let g be a proper placement, and letgik = 1 if the elementi is assigned to intervalIk by

g, andgik = 0 otherwise. For eachi ∈ N�s andk = 1,2, . . . , t , we define

êsik =
∑
j l

csijklgjl = �s |{j ∈ N�s : �s(i) < �s(j) andg(j) > k}|.
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We also definêesik = 0 for i �∈ N�s (k = 1,2, . . . , t). Then the proper placementg
corresponds to an integral solution to the following linear program:

Max
K∑
s=1

[
n∑

i=1

t∑
k=1

êsikxik

]

s.t.
n∑

i=1
xik = n/t, k = 1,2, . . . , t,

t∑
k=1

xik = 1, i = 1,2, . . . , n,∑
j l

csijklxjl = êsik, s = 1,2, . . . , K; i ∈ N�s ; k = 1,2, . . . , t,

0� xik�1, i = 1,2, . . . , n; k = 1,2, . . . , t.

We will use the method of exhaustively sampling[1,2] to estimatêesiks. However, since the
lengths ofK given partial rankings may be quite different from each other, the coefficients
of above quadratic arrangement problem do not satisfy the “smooth” condition. Thus, to
make a more accurate estimate of different coefficients, we extendArora’s framework[1,2]
by making sampling and estimation for each given ranking separately.
The main idea is: first we make independent experiments for each given rankings to

get different sampling setsT1, T2, . . . , TK ; then we put all the sampling sets together and
enumerate all possible placementh that assign the elements inT = ∪Ki=1Ti to intervals
I1, I2, . . . , It ; finally we make use of the restriction placement ofh onTss to estimate the
coefficientsêsiks of different rankings.
Our procedure of exhaustively sampling is as follows. Randomly picking with replace-

ment a multi-setTs of O(log ns/�
2) elements (where� is a sufficiently small fraction of�′

which we will determine later) from the setN�s (s = 1,2, · · · ,K), respectively, we esti-
mateêsik by the sum(ns/|Ts |)�s |{j ∈ Ts : �s(i) < �s(j) andg(j) > k}|. Thus, we chose
randomly a multi-setT = T1∪· · ·∪TK with size|T | = O(log n). Since the optimal place-
ment is not known in advance, we enumerate all possible functionh : T → {1,2, . . . , t}
that assign elements inT to intervalsI1, I2, . . . , It . For each such function, we solve a
linear programMh described below and round the (fractional) optimal solution to con-
struct a proper placement. Among all these placements, we pick up one with maximum
value. When the functionh we considered is the same ash∗ which is the restriction of an
optimal placementg∗ toT , the placementg we get from the linear programMh will satisfy
�(g)��(g∗)− �′n with high probability, over the random choice ofT .
Let h be a given functionh : T → {1,2, . . . , t}. For simplicity, we will identifyh with

its restrictions onTs ’s (s = 1,2, . . . , K) in the rest of this section. For the partial ranking
�s , we compute an estimateesik of the valueêsik when assigning the elementi ∈ N�s to
intervalIk (k = 1,2, . . . , t) in any placementg whose restriction toTs is h:

esik =
ns

|Ts |�s |{j ∈ Ts : �s(i) < �s(j) andh(j) > k}|

and setesik = 0 for the elementi �∈ N�s (k = 1,2, . . . , t).
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Lemma 4.4. Pick uniformly at random with replacement a multi-setTs of O(log ns/�
2)

elements fromN�s . Let g be a placement andh be the restrictions ofg on Ts . Then with
high probability (over the choice of sampleTs),

|esik − êsik|�3�. (4.1)

Proof. LetXl be a random variable that equals�s = 2/(ns −1) if the lth element sampled
is j and�s(i) < �s(j), g(j) > k; otherwise,Xl = 0. Note that

∑
l

Xl = |Ts |
ns

esik, E

[∑
l

Xl

]
= |Ts |

ns
êsik.

