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a b s t r a c t

The European Union relies largely on bioenergy to achieve its climate and energy targets for 2020 and
beyond.

We assess, using Attributional Life Cycle Assessment (A-LCA), the climate change mitigation potential
of three bioenergy power plants fuelled by residual biomass compared to a fossil system based on the
European power generation mix. We study forest residues, cereal straws and cattle slurry.

Our A-LCA methodology includes: i) supply chains and biogenic-CO2 flows; ii) explicit treatment of
time of emissions; iii) instantaneous and time-integrated climate metrics.

Power generation from cereal straws and cattle slurry can provide significant global warming miti-
gation by 2100 compared to current European electricity mix in all of the conditions considered.

The mitigation potential of forest residues depends on the decay rate considered. Power generation
from forest logging residues is an effective mitigation solution compared to the current EU mix only in
conditions of decay rates above 5.2% a�1. Even with faster-decomposing feedstocks, bioenergy tempo-
rarily causes a STR(i) and STR(c) higher than the fossil system.

The mitigation potential of bioenergy technologies is overestimated when biogenic-CO2 flows are
excluded. Results based solely on supply-chain emissions can only be interpreted as an estimation of the
long-term (>100 years) mitigation potential of bioenergy systems interrupted at the end of the lifetime
of the plant and whose carbon stock is allowed to accumulate back.

Strategies for bioenergy deployment should take into account possible increases in global warming
rate and possible temporary increases in temperature anomaly as well as of cumulative radiative forcing.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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bioenergy as one of the main renewable, low-carbon sources to
achieve its ambitious climate and energy targets for 2020 and
beyond [1]. More recently, a new EU energy strategy [2] has called
for a profound transformation of Europe's energy system, based on
a more secure, sustainable and low-carbon economy, with a
commitment to achieve by 2030 at least 27% share of renewables
on the EU's energy consumption and 40% greenhouse gas emission
reduction relative to emissions in 1990 [3].

Bioenergy is currently the major source of renewable energy in
the EU. The demand for biomass in the EU and world-wide is
increasing, both in the heating and in the power sector. In 2013,
renewable sources generated 26% of EU's electricity, and the target
is to reach at least 34% of power generation in 2020 and 45% in
2030. Biomass use for electricity grew by 11% per year during
period 2005e2012, and it increased further to reach 18.7% of final
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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renewable electricity consumption in 2013. Power produced from
biomass is expected to exceed 839 PJ by 2020 [4].

Biomass wastes and residues from forestry and agriculture are
expected to fuel part of this growth. Utilities throughout the EU are
converting existing coal power plants to wood pellets in order to
comply with stricter regulations on carbon emissions (e.g. Refs.
[5,6]); logging residues are expected to fulfil part of the pellet de-
mand due to legislation discouraging or forbidding the use of high-
quality roundwood for energy [7]. Large unexploited potential of
cereal straws is available throughout the EU [8] and some Member
States already incorporate straw in their energy mix. The installed
capacity of biogas plants have increased steeply within the EU in
the last years [9,10]; although most of the current plants operate
with a mix of substrates dominated by energy crops, recent legis-
lative changes are expected to strongly promote the use of animal
slurry and other agricultural residues [11].

The increasing demand for bioenergy must be reconciled with
environmental, economic and social sustainability in Europe and
globally. Assessing the potential of bioenergy technologies to
mitigate climate change is a complex task. Bioenergy systems can
influence directly and indirectly local and global climate through a
complex interaction of perturbations [12], including: CO2 and other
long and short-lived climate forcers from biomass combustion,
alteration of biophysical properties of the land surface, influence on
land use andmanagement, and substitution of fossil fuels and other
commodities such as food and wood products.

Life Cycle Assessment (LCA) has emerged as the main tool used
to inform policy-makers about potential environmental impacts of
bioenergy pathways [13]. Plevin et al. [14] have argued that
Consequential LCA (C-LCA) is the appropriatemodelling framework
to support policy design and to compare the potential impacts of
different policy measures. Attributional LCA (A-LCA) studies of
bioenergy systems in the past have been unable to properly capture
the above-mentioned complexities of bioenergy climate impacts
and, consequently, have often been misinterpreted, providing
decision-makers with incomplete information [15e19].

Recent debate has brought forward methodological improve-
ments to A-LCA analysis to help tackle some of these limitations.
Soimakallio et al. [20] make a compelling case that the use of a
baseline or counterfactual, i.e. “the hypothetical situation without
the studied product system”, is appropriate in A-LCA and necessary
to properly evaluate the impacts of land-based products, such as
bioenergy. This is crucial, since the climate change mitigation po-
tential of bioenergy has often been calculated in terms of GHG
savings against fossil alternative systems but ignoring the actual
land use development without bioenergy production, as high-
lighted by recent studies [16,21e24].

Further, A-LCA is often applied as a static approach. Emissions
and sequestrations at different times are either flattened, as if
happening at once at time zero, or annualized over a subjective
period of time and discounted fully after such period [25,26]. This
can create, at best, ambiguity in the interpretation of the results
and, at worst, misrepresent the impact of a technology on the
climate [27].

The choice of Global Warming Potential (GWP) as the operative
metric under the UNFCCC and Kyoto protocol has made it the
metric of reference for the climate change impact category in LCA
studies. Nonetheless, the GWP metric is not free from criticism due
to its unclear physical meaning and for the possible mis-
interpretations of short-lived forcers [25,28,29]. Kirschbaum [30]
has summarized that impacts of climate change can be linked
either to its magnitude (i.e. temperature anomaly above pre-
industrial era), to its rate or to its cumulative effect. The use of
time-explicit metrics based on the Absolute Global surface Tem-
perature change Potential (AGTP), both in its end-point as well as
time-integrated formulation [31,32], can provide valuable insights
to impact assessment [25,31].

