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SUMMARY

Humans and mice deficient in the adaptor protein
SAP (Sh2d1a) have a major defect in humoral immu-
nity, resulting from a lack of T cell help for B cells. The
role of SAP in this process is incompletely under-
stood. We found that deletion of receptor Ly108
(Slamf6) in CD4+ T cells reversed the Sh2d1a�/�

phenotype, eliminating the SAP requirement for
germinal centers. This potent negative signaling
by Ly108 required immunotyrosine switch motifs
(ITSMs) and SHP-1 recruitment, resulting in high
amounts of SHP-1 at the T cell:B cell synapse,
limiting T cell:B cell adhesion. Ly108-negative sig-
naling was important not only in CD4+ T cells; we
found that NKT cell differentiation was substantially
restored in Slamf6�/�Sh2d1a�/� mice. The ability of
SAP to regulate both positive and negative signals
in T cells can explain the severity of SAP deficiency
and highlights the importance of SAP and SHP-1
competition for Ly108 ITSM binding as a rheostat
for the magnitude of T cell help to B cells.

INTRODUCTION

The formation of germinal centers is critical for the development

of most humoral immunity. This includes affinity maturation,

long-lived plasma cell generation, and an overall effective

neutralizing antibody response (Allen et al., 2007; Tarlinton,

2008). The development of germinal centers is controlled by

follicular helper CD4+ T (Tfh) cells, which are the specialized

T cells for B cell help (Crotty, 2011). Therefore, understanding

Tfh cells and germinal centers is important for rational

approaches to vaccine design and new therapeutic approaches

for autoimmune diseases involving B cells. Tfh cell differentiation

is dependent on the transcription factor Bcl6 (Johnston et al.,
986 Immunity 36, 986–1002, June 29, 2012 ª2012 Elsevier Inc.
2009; Nurieva et al., 2009; Yu et al., 2009), and Tfh cells express

proteins that facilitate colocalization with B cells (high CXCR5

and CXCR4, concomitant with low CCR7 and S1P receptor

expression or function) and molecules important for T cell help

to B cells, such as IL-21, IL-4, and CD40L (Crotty, 2011). Tfh cells

within germinal centers (GC Tfh cells) have notably high expres-

sion of signaling lymphocyte activationmolecule (SLAM)-associ-

ated protein (SAP) (Ma et al., 2009; Yusuf et al., 2010).

Sh2d1a, the gene encoding SAP, was originally cloned as the

causal locus of the frequently lethal human immunodeficiency

X-linked lymphoproliferative disease (XLP), characterized by

difficulty controlling a variety of pathogens (Cannons et al.,

2011). It was then determined that SAP plays a central role in

the development of B cell immunity, because SAP is required

in CD4+ T cells for germinal center B cell development and devel-

opment of long-term humoral immunity (Crotty et al., 2003). In

the absence of SAP, virtually no memory B cells, long-lived

plasma cells, or sustained antibody responses are present after

acute viral infections (Crotty et al., 2003; Kamperschroer et al.,

2006; McCausland et al., 2007; Moyron-Quiroz et al., 2009),

chronic viral infections (Chen et al., 2005; Crotty et al., 2006;

Harker et al., 2011), parasite exposure (Cannons et al., 2006),

immunizations with a variety of simple or complex protein

antigens (Cannons et al., 2006, 2011; Veillette et al., 2008), or

when ablated in autoantibody-prone mice (Jennings et al.,

2008; Linterman et al., 2009). XLP patients were later confirmed

to have severe loss of germinal centers and memory B cells (Ma

et al., 2005, 2006; Malbran et al., 2004). SAP has also been

shown to be critically important for the development of NKT cells

(Chung et al., 2005; Griewank et al., 2007; Nichols et al., 2005;

Pasquier et al., 2005).

These findings have spurred extensive interest in delineating

the molecular functions of SAP and the SLAM family receptors.