Divide eachXl by �s to scale it to{0,1}-variable. Applying Lemma 4.2 to the sum of
X1, X2, . . . , X|Ts | after scaling, with
 = �|Ts | and |Ts | = O(log ns/�

2), we have with
high probability that

|Ts |
ns�s

|esik − êsik|� 
 = �|Ts |, i.e. |esik − êsik|� �ns�s�3�. �

Consider the following linear programMh:

Mh :

Max Z(x) =∑K
s=1

(
n∑

i=1

t∑
k=1

esikxik

)

s.t.
n∑

i=1
xik = n/t, k = 1,2, . . . , t,

t∑
k=1

xik = 1, i = 1,2, . . . , n,∑
j :�s (i)<�s (j)

∑
l:l>k

�sxjl − esik‖�3�, s = 1,2, . . . , K;
i ∈ N�s ; k = 1,2, . . . , t,
0� xik�1, i = 1,2, . . . , n; k = 1,2, . . . , t.

Let xh be the optimal solution forMh. We roundxhik using randomized rounding tech-
niques of Raghavan and Thompson[16] to obtain a placement̃r and corresponding proper
placementrh as follows: (1) for each elementi, independently takẽr(i) = k with probabil-
ity xhik; (2) construct a proper placementrh from r̃ by moving elements from intervals with
more thann/t elements assigned to them to intervals with less thann/t elements assigned
to them arbitrarily. We will discuss the relation between the optimal valueZ(xh) of Mh

and the value of corresponding placementrh, �(rh). Let

Zs(x
h) =

n∑
i=1

t∑
k=1

esikx
h
ik, Z(xh) =

K∑
s=1

Zs(x
h);

�s(r̃) = �s |{(i, j) : �s(i) < �s(j) andr̃(i) < r̃(j)}|, �(r̃) =
K∑
s=1

�s(r̃).
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Lemma 4.5. Leth be a function that assigns elements ofT to intervalsI1, I2, . . . , It , and
rh be the proper placement constructed from the optimal fractional solutionxh of Mh.
Then

�(rh)�Z(xh)− 4K�n. (4.2)

Proof. First think of the placement̃r obtained after randomized rounding ofxh as a vector
x̃ such thatx̃ik = 1 if and only if r̃(i) = k. From the randomized rounding procedure, we
obtain that for the partial ranking�s (s = 1, . . . , K),

E

[
n∑

i=1

t∑
k=1

esikx̃ik

]
= Zs(x

h).

Let Xik be the random variable taking the valueesik if x̃ik = 1 and 0 otherwise. Scaling
Xik ’s to the interval[0,1] (esik = O(1)), and applying Lemma 4.2 to the sum of the scaled
variablesXik, we have with high probability,∣∣∣∣ n∑

i=1

t∑
k=1

esikx̃ik − Zs(x
h)

∣∣∣∣�O
(√

ns log ns

)
. (4.3)

Next, we consider the difference between
∑n

i=1
∑t

k=1 esikx̃ik and the partial placement
value�s(r̃). Let

f̃ s
ik =

∑
j :�s (i)<�s (j)

∑
l:l>k

�s x̃j l and f s
ik =

∑
j :�s (i)<�s (j)

∑
l:l>k

�sx
h
jl .

By the definition ofr̃, we haveE[f̃ s
ik] = f s

ik. Let Yjl be the random variable taking the
value�s if x̃j l = 1 and 0 otherwise. Applying Lemma 4.2 to the sum of random variables
Yjl/�s , we obtain with high probability that̃f s

ik� f s
ik −O(

√
log ns/ns). Also sincexh is

a feasible solution toMh, |f s
ik − esik|�3�, we have

f̃ s
ik� f s

ik −O(
√
log ns/ns)� esik − 3�−O(

√
log ns/ns). (4.4)

Combining the formulas (4.3), (4.4) and
∑n

i=1
∑t

k=1 x̃ik = ns ,

�s(r̃) =
n∑

i=1

t∑
k=1

f̃ s
ikx̃ik�

n∑
i=1

t∑
k=1
[esik − 3�−O(

√
log ns/ns)]x̃ik

=
n∑

i=1

t∑
k=1

esikx̃ik −
n∑

i=1

t∑
k=1
[3�+O(

√
log ns/ns)]x̃ik

� Zs(x
h)− 3�ns −O(

√
ns log ns). (4.5)