The aim of this work is to apply all these methodological in-
novations to an attributional life cycle assessment of the climate
impacts of electricity production from three bioenergy systems: 1)
Power plant fuelled with pellets from forest logging residues with
an electrical capacity of 80 MW; 2) Power plant fuelled with cereal
straw bales with an electrical capacity of 15 MW; 3) Anaerobic
digestion plant fuelled by cattle slurry with an electrical capacity of
300 kW.

We reckon that our analysis provides valuable information to
policymakers on the feedstocks, systems, configurations and
management practices that carry potential environmental risks and
that should thus not be promoted or, at least, monitored with care.

2. Materials and methods

2.1. Goal and scope definition

The LCA follows an attributional modelling principle. We
designed three systems representing three different production
scales (see Fig. 1): a) large-scale power plant with a gross electrical
capacity of 80 MW fuelled with wood pellets from forest logging
residues (FRel); b) medium-scale power plant of 15 MW fuelled
with cereal straw bales (STel); c) small-scale internal combustion
engine of 300 kW fuelled with biogas produced from anaerobic
digestion of cattle slurry, employing an open or gas-tight tank for
digestate storage (Biogas OD/CD).

The goal of the analysis is to assess the potential of these bio-
energy power plants to mitigate the planet's temperature anomaly
compared to alternative systems relying also on fossil sources. The
reference alternative system, hereafter called simply reference
system, is designed to represent the current EU-27 power genera-
tion mix. We refrain from the use of the term “counterfactual” as
this may seem to imply a deterministic alternative to the bioenergy
use, while we want to emphasize that the conclusions of our study
are specific to the systems assumed, including the reference(s). We
do not assume perfect substitution; the reference system is used
solely to put the climate impacts into context. For this reason we
evaluate the sensitivity of the results to multiple assumptions
characterizing the bioenergy and the reference system (see Section
2.4).

To facilitate the interpretation of results and connection with
existing LCA literature, we divide both the bioenergy and the
reference systems into two separate subsystems: supply-chain and
biogenic emissions. “Supply-chain” inventories account for all in-
puts and emissions associated to the energy sector; i.e. collection,
transport, processing and end-use. Within this inventory we apply
the common approach of zero-rating for biogenic-CO2 emissions at
the point of combustion. In the “biogenic” inventory we account for
all biogenic-CO2 flows. This includes CO2 emissions from the
combustion of biomass (bioenergy) and CO2 emissions from aero-
bic decomposition of the uncollected biomass (reference) (Figs. S1
and S2).

The analysis is also divided into two stages. In a first stage we
focus solely on the GHG emissions from the supply chains of the
three bioenergy systems (Fig. S3). This approach reflects the com-
mon assumptions used in A-LCA of bioenergy systems: the analysis
is static in time, the climate metric used is GWP at a fixed time
horizon of 100 years, the alternative land-use is ignored and so are
the dynamics of emission profiles as well as of the climate response.
This method also mirrors the sustainability criterion of GHG
emissions saving threshold implemented in European legislation
[1]. The detailed results from this analysis are presented in the
Supporting Material (SM).
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In the second stage we add all biogenic-CO2 flows, we apply a
dynamic analysis and we include the climate response. We present
the results in terms of mitigation potential, defined as the net result
of Surface Temperature Response (STR) for the bioenergy system
subtracted of the STR caused by the reference system. Negative
values reflect a potential mitigation compared to the defined
alternative.

The functional unit considered is 1 MJ of electrical energy per
year at power plant outlet, including own consumption but no
transmission and distribution losses. The geographical scope of the
paper includes the EU-27 countries. Infrastructures are not
included. The software used was Gabi 6.3 [33].
2.2. Life cycle inventory (LCI)

2.2.1. Supply chain inventory
All the datasets related to collection and processing of the
residues were the same as the ones presented in Ref. [34]. We
modified a few assumptions compared to the JRC report, concern-
ing end-use emissions, transport distances, climate metrics and
background systems datasets. The life cycle inventory is detailed in
the Supporting Material. Details of each system are reported in
Table 1.

Within the reference system, we consider that the energy
function is provided by the current EU-27 average power genera-
tion mix. This process is taken from the Gabi Professional database
[33] and it considers emissions from the whole electricity mix,
renewables included, calculated for the year 2011. Data for two
additional fossil systems, coal and natural gas power plants, are
presented in the SM.
2.2.2. Biogenic inventory
We assume a “business-as-usual” baseline because the feed-

stocks we consider are residues only in the context of current



Table 1
Summary of all the parameters used in the base cases of the bioenergy and reference systems.

System ID System description Supply-chain inventory Biogenic-CO2

FRel Bioenergy system:
Wood pellets from forest logging
residues combusted in a large-scale
power plant (80 MW).

Main processes (details in SM):
1. Collection and chipping of residues

(Table S6)
2. Transport by truck to pellet mill for 50 km

(Table S9)
3. Pelletization (Table S10)
4. Combustion in 80 MW power plant

(Table S14)
Background processes represent EU averages
and are taken from Gabi Professional database
and are static in time.