Structurally, SAP consists primarily of an SH2 domain (Poy

et al., 1999). SAP is expressed in the cytoplasm and binds

tyrosines found in the intracellular domains of SLAM family

receptors such as SLAM (CD150, Slamf1), CD84 (Cd84), Ly9

(SLAMF3, Slamf3), 2B4 (CD244, SLAMF4, Cd244), and Ly108

(Slamf6, NTB-A in humans). Multiple SLAM family receptors
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are expressed on both T and B cells and have been shown to

bind SAP through an uncommon tyrosine motif, termed an im-

munotyrosine switch motif (ITSMs) (Sayos et al., 1998; Shlapat-

ska et al., 2001). All SAP-binding SLAM family members contain

two or more ITSMs in their cytoplasmic tail. SLAM family recep-

tors all possess a similar ectodomain structure and most exhibit

homotypic adhesion (e.g., SLAM-SLAM, Ly108-Ly108) (Cao

et al., 2006;Mavaddat et al., 2000; Yan et al., 2007). The receptor

tails serve as docking sites for multiple signaling molecules upon

homotypic receptor binding (Cannons et al., 2011; Latour et al.,

2001; Schwartzberg et al., 2009; Veillette et al., 2009). SLAM

family receptors are known to mediate IL-4 production by

CD4+ T cells (Davidson et al., 2004; Wang et al., 2004; Yusuf

et al., 2010), cytotoxicity by NK cells (Nakajima et al., 2000; Pas-

quier et al., 2005; Tangye et al., 2000), thymic selection of NKT

cells (Griewank et al., 2007), and bactericidal activity of neutro-

phils (Howie et al., 2005) and macrophages (Berger et al.,

2010), among other functions. Although findings on inhibitory

aspects of SLAM family receptor signaling are present in the

literature (Cannons et al., 2011; Veillette et al., 2009), some of

this was controversial (Latour et al., 2001; Nichols et al., 2001;

Sayos et al., 1998), and most recent analysis has focused on

the positive SAP-dependent signaling activities of SLAM family

receptors (Cannons et al., 2010b; Chan et al., 2003; Latour

et al., 2003; Yusuf et al., 2010; Zhong and Veillette, 2008).

Most notably, SAP plays a central role in CD4+ T cell adhesion

to B cells (Qi et al., 2008). Sh2d1a�/� CD4+ T cells were unable

to form long-term conjugates with cognate B cells in vivo and

in vitro (Cannons et al., 2010a; Qi et al., 2008). SLAM family

members CD84 and Ly108 were shown to collaborate in this

process in vitro in a SAP-dependent manner, and CD84 was

shown to be important for germinal center development after

some protein immunizations, though it did not fully phenocopy

SAP deficiency (Cannons et al., 2010a). Here we show that single

gene ablation of Slamf6 or Cd84 does not result in significant

germinal center or antibody defects after an acute viral infection,

unlike the severe germinal center defect seen in Sh2d1a�/�

mice. This left an inability to explain the severity of the humoral

immunity defects globally observed in the absence of SAP. To

better understand the role of Ly108 signaling in T cell help to B

cells, we developed a Sh2d1a�/�Slamf6�/� double-deficient

mouse. Surprisingly, the absence of Ly108 eliminated the

requirement for SAP in CD4+ T cells for B cell help. This observa-

tion led us to identify a potent Ly108-negative signaling pathway,

active in both CD4+ T cells and NKT cells, which may act as

a general regulator of lymphocyte:lymphocyte adhesion.

RESULTS

Ly108 Expression and Function in an Acute Viral
Infection
We have been examining the role of individual SAP-binding

SLAM family receptors in the process of T cell help to B cells

in the germinal center. With the exception of 2B4 (CD244), which

binds to CD48 and is not expressed by CD4+ T cells, the remain-

ing SLAM family members are homophilic receptors. Murine

CD319 (CRACC, Slamf7) does not bind SAP (Bouchon et al.,

2001). Mice deficient in individual SLAM family members have

provided evidence that Ly9 (Slamf3) is not required for germinal
centers (Graham et al., 2006). SLAM (Slamf1) is not required for

Tfh cell differentiation or adhesion (Cannons et al., 2006;