Therefore,

�(r̃) =
K∑
s=1

�s(r̃)�
K∑
s=1
[Zs(x

h)− 3�ns −O(
√
ns log ns)]

� Z(xh)− 3K�n−O(
√
n log n). (4.6)

From the construction of̃r, we have||{i : r̃(i) ∈ Ik}| − n/t |�O(
√
n log n), with high

probability. Thus, we move at most O(
√
n log n) elements to obtain the proper placement
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rh from r̃. This changes the value of the placement at most O(
√
n log n). It follows (4.6)

that

�(rh)�Z(xh)− 3K�n−O(
√
n log n)�Z(xh)− 4K�n.

The last inequality holds becauseK and� are both constant, and O(
√
n log n) < K�n for

largen. �

Lemma 4.6. Letg∗ be the optimal placement, h∗ be the restriction ofg∗ to the sampleT
andr∗ be the proper placement constructed from the optimal solutionx∗ ofMh∗ . Then

�(r∗)��(g∗)− �′n.

Proof. It follows from Lemma 4.4 that with high probability,g∗ is a feasible solution to
Mh∗ , hence,

Z(x∗)�Z(g∗)��(g∗)− 3K�n,

where the second inequality is obtained by substituting the lower bound on the estimates
esik in (4.1). Also from Lemma 4.5,�(r∗)�Z(x∗)− 4K�n, we have that

�(r∗)��(g∗)− 7K�n.

By choosing� = �′/7K, the result follows. �
In this procedure, we enumerate all possible functionh : T → {1,2, . . . , t} and choose

a placement with maximum value among all placementrh constructed. Sincer∗ is a
candidate for our chosen placementrh, and we choose the placement with maximum
value which is no less than the value ofr∗, therefore, we obtain the desired result of
Theorem 4.1.
The PTAS described above uses randomization in picking the sample set of elementsT

and in rounding the optimal solution to linear programMh. For the procedure of rounding
the optimal solutionxh of linear programMh, we can derandomize it in a standard way
using the method of conditional probabilities[15]. As discussed in[1] (also in[12]), the
procedure of sampling the set of elementsTs can be substituted by an alternative way of
picking random walks of length|Ts | on a constant degree expander graph. Since there are
only polynomial many random walks of length|Ts | = O(log ns/�

2) on this expander, the
procedureof sampling the total setT canbesubstitutedbypickingpolynomialmany random
walksof lengthO(log n/�2).Thus,wecanderandomize thealgorithmbyexhaustivelygoing

through all possibilities, i.e.,t |T | = tO(log n/�2) = nO(1/�
2) placements of the elements in

the sample. The running time of our algorithm isnO(1/�
2).

5. Dynamic ranking problems

In meta search applications, the rank aggregation problem is often dynamic. Partial rank
lists from the voters arrive and become available to the aggregation function a block at a
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time. To simplify our discussion, we consider a model where the rank list of each voter
arrives one candidate by one candidate in the decreasing order of their ranks. The arrival
times of rank lists of different voters are not coordinated and are in arbitrary orders. That
is, the rank list of Voter 1 may all arrive before any information is known of Voter 2’s rank
list; or they may also arrive alternatively, one from Voter 1’s list and one from Voter 2’s
list. Such uncertainty is a matter of fact in today asynchronous communication networks
on which the Internet is based. Note that information from some voters may not arrive at
all. Still the user request of an aggregated rank list is to be met.
Naturally, a data structure problem pops up itself here: update the aggregated rank list