Total wood necessary to produce 1 MJ of
electricity, including losses and additional
quantity to use in boiler at the pellet mill: 0.205
kg MJ-1 (on a dry matter basis).
All carbon is assumed to be released as CO2 by
combustion at the year of collection: 0.376 kg
MJ-1.
See Table S1 for physico-chemical properties of
forest residues

Ref_FRel Reference system for FRel EU-27 Mix dataset, including fossil and
renewable sources. Dataset from Gabi
Professional database. Constant over the whole
timeframe considered.

Total wood necessary to produce 1 MJ of
electricity is considered to be added on the
forest floor each year: 0.205 kg MJ-1 (on a dry
matter basis).
All carbon is assumed to be released as CO2 by
aerobic decomposition on the forest floor.
Decay trend is detailed in Eq. S1 and Fig. S1.
The mass decay rate for the residues is
considered to be equal to 11.5% a-1

STel Bioenergy system:
Cereal straw bales combusted in
a medium-scale power plant (15 MW)

Main processes (details in SM):
1. Collection and baling of straw (Table S7)
2. Transport by truck to power plant for

50 km (Table S9)
3. Combustion in 15 MW power plant

(Table S14)
Background processes represent EU averages
and are taken from Gabi Professional database
and are static in time.

Total straw necessary to produce 1 MJ of
electricity, including losses: 0.2 kg MJ-1 (on a
dry matter basis).
All carbon is assumed to be released as CO2 by
combustion at the year of collection: 0.294 kg
MJ-1.
See Table S2 for physico-chemical properties of
straw

Ref_STel Reference system for STel EU-27 Mix dataset, including fossil and
renewable sources. Dataset from Gabi
Professional database. Constant over the whole
timeframe considered.

Total straw necessary to produce 1 MJ of
electricity is incorporated in the soil each year:
0.2 kg MJ-1 (on a dry matter basis).
All carbon is assumed to be released as CO2 by
aerobic decomposition in the soil. The
decomposition trend is obtained from the
results presented in [36] and the decay model
used is detailed in Eq. S2, Eq. S3 and Fig. S2.
The mass decomposition rate for straw is
considered to be the one obtained for average
EU28 conditions.

Biogas OD/CD Bioenergy system:
Dairy cattle slurry anaerobically digested
to produce biogas to be combusted
in an internal combustion engine (300 kW).
Digestate is stored in an open or closed tank.

Main processes (details in SM):
1. Transport by truck of raw cattle slurry

to anaerobic digestion plant for 5 km
(Table S9)

2. Anaerobic digestion plant (Table S11). 1%
of the CH4 produced is considered to leak
from the plant.

3. Digestate storage in open or gas-tight tank
(Table S12). Emissions from the closed
tank are considered to be 2% of the emis-
sions from the open tank due to mem-
brane permeability.

4. Digestate application on field as organic
fertilizer (Table S13)

5. Combustion of biogas in 300 kW internal
combustion engine (Table S14)

Background processes represent EU averages
and are taken from Gabi Professional database
and are static in time.

Total slurry necessary to produce 1 MJ of
electricity from OD/CD system, including losses:
0.60 / 0.54 kg MJ-1 (on a dry matter basis).
Biogenic CH4 emissions are included in the
supply-chain inventory.
All the remaining carbon is considered to be
released as biogenic-CO2. Digestate is
considered to decompose at the same rate as
the slowest component of the raw slurry and
thus this component cancels out with the
reference system and it was not calculated
explicitly.
See Table S3 for physico-chemical properties of
slurry and biogas

Ref_OD/CD Reference system for Biogas OD/CD EU-27 Mix dataset, including fossil and
renewable sources. Dataset from Gabi
Professional database. Constant over the whole
timeframe considered.
Main processes for raw cattle slurry
management (details in SM):

1. Raw slurry storage in open tank
(Table S15)

2. Raw slurry application on field as organic
fertilizer (Table S16)

Total slurry necessary to produce 1 MJ of
electricity from OD/CD system, is stored and
applied on field each year: 0.60 / 0.54 kg MJ-1
(on a dry matter basis).
Biogenic CH4 emissions are included in the
supply-chain inventory.
Biogenic-CO2 is considered to be released in the
same quantity as for the biogas system in the
year of collection. The amount of stable carbon
in the raw slurry applied on the field is
considered to be the same amount, and to decay
with the same rate, as the carbon in the
digestate.
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existing industrial operations, i.e. timber logging, cereals cultiva-
tion and dairy industry. The consequence of this choice is that
emissions from upstream operations are identical in both the bio-
energy and the reference systems and thus they cancel out and are
not reported here. Marginal differences caused by the additional
removal of residues for bioenergy are considered in the sensitivity
analysis for straw management.

We designed our reference system considering that the collec-
tion and energy use of the residual feedstocks analysed here is
often not economically profitable without incentives and thus
these feedstocks would not be collected or utilized without de-
mand for bioenergy. Forest logging residues in Europe are
commonly left on the forest floor; more rarely they may be burned
at roadside. Our reference system assumes that the deadwood left
in the forest would decompose following an exponential decay (Eq.
S(1)); the kinetics of decomposition varies depending on the wood
type, wood size and climate conditions [35]. A standard decay rate
for branches with diameter between 10 and 30mm,was defined for
average conditions in boreal and temperate regions, equal to 11.5%
a�1.