McCausland et al., 2007) but is required for GC Tfh cell IL-4

production (Cannons et al., 2010b; Yusuf et al., 2010). Interest-

ingly, Ly108 (NTB-A in humans, Slamf6) is known to bind SAP

(Bottino et al., 2001; Zhong and Veillette, 2008) and Ly108 iso-

forms are linked to the development of autoantibody-mediated

autoimmune diseases (Keszei et al., 2011; Wandstrat et al.,

2004). Therefore, we evaluated whether Ly108 expression is

modulated on Tfh cells and B cells in the context of an acute viral

infection, lymphocytic choriomeningitis virus (LCMV). Activated

CD4+ T cells express elevated levels of Ly108 compared to naive

CD4+ T cells (Figure 1A). Tfh cells expressmore Ly108 than other

virus-specific CD4+ T cells (predominately Th1 cells), consistent

with previous observations (Cannons et al., 2010b). The Tfh cells

present in germinal centers (GC Tfh cells) are known to have

elevated levels of SAP and BCL6 (Kroenke et al., 2012; Ma

et al., 2009; Yusuf et al., 2010) but had equivalent Ly108 to other

Tfh cells (Figure 1A). Given that Ly108 is a homophilic receptor,

we measured Ly108 expression on activated B cells during an

LCMV infection. We observed that both germinal center B cells

and plasma cells have elevated Ly108 expression compared to

naive B cells (Figure 1B). CD4+ T cells and B cells from Slamf6�/�

mice are shown for comparison, demonstrating constitutive

expression of Ly108 by both CD4+ T cells and B cells (Figures

1C and 1D).

To investigate the effects of loss of Ly108, we scrutinized anti-

viral B cell and T cell responses by wild-type (WT), Slamf6+/�,
and Slamf6�/� mice. Eight days after an acute LCMV infection,

germinal center B cell numbers were unaffected by absence of

Ly108 (Figure 1E). Additionally, antibody responses 30 days after

infection were normal in Slamf6�/� mice (Figure 1G). In contrast,

Sh2d1a�/� mice display a striking germinal center defect 8 days

after LCMV infection and have severely reduced LCMV antibody

titers 30 days postinfection (Figures 1F and 1H).

Previous work demonstrated that CD84 has a partial role in

germinal center development after protein immunizations

(Cannons et al., 2010a), but we observed no defect in Cd84�/�

mice in the context of an acute LCMV infection (Figure S1 avail-

able online). We therefore examined a second infection model,

vaccinia virus (VACV), and again no defect in germinal centers

or Tfh cells was observed in Cd84�/� mice (Figure S1 and data

not shown). These observations implicated a robust Tfh cell

functional redundancy between SLAM family receptors, which

has also been observed for SLAM family receptor participation

in NKT cell development (Griewank et al., 2007).

Ly108 Function in the Absence of SAP
To strategically delineate the requirements of Ly108 in the SAP-

deficient phenotype, we generated Sh2d1a�/�Slamf6�/�

double-deficient mice. Surprisingly, the removal of Ly108

expression from SAP-deficient mice eliminated the SAP require-

ment for germinal center formation in response to an LCMV

infection (p < 0.001; Figure 2A). Plasma cell development was

also recovered in Slamf6�/�Sh2d1a�/� mice, in stark contrast

to Sh2d1a�/� mice (p < 0.001; Figure 2B). Tfh cell percentages

were unaffected (Figure 2C). Sh2d1a�/� mice have a severe

defect in GC Tfh cell formation (Yusuf et al., 2010). In contrast

to the absence of GC Tfh cells in Sh2d1a�/� mice, GC Tfh cell
Immunity 36, 986–1002, June 29, 2012 ª2012 Elsevier Inc. 987
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Figure 1. Ly108 Expression and Function in an Acute Viral Infection

(A and B) Ly108 expression on splenic (A) effector (Th1) (CXCR5lo), Tfh (CXCR5hi), and GC Tfh (CXCR5hiPD1hi) CD44hiCD4+ cells 8 days after LCMV infection, and

(B) naive B cells, plasma cells (CD19+CD138hiIgDlo), and germinal center B cells (CD19+GL7hiFashi) 8 days after LCMV infection.

(C and D) CD4+ T cells (C) and B cells (D) from uninfected wild-type (WT) and Slamf6�/� mice.

(E and F) Slamf6+/+ and Slamf6�/� mice (E) or Slamf6�/� and Sh2d1a�/� mice (F) were infected with LCMV and splenocytes were analyzed for GC B cells 8 days

later, gated on CD19+ cells.

(G) WT, Slamf6+/�, and Slamf6�/� mice were infected with LCMV- and virus-specific serum IgG was measured day 30 after infection.

(H) Slamf6�/� and Sh2d1a�/� mice were infected with LCMV, and virus-specific serum IgG was measured day 8 postinfection.

Data are representative of two or more independent experiments; n = 4 or more per group. ***p < 0001. Error bars are SEM. See also Figure S1.