when a piece (or a block) of new data (in the form of partial rank lists) arrive. The problem
would require different data structures for different aggregation functions. For concreteness
and illustration purpose, we discuss the solution for the Borda’s rule. Recall that the Borda’s
rule is a positional method where each candidate in a rank list is assigned a score equal to
the number of candidates that ranked below it, and its total score is the sum of its scores in
all the rank lists. The final rank is in the decreasing order of candidate’s total scores. For
simplicity, we consider candidates of the same total score tied for the position.Another issue
for our application is how to assign scores to candidates whose scores are not yet known.
There are various methods dealing with it, we should adopt one that assign the same score
to all candidates not yet appeared in a voter’s partial rank list, at the same total value as they
have. For a given collection of partial lists, the above definition specifies an aggregation
value for the candidates and results in a rank list for them. However, each time a partial
list gets updated with its next candidate becomes known, the aggregated value of all the
candidate’s that has not appeared in the partial list will change that may result in a change
of the aggregated rank list.
In addition to the data structure problem, there are other related problems. The aggregated

rank of some candidates may become fixed, no matter what the not-yet-known partial lists
of some voters. To determine this subset of candidates is interesting for some applications.
Sometimes, we may not be interested in the ranks of all candidates but the top few (and
not even their orders but the fact that they are identified to be among the top few). The
computational problem can be easy for some aggregation functions and difficult for others.
Note that, wemay be interested in making aminimum number of the total size of the partial
lists of the voters to determine the top few since that queries over the Internet are costly.
However, in the worst case, we may have to go through all the lists even to determine the
top element in a aggregate ranking list for many aggregation method, e.g., for the Borda
rule.

Proposition 5.1. To determine the top element of the aggregated ranking list form lists of
n candidates according to the Borda’s rule, we may have to go through all the elements
(but the last one) for all the lists.

Obviously, such extreme cases are rare and may represent issues deserve further stud-
ies in information retrieval. For example, if the candidate lists are obtained by keyword
searches on different search engines, such worst case outcome may represent cases of
a high level of ambiguity in the language. Therefore, we introduce the following
definitions:
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Definition 5.2. Considerm lists ofn candidates, if thekth ranked element in the aggregated
list, according to a aggregation rule, can be determined by examination of a total of O(mk)

elements in them candidate lists, the collection ofm lists is called a coherent collection for
the aggregation rule.

A study of coherent collections for social choice rules would be an interesting research
topic. A more relaxed definition could allow the number of items examined to be up to
O(mf (k)) for a moderately growing functionf (k). In comparison, we may define a non-
coherent collection of candidate lists to be one such that it is necessary to examine(mg(n))
elements, for a non-trivial increasing functiong(n), to determine the topk ranked element
in the aggregated list.

6. Remarks and discussion

The application of rank aggregation methods to meta search has attracted research atten-
tion recently[10,19]. Considering the distinct features in the context of meta-search on the
web, we have developed a new rank aggregation method based on the criterion of Coher-
ence.We have proposed not only a practical heuristic algorithm with the solution satisfying
the weighted extended Condorcet criterion, but also a theoretical PTAS for the Coherence
aggregation problems. Our algorithm extends and exploits the general framework of Arora
et al.[1,2], for design and analysis of polynomial time approximation schemes.
Our work combines the normalized Kendall-� distance and the size of overlap between

ranking lists in rank aggregation context. Other metrics in social choice theory are also
worth of further exploration with the algorithmic approach.
Note that, the work of Dwork et al.[10], first seriously applies algorithmic method to the

study of rank aggregation and their approximation algorithm of ratio two for full ranking
Kendall-� distance minimization relies on its deep relationship with Spearman’s footrule
distance, developed in Statistics[8]. Our work extends their proposed normalized Kendall-�
distance for partial rankings and obtains a PATS.
There are other models where ranking lists are weighted differently. Compared with

traditional voting problemwhere each voter is treated equally in the aggregation procedure,
each voter in weighted case will make different contribution to the final aggregation result.
The weight for each voter (search engine) could be computed according to its quality
(performance). Some approaches have been proposed to evaluate the quality of the web
search engine, such as statistical approach in[18] where some statistical information such
as query term frequency is kept to predict the quality of the search engine, and learning
based approach in[9,11]where users past retrieval experiences on these search engines are
utilized to predict the quality of them.
Dynamic models for the rank aggregation problem is important for the applications

to information retrieval over the Internet. A practical issue related to meta search is that the
delays between submitting a query and obtaining candidate lists from different search
engines may not be even[6]. It would be interesting to include this factor into
consideration.
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