Cereal straws can have several commercial uses, from animal
bedding to building material, as well as being incorporated in
agricultural land as soil amendment or used for soil surface
mulching. Our reference considers that straw is incorporated in the
agricultural soil every year. In this case, a continuous removal of
straw causes a gradual decrease in the content of soil organic car-
bon (SOC). Lugato et al. [36,37] used the CENTURY agroecosystem
model to assess the impact of several management alternatives of
agriresidues on SOC stocks and sequestration rates in each EU-28
member state projected until 2100. We applied their results to
obtain the decomposition parameters for straw incorporation and
subsequent biogenic-CO2 emissions in the reference system (see
SM for details).

Cattle slurry, if not anaerobically digested, is commonly stored
on-farm in open tanks and then used as organic fertilizer and soil
amendment. This type of slurry management causes high emis-
sions of methane and nitrous oxides (see Tables S15 and S16). On
the contrary, when slurry is processed via anaerobic digestion and
the biogas is collected and combusted for bioenergy, methane
emissions are significantly lower [38]. The digestate residue from
anaerobic digestion can then be used as organic fertilizer and it is
reasonable to assume that the fertilizing potential of raw slurry is
equal to the one of digestate [10,39,40]. Finally, when digestate is
applied on agricultural fields rather than raw slurry, its lower
content of C could potentially cause a lower accumulation of soil
organic matter in the long-term. Results are not yet clear on the
magnitude of this phenomenon, but existing empirical research
as well as model results, suggest the impact to be short-term and
almost negligible [40,41]. For the reasons above, the anaerobic
digestion process covers all the same functions as the reference
system (energy, organic fertilizer and soil amendment) and we
have not included any marginal impact.

2.3. Climate metrics and dynamic LCA

In the case of transient emission profiles, such as the ones
associated to the decomposition of biomass on the forest floor, or in
agricultural soils, the use of simplified, normalized climate metrics
is problematic. Especially annualization of emissions can create
situations in which certain pathways may appear to pass or fail
GHG emission savings thresholds depending on the annualization
period chosen [42e45].

We reckon that an explicit treatment of time makes interpre-
tation of the results much clearer. Thus we have defined dynamic
emission profiles for all processes: we consider the supply-chain
inventory to be constant each year in which the functional unit is
delivered; the biogenic-CO2 inventory has its own dynamic trend
linked to the aerobic decomposition of the residues (see SM and
Figs. S1 and S2).

We then convolute the emission profiles with the instantaneous
and time-integrated formulation of the Absolute Global surface
Temperature change Potential (AGTP) metric to calculate the Sur-
face Temperature Response (STR) to the systems by 2100. We
present the Surface Temperature Responses calculated as an
instantaneous (STR(i)) and as a cumulative (STR(c)) metric. The
latter can be numerically assimilated to the Absolute Global
Warming Potential metric [46] but with a clearer physical basis.

A description of the model, equations and parameters used,
based on the work of Myhre et al. [47], Aamas et al. [32] and
Cherubini et al. [31], can be found in Ref. [42].

Because of the uncertainties associated to the climate metric
and to the input values, our goal is not to quantify the magnitude of
absolute temperature responses but rather to assess the climate
mitigation of the various bioenergy systems relative to various
alternative systems.

We consider two cases representative of possible energy system
developments in the future: Case 1) a continuous production of
1 MJ of electricity to the grid each year. This case represents a hy-
pothetical systemic change in which bioenergy becomes perma-
nently part of the power generation mix; Case 2) a sustained
production of 1 MJ of electricity to the grid for 20 years, considered
to be the lifetime of the power plants, after which biomass reverts
to its reference use, natural decomposition. This case considers
bioenergy as a transitional solution towards a power mix based on
other, carbon free, renewable resources.

2.4. Base cases and sensitivity analysis

We are conscious that the systems defined and analysed in the
base cases are only one snapshot of the many configurations and
parameters that may characterize real power generation systems.
In order to facilitate the interpretation of our results, we first
defined the systems in their base case (Table 1) and the results in
Section 3.1 refer to these conditions.

However, we then varied multiple parameters to account for the
influence of: i) site-specific and geographic conditions; ii) feedstock
types and characteristics; iii) different agronomical solutions; iv)
accidental leakages; v) decarbonized European power generation
mix.

Table 2 illustrates all the combinations and parameters varia-
tions compared to the base cases. We identified variables that in-
fluence the final result because of multiple permutations possible
in the reference system (Indirect sensitivity). These parameters are
not directly an attribute of the bioenergy system but can define
situations where promotion of bioenergy may be more or less
beneficial in terms of climate changemitigation. We then identified
factors which are direct attributes of the bioenergy system and can
thus be influenced when setting up legislation (Direct sensitivity).

Giuntoli et al. [42] showed that the decay rate of logging resi-
dues left on the forest floor is one of the main factors influencing
the STR of domestic heat produced from this feedstock. We tested
the variability of results with this parameter also in this study.

Concerning STel, we firstly analysed the influence of the
geographic origin of the feedstock by considering the SOC trends
for various European countries from Lugato et al. [36] and from
Powlson et al. [48]. Secondly, we designed three scenarios to test
the sensitivity to three factors which have large uncertainties: soil
emissions, farming practices and soil productivity. In Scenario 1 we
assumed that the removal of straw caused lower emissions of N2O
from the soil because of less N incorporated with residues



Table 2
Summary of the parameters varied in the sensitivity analysis.

System ID Parameter considered Base case Indirect parameters (linked
with attributes of the reference
or fossil alternative system)

Direct parameters (linked with
attributes of the bioenergy
systems)

Storyline

Ref_FRel Decay rate on forest
floor

11.5% a�1 2% a�1 ÷ 40% a�1 Verify the influence of different
logging residues types or
geographical origin affecting the
decay rate on the forest floor.