Immunity

Ly108-Negative Signaling Inhibits CD4+ T Cell Help
numbers in the combined absence of SAP and Ly108

(Slamf6�/�Sh2d1a�/�) were 80% of WT GC numbers

(p < 0.001; Figure 2D). Antibody responses to an acute viral

infection were recovered in Slamf6�/�Sh2d1a�/� mice, in

contrast to Sh2d1a�/� mice (p < 0.01; Figure 2E). In contrast,

neither Slamf1�/�Sh2d1a�/� mice (Yusuf et al., 2010) nor

Cd84�/�Sh2d1a�/� mice (Figure S2) showed evidence of

amelioration of the negative signaling occurring in the absence

of SAP, with germinal center defects equal in severity to

Sh2d1a�/� mice. These data suggested that Ly108 transmits

a potent negative signal in the absence of SAP, potentially ex-

plaining the gross defect of humoral immunity in SAP-deficient

mice and humans.

CD4+ T Cell-Intrinsic Effects of Ly108 Signaling
SAP has been shown to be required in CD4+ T cells for humoral

immunity and, with the exception of one study, not required in B

cells or APCs for the development of germinal centers (Cannons

et al., 2011; Veillette et al., 2008). To determine whether

Ly108 inhibitory signaling in the absence of SAP was CD4+

T cell intrinsic, we transferred naive WT, Sh2d1a�/�, or

Slamf6�/�Sh2d1a�/� purified SMARTA TCR transgenic CD4+

T cells (‘‘SM,’’ LCMV gp66-77 I-Ab-specific) into Sh2d1a�/�

recipients. Given that Sh2d1a�/� mice are unable to mount an

endogenous germinal center response to LCMV, any germinal

center B cells that develop are a direct result of the transferred

virus-specific SM CD4+ T cells. Eight days after LCMV,

mice receiving Sh2d1a�/� SM CD4+ T cells failed to mount

a germinal center response, whereas Slamf6�/�Sh2d1a�/� SM

CD4+ T cells rescued germinal center formation (58% of WT
988 Immunity 36, 986–1002, June 29, 2012 ª2012 Elsevier Inc.
Sh2d1a�/� versus Slamf6�/�Sh2d1a�/�, p < 0.001; Figure 3A).

Slamf6�/�Sh2d1a�/� SM cells also supported robust plasma

cell development in response to the acute infection (90% of

WT), in contrast to Sh2d1a�/� SM cells (p < 0.001; Figure 3B).

Whereas Sh2d1a�/� SM cells had a defect in Tfh cell frequency

(p < 0.05; Figure 3C; Yusuf et al., 2010), this defect was reversed

in the absence of Ly108 (Slamf6�/�Sh2d1a�/� versus Sh2d1a�/�

SM, p < 0.01; Figure 3C). Notably, Slamf6�/�Sh2d1a�/� SM

CD4+ T cells were able to differentiate into GC Tfh cells (p <

0.001; Figure 3D), consistent with the strong B cell response

observed in the recipient mice. These data show that the

germinal center phenotype seen in Slamf6�/�Sh2d1a�/� mice

is due to a CD4+ T cell-intrinsic function, revealing a potent

Ly108 inhibitory pathway that requires counteraction by SAP.

One challenge to studying SLAM family receptors is that the

genes are clustered together on chromosome 1. This impacts

the interpretation of certain experiments because of SLAM family

receptor allelic differences between mouse strains (Keszei et al.,

2011; Veillette et al., 2006; Wandstrat et al., 2004). Therefore, we

designed an experiment to confirm that Slamf6�/�Sh2d1a�/�

reversal of the severe Sh2d1a�/� humoral immunity defect

phenotype was specifically due to the absence of Ly108.

Ly108 was reintroduced by retroviral vector (RV) transduction

of Slamf6�/�Sh2d1a�/� SM CD4+ T cells (Figure 3E). The two

widely expressed Ly108 isoforms, Ly108-1 and Ly108-2, both

of which contain two canonical ITSMs, were investigated for

activity. Introduction of either isoform of Ly108 into Slamf6�/�

Sh2d1a�/� SM cells ‘‘reversed’’ the phenotype of these cells

and suppressed germinal center development (p < 0.05 and

p < 0.01; Figure 3E). Plasma cell responses to the viral infection
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Figure 2. Loss of Ly108 Eliminates the SAP Expression Requirement for Germinal Center Development

(A–D) Wild-type, Sh2d1a�/�, and Slamf6�/�Sh2d1a�/� mice were infected with LCMV. Splenocytes were analyzed day 8 after infection.