FRel EU-27 grid mix EU-27 Mix dataset,
including fossil and
renewable sources.
Dataset from Gabi
Professional database.
Constant over the
whole timeframe
considered.

EU-27 Mix emissions dynamic
in time according to PRIMES
2013 reference scenario [68]

Verify the influence of a
decarbonized EU-27 power
generation mix. Emissions from
electricity consumption in the FRel
pathway during pellet production
are recalculated with the updated
dataset.

Ref_STel Decomposition trend of
straw in the soil

Average result over the
whole EU-28

Decomposition trend for all
European Member States. Only
extreme cases are reported:
Estonia and Portugal

Verify the influence of the
geographic origin of the straw
affecting the decomposition trend
in the soil.

STel. Nutrient management
and soil emissions

a. Macro-nutrients
removed with straw
are not
compensated;

b. Cereal grain long-
term yields are not
affected by straw
removal;

c. N2O emissions from
soil are not affected
by the removal of
straw

1. Scenario 1:
a. Macro-nutrients are not

compensated;
b. Cereal grain long-term

yields are not affected;
c. Reduced N2O emissions

for removal of straw-N
considered.

2. Scenario 2:
a. Macro-nutrients are

compensated by
synthetic fertilizers;

b. Cereal grain long-term
yields are not affected;

c. Net N2O emissions
considered (additional
emissions for synthetic
N-fertilizer e reduced
emissions for removal of
straw-N).

3. Scenario 3:
a. Macro-nutrients are

compensated by
synthetic fertilizers;

b. Cereal grain long-term
yields are assumed to
decrease by 8% in the
long-term and an ILUC
emission factor is
applied;a

c. Emissions of WMGHG for
cultivation of additional
cereal grains are
included.

Verify the influence of potential
agronomic management solutions,
soil emissions and soil productivity
changes.

Biogas OD/CD Accidental methane
emissions þ Emissions
through membrane
permeability (Biogas
CD)

1% of the methane
produced is lost as
accidental leakages
from the plant.
Emissions from
digestate storage in
Biogas CD are equal to
2% of emissions from
open tank.

Methane accidental leakages:
0% ÷ 5% of the methane
produced
Digestate storage emissions in
Biogas CD: 0% ÷ 2% of digestate
emissions in case of open tank.

Verify the influence of accidental or
structural leakages of methane
from biogas plants.

Ref_FRel and
Ref_STel

Technology mix EU-27 Mix dataset,
including fossil and
renewable sources.
Dataset from Gabi
Professional database.
Constant over the
whole timeframe
considered.

1. Technology mix is updated
with a time step of 10 years
between 2010 and 2050 and
left constant afterwards.
According to data from
PRIMES in the latest EU-28
reference scenario [68]. See
SM for details.

2. Power generation from hard
coal. Dataset is taken from
Gabi professional database
for EU-27 average.

3. Power generation from
natural gas. Dataset is taken
from Gabi professional
database for EU-27 average.

Compare bioenergy systems to a
dynamically decarbonized power
generation mix.
Compare bioenergy systems to two
marginal technologies (based on
coal and natural gas) that may be
displaced by bioenergy.
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[43,49,50]. In Scenario 2 we assumed that farmers will compensate
the macro-nutrients removed with the straw by applying the same
amount of additional mineral fertilizers (N, P, K) [45,50]. In Scenario
3 we considered a worst-case in which despite compensating for
lost nutrients, the decrease in SOC and subsequent degradation of
soil physico-chemical properties leads to a long-term decrease in
cereal grain yield. This, in turn, affects global cereal markets causing
similar effects to the ones analysed in Indirect Land Use Change
(ILUC) literature [51,52].

The climate impact of biogas systems is mainly linked to the
overall methane emissions from the plant. Because of the large
differences in GHG emissions between AD plants with an open
digestate storage tank and a gas-tight tank [53], we treated these
two technological options as two separate systems and defined two
separate base cases (Biogas OD/CD). Additional to digestate storage
emissions, fugitive methane emissions have mostly been measured
at pipeline connections and during non-regular functioning of the
plant. Some plants are equipped with a flare, but this mostly hap-
pens in newer and larger facilities; in many small plants like the
one modelled here, the methane may be simply vented. To verify
the influence of these potential emissions, we varied the value of
accidental methane leaks from zero to 5% of themethane produced.
This reflects the high range of emissions recorded for normal op-
erations of biogas plants [54].

3. Results

3.1. Climate impact: surface temperature response and mitigation
potentials

Fig. 2 illustrates the mitigation potential for the four bioenergy
systems analysed versus the reference system, in their base case. It
is clear that at the year 2100, all bioenergy systems guarantee a
mitigation of the STR(i) compared to the current power generation
mix.

However, the mitigation of the FRel system is delayed by 47
years, in case 1, and by 30 years in case 2. This is caused by the
temporal imbalance between the carbon emissions due to natural
decay of logging residues and the carbon emissions due to
instantaneous oxidation during wood combustion to produce
electricity. After ca. 40 years the rate of biogenic-CO2 emissions in
the bioenergy system becomes equal to the rate in the reference
system and the supply-chain emissions become more and more
relevant. Fig. 3aeb shows that the STR(i) of net biogenic-CO2
emissions, defined as CO2 from combustion subtracted of CO2 from
natural decay, dominate for the first 130 years over the STR(i)
impact of bioenergy supply chains. Only after that time, supply-
chain emissions become the main climate forcer. Results are
different for case 2: after 50 years, only the fossil CO2 from the
supply-chain operations remains in the atmosphere and the miti-
gation potential of the bioenergy system can be calculated
excluding biogenic-CO2 emissions. When considering time-
integrated results (Fig. 2ced), the FRel system barely guarantees
any mitigation potential by 2100.

The STel system also shows a temporal delay of 13 years before
achieving mitigation. However, the magnitude of the climate
change worsening is only 16% of the one caused by the FRel system.
This worsening is propagated in the STR(c) results so that mitiga-
tion is achieved only after 20 years. It is interesting to note that the
cooling effect of emissions of NTCF, especially NOx and SOx
(Fig. S4), dominates over the warming impact of WMGHG
(Fig. 3ced). This is a trade-off with other harmful environmental
impacts associated to these pollutants such as secondary particu-
late matter formation, acidification and photochemical ozone for-
mation [55,56].
The biogas systems have the capacity to provide ten times the
climate change mitigation by 2100 compared to the system based
on forest residues pellets. This is due to the fact that raw slurry
management generates a much higher STR(i) compared to anaer-
obic digestion.

3.2. Sensitivity analysis

3.2.1. Indirect sensitivity of results to site-specific characteristics
The decay rate of the undisturbed logging residues on the forest

floor can vary largely due to many factors: climatic conditions,
wood type, wood size etc. By condensing all possible variables into
a single parameter, the decay rate, our approach can be applied
independently from the specific conditions that generated such
decay rate.

Fig. 4 shows the results of the STR(i) for logging residues when
the decay rate in the forest is varied between two hypothetical
values: 40% a�1 (e.g. fast decaying leaves and needles) and 2% a�1

(e.g. slow-decaying coarse deadwood). In case of a systemic tran-
sition to bioenergy (case 1), utilizing logging residues with a decay
rate lower than 5.2% a�1 would not cause any climate change
mitigation by 2100 as compared to the current power generation
mix. Even in case of bioenergy as a transitory option, investing for
the next 20 years in slow-decaying feedstocks would barely guar-
antee any advantage by 2100 compared to continuing with the
current power mix.

Fig. 5 shows the range of impacts for STel systems when
considering straw decay rates for various European countries. From
the results of the model of Lugato et al. [36], it appears that the
impacts of removal of straw on the SOC stock do not differ greatly
among the various European countries. Estonia shows the highest
value and Portugal the lowest, albeit neither of the two countries is
a large producer of cereals. It is important to remember that the
values presented here are an average of all the spatial units within a
country where the amount of cereal straw, varied in the simula-
tions, is also constrained by its local availability. They represent,
then, an average condition that may differ at a local level. This is the
case of the results obtained by Powlson et al. [48] (also shown in
Fig. 5); they modelled a continuous straw incorporation of
4.25 t ha�1 dry matter basis in a fine silty-clay-loan soil, resulting in
a higher impact of the bioenergy system than the reference for the
first 26 years. Indeed, looking at the regional values in South-East
England in Lugato et al. [36], SOC changes appear consistent with
the case study investigated by Powlson et al. [48].

3.2.2. Direct sensitivity of results to bioenergy system
configurations

Fig. 6 illustrates the mitigation potential for three different
scenarios of the STel pathway. Even Scenario 3 delivers large
warming mitigation by 2100 despite the increasingly conservative
assumptions. Furthermore, the contribution of ILUC emissions is
almost negligible compared to the emissions incurred for addi-
tional synthetic fertilizers production and for the cultivation of
additional cereals (Fig. S5).

Fig. 7 shows that slurry-based biogas systems can provide a
large climate change mitigation despite the conservative range of
accidental emissions of methane tested. In fact, even the worse
technological configuration, open digestate store, would still be
better than the reference alternative as long as less than 6.4% of the
methane produced was vented or lost.

4. Discussions

Our findings are in line with other studies assessing the climate
change impact of forest and agricultural residues [21,38,57e59].We



Fig. 2. Mitigation potentials of all the bioenergy systems studied compared to their reference system. Mitigation potential is defined as the net result of Surface Temperature
Response (STR) for the bioenergy system subtracted of the STR caused by the reference system; negative values indicate potential climate change mitigation by bioenergy; positive
values indicate a climate change worsening. All systems are in their base cases: forest residues with a decay rate of 11.5% a�1; straw decomposition rate average for EU-28 con-
ditions; EU-27 power generation mix supply chain emissions. (a) STR (instantaneous) for systems with emission profiles relative to the production of 1 MJ of electricity per year
(Case 1); (b) STR(i) for systems operating for 20 years (Case 2); (c) STR (cumulative) for systems with emission profiles relative to the production of 1 MJ of electricity per year (Case
1); (d) STR(c) for systems operating for 20 years (Case 2). FR el ¼ Forest residues pellets 80 MW plant; STel ¼ Cereal straw bales 15 MW plant; Biogas OD/CD ¼ Cattle slurry
anaerobic digestion with open/close digestate tank, 300 kW engine.

J. Giuntoli et al. / Biomass and Bioenergy 89 (2016) 146e158 153
confirm that even when biogenic-CO2 emissions are properly
accounted for, all the systems analysed in their base case provide
warming mitigation by 2100 compared to the average European
power generation mix. The magnitude of such mitigation varies
from system to system: slurry-based biogas plants have the highest
potential to mitigate global warming and decentralized straw-
based plants may also guarantee significant mitigation compared
to the current power mix. Large-scale centralized plants based on
logging residues provide the least mitigation by 2100.