(A and B) Germinal center B cells (FashiGL7hi) (A) and plasma cells (IgDloCD138hi) (B) are shown as a percent of total B cells (CD19+CD4�).
(C and D) Tfh cells (CXCR5+SLAMlo) (C) and GC Tfh cells (CXCR5+PD1hi) (D) are shown as a percent of activated CD4+ T cells (CD44hiCD4+).

Data are representative of three (A–C) or two (D) independent experiments; n = 5 per group.

(E) Wild-type, Sh2d1a�/�, Slamf6�/�, and Slamf6�/�Sh2d1a�/� mice were infected with vaccinia virus. Serum antibody titers were analyzed day 8 after infection.

*p < 0.05, **p < 0.005, ***p < 0001. n.s., no statistically significant difference (p > 0.05). Error bars are SEM. See also Figure S2.
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were also inhibited by Ly108 expression (p < 0.012 and p < 0.04;

Figure 3F). Inhibition of germinal center and plasma cell

development by Ly108 expression in the absence of SAP was

incomplete, probably because of moderate expression of
Ly108 by the RV expression vector (Figure 3G). This experi-

mental setting allowed for the demonstration of negative

signaling involving Ly108, but it also allowed for complementary

experiments demonstrating that overexpression of SAP in
Immunity 36, 986–1002, June 29, 2012 ª2012 Elsevier Inc. 989
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Figure 3. Loss of Ly108 Reverses the SAP Requirement in CD4+ T Cells for T Cell Help to B Cells

(A–D) WT, Sh2d1a�/�, or Slamf6�/�Sh2d1a�/� CD45.1+ SM TCR transgenic CD4+ T cells were transferred into Sh2d1a�/� recipient mice subsequently infected

with LCMV. Splenocytes were analyzed day 8 after infection.

(A and B) Germinal center B cells (FashiGL7hi) (A) and plasma cells (CD138+IgDlo) (B) shown as percent of total B cells (CD19+CD4�).
(C and D) Tfh cells (CXCR5+) (C) and GC Tfh cells (CXCR5+PD1hi) (D) shown as a percent of SM (CD45.1+CD4+B220�).
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Slamf6�/� Sh2d1a�/� CD4+ T cells led to enhanced germinal

center formation (p < 0.05; Figure 3E). This is consistent with

SAP both blocking a negative signal through Ly108 and

providing a positive signal for CD4+ T cell help to B cells. Taken

together, these results provide strong evidence for a CD4+ T cell-

intrinsic effect of Ly108 inhibition of humoral immunity that is

modulated by SAP expression.

The Role of Ly108 in Formation of T Cell:B Cell
Conjugates
To evaluate how Ly108 functions in the absence of SAP, we

asked what aspect of T cell help to B cells is inhibited by

Ly108. Previous studies have shown that SAP plays an important

role in CD4+ T cell:B cell conjugate contact time in germinal

centers. SAP deficiency leads to decreased contact time. This

defect can be recapitulated in vitro by a flow cytometry-based

T cell:B cell conjugation assay (Cannons et al., 2010a; Qi et al.,

2008) wherein absence of SAP expression in CD4+ T cells results

in a severe defect in adhesion to B cells in the presence of

cognate peptide (Figures 4A and 4B). We therefore examined

whether T cell:B cell conjugates were impacted by the absence

of Ly108 in Sh2d1a�/� CD4+ T cells. Combined loss of SAP and

Ly108 again reversed the Sh2d1a�/� CD4+ T cell phenotype,

back to T cell:B cell conjugate percentages seen for WT CD4+

T cells (Figures 4A and 4B). These data demonstrate that

Ly108 signaling can actively inhibit T cell:B cell adhesion and

indicate that this is the likely cause of the in vivo Ly108-depen-

dent block to germinal center development.

ITSM Phosphotyrosine Motifs Are Required for Ly108
Inhibitory Signals
Based on the previous experiments, we hypothesized that Ly108

transmits a potent negative signal to CD4+ T cells in conditions of

low or absent SAP protein. SAP protein levels are low in naive

CD4+ T cells and many activated CD4+ T cells, but SAP protein

expression is substantially upregulated in Tfh cells, both in

mice (Yusuf et al., 2010) and humans (Kroenke et al., 2012; Ma

et al., 2009). We therefore addressed how Ly108 transmits this

negative signal. Ly108 isoforms containmultiple tyrosines, which

may be potential docking sites for inhibitory signaling molecules.

In addition to two ITSMs, Ly