We have shown that analyses focussing only on supply-chain
emissions and only on WMGHG are not complete. For instance,
excluding biogenic carbon emissions for logging residues systems
would overestimate the mitigation potential of the system by 45%
in 2100. On the other hand, excluding NTCF would underestimate
the overall mitigation potential of the pathway by 27%. Accounting
only for supply-chains emissions is only appropriate when esti-
mating the long-term impact of a system where bioenergy is
implemented only temporarily and the carbon stock is allowed to
revert to the original level (Case 2 in our analysis); the “long-term”

horizon in this case may be as long as two centuries when slow-
decaying residues are considered.

We have shown that parameters specific to the site where the
feedstock is sourced largely influence the impact on climate of
bioenergy systems. The variability of the results to these factors is
mainly illustrative because decision makers may have no power to
influence them via bioenergy-specific legislation; however, critical
or less-than-optimal instances could be excluded from subsidies
schemes. For instance, our analysis highlights that caution is
required when promoting the use of logging residues with decay
rates below 5.2% a�1 (i.e. stumps and coarse deadwood in
temperate and boreal climates) since global warming mitigation
compared to the current EU power generation mix will likely not be
achieved before 2100. This value is indicative as it can increase or
decrease depending on the alternative system considered.

Nonetheless, all the remaining bioenergy pathways perform
better than the reference alternative even when considering



Fig. 3. Contribution of supply-chain emissions and biogenic-CO2 emissions to the Surface Temperature Response (instantaneous) to a sustained emission profile for FRel and STel
systems in their base case. (a) STR(i) for the FRel system with emission profiles relative to the continuous production of 1 MJ of electricity per year (Case 1); (b) STR(i) for the FRel
system operating for 20 years (Case 2). (c) STR(i) for the STel systemwith emission profiles relative to the continuous production of 1 MJ of electricity per year (Case 1); (d) STR(i) for
the STel system operating for 20 years (Case 2).
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several possible system configurations and when stressing the
systems with strongly conservative test cases. The straw pathway,
specifically, has the potential to guarantee climate change mitiga-
tion by 2100 even when potential soil productivity losses are
considered. Even so, SOC content preservation has many benefits
beyond climate change mitigation and it is also a priority of the EU
Common Agricultural Policy [60]. Systemic approaches should be
developed to study the inclusion of biomass production into agri-
cultural rotations in order to retain soil organic carbon and soil
health [49]. Other studies have defined site-specific sustainable
removal rates for straws so that the SOC level does not decrease in
time [61]. While this may be a reasonable definition under agro-
nomic criteria, it is important to point out that the foregone carbon
sequestration of the straw removed equates to additional emissions
assigned to the bioenergy pathway. Simply put, SOC-related
biogenic-CO2 emissions are proportional to the amount of straw
removed [43].

Even though many studies recognize the need to include
biogenic carbon emissions, the treatment of time in much LCA
literature remains an important source of ambiguity [44,45]. The
treatment of dynamic emission profiles is critical: annualizing
emissions can present serious difficulties to the interpretation of
the results. Fig. S8 illustrates this example using the FRel and STel
systems: in the case of logging residues, annualizing net biogenic-
CO2 emissions over 20 or 30 years would indicate higher overall
GHG emissions than the reference system. For STel system, the 70%
threshold of GHG savings would only be achieved if SOC-related
emissions were annualized over 100 years. These results do not
provide clear information to decision-makers. The use of the ab-
solute formulation of climatemetrics partially solves this ambiguity
by illustrating explicit results in time that can be then evaluated
according to the specific goal of the analysis.

Further, different types of metrics provide different types of
information. Studies in the literature have mainly used cumulative
metrics, such as cumulative radiative forcing [58] or normalized
GWP factors [21,62]. However, an instantaneous metric such as
AGTP can better represent the climate change impacts associated
with increasing surface temperatures, such as heat waves and
extremeweather events. The STR(i) results are alsomore suitable to
evaluate the contribution of technologies towards internationally



Fig. 4. Sensitivity to forest residues decay rate of the mitigation potential of FRel system compared to the reference. Mitigation potential is defined as the net result of Surface
Temperature Response (STR) for the bioenergy system subtracted of the STR caused by the reference system; negative values indicate potential climate change mitigation by
bioenergy; positive values indicate a climate change worsening. (a) STR(i) for a system with emission profiles relative to the production of 1 MJ of electricity per year (Case 1); (b)
STR(i) for a system operating for 20 years (Case 2). The grey-filled area represents the range of mitigation potentials when different decay rates for the biomass feedstock are
considered. The solid-green curve represents the base case of branches (11.5% a�1), the dashed-green curve represents fast decaying residues (e.g. leaves and needles) and the
dotted-green curve represents a “critical” decay rate for which the STR(i) at year 2100 is equal between bioenergy and the reference system. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Sensitivity to the geographic origin of cereal straw of the mitigation potential of STel system compared to the reference alternative. Mitigation potential is defined as the net
result of Surface Temperature Response (STR) for the bioenergy system subtracted of the STR caused by the reference system; negative values indicate potential climate change
mitigation by bioenergy; positive values indicate a climate change worsening. (a) STR(i) for a systemwith emission profiles relative to the sustained production of 1 MJ of electricity
per year (Case 1); (b) STR(i) for a system operating for 20 years (Case 2). The grey-filled area represents the range of STR when the straw decay for EU Member States is considered;
only the maximum and minimum values are shown (Estonia (EE) and Portugal (PT)). The solid-blue curve represents the base case of average EU-28 conditions. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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agreed targets and stabilization scenarios. The explicit formulation
in time also provides information on the rate of warming associated
to the technologies studied. Cherubini et al. [63] have shown that
the impact of biogenic-CO2 emissions could be assimilated to the
one due to short-lived GHGs. This is confirmed by our results.
Edwards and Trancik [64] have highlighted that the contribution of
technologies characterized by high emissions of NTCF to mitigation
scenarios will change depending on the rate and timing of their
deployment. Our results show that a high rate of penetration of
bioenergy plants may cause a higher rate of warming before
actually providing mitigation and that mitigation benefits shift in
time with the time of deployment of the technology. Finally, sea
level rise has been linked to the total energy accumulated in the
planet system [65,66]; thus a cumulative metric is more appro-
priate to capture the potential risks linked to this phenomenon. Our
STR(c) results follow a similar trend to the STR(i) curves but the
timing of mitigation and magnitude of the temporary warming
worsening for the forest residues pathways should be kept in mind
when planning mitigation scenarios.

Awareness of the limitations of this study is essential to properly



Fig. 6. Sensitivity of the mitigation potential of STel system to alternative nutrient managements to compensate straw removal. The reference system considers straw decay rate for
EU28 countries (base case). Mitigation potential is defined as the net result of Surface Temperature Response (STR) for the bioenergy system subtracted of the STR caused by the
reference system; negative values indicate potential climate change mitigation by bioenergy; positive values indicate a climate change worsening. (a) STR(i) for a system with
emission profiles relative to the production of 1 MJ of electricity per year (Case 1); (b) STR(i) for a system operating for 20 years (Case 2). The three scenarios are described in details
in the text: 1) Scenario 1 considers no compensation of lost nutrients and no loss of yield. Avoided N2O emissions from straw removal are included; 2) Scenario 2 considers that
macro-nutrients removed with straw are compensated with synthetic fertilizers and no yield losses of grains. Avoided N2O emissions from straw removal are included; 3) Scenario3
considers compensation of lost nutrients, loss of yield causes Indirect Land Use Change (see SM for details). Avoided N2O emissions from straw removal are included.

Fig. 7. Sensitivity to increased accidental losses of methane of the mitigation potential of biogas systems. Mitigation potential is defined as the net result of Surface Temperature
Response (STR) for the bioenergy system subtracted of the STR caused by the reference system; negative values indicate potential climate change mitigation by bioenergy; positive
values indicate a climate change worsening. (a) STR(i) for a system with emission profiles relative to the production of 1 MJ of electricity per year (Case 1); (b) STR(i) for a system
operating for 20 years (Case 2). The grey and black areas represented the variation of the results when accidental leakage of CH4 is varied between 0% and 5% on energy basis, of the
produced methane. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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interpret the results. Firstly, market-mediated effects are not
considered here and our results apply solely to system configura-
tions equal or similar to the ones studied. For instance, the removal
of logging residues may trigger changes in forest management
aimed at increasing carbon stocks [67] or cereal straws may be
displaced from other markets rather than from their function as soil
amendment. Further, in this study we only focus on climate change,
however, other potential risks for local air pollution and impacts on
biodiversity associated to these technologies should not be
underestimated. In previous works [10,11,39,55] we showed that,
when promoting the deployment of bioenergy, a holistic approach
is essential to identify all potential environmental risks and
consequently to design appropriate protective measures. Thirdly,
the deployment of bioenergy may have positive strategic conse-
quences on security of energy supply and rural development that
are not included in this study.

Finally, we compared the bioenergy pathways to a reference
system considering the current average EU-27 power generation
mix extrapolated to 2100. However, it is reasonable to expect a
continuous decrease in the share of fossil sources and an increas-
ingly decarbonized electricity mix. We tentatively recreated a dy-
namic EU-27 power mix STR(i) based on the reference scenario
2013 of the European Commission [68] (see SM and Fig. S7) and we
show that our conclusions remain valid. Nonetheless, dynamic
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background processes should be developed and used more
commonly in A-LCA studies.

5. Conclusions

We have analysed the climate change mitigation potential of
three power generation systems fuelled by three different types of
biomass residues: forest logging residues, cereal straw and dairy
cattle slurry.

We applied various methodological innovations that help to
dissipate some of the inaccuracies and ambiguities present in
existing LCA literature dealing with the global warming mitigation
potential of bioenergy technologies. We included all relevant
biogenic-CO2 flows, we applied dynamic emission profiles and
climate responses, we included not only WMGHGs but also NTCFs
and, finally, we presented both instantaneous and time-integrated
Surface Temperature Responses.

Our results indicate with clarity that power generation from
cereal straws and cattle slurry can provide global warming miti-
gation by 2100 compared to current or even future decarbonized
European electricity mix in all of the systems and scenarios
considered.

Power generation from forest logging residues is an effective
mitigation solution only in conditions of decay rates higher than
5.2% a�1. Even with faster-decomposing feedstocks, bioenergy
temporarily causes a STR(i) and STR(c) higher than the reference
system. Strategies for bioenergy deployment should take into ac-
count possible increases in global warming rate, magnitude of
temperature anomaly as well as of cumulative radiative forcing.

We envision that this comprehensive assessment will support
policymakers in identifying and promoting the bioenergy config-
urations that are proven to consistently provide climate change
mitigation compared to current and future electricity generation
mixes.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.biombioe.2016.02.024.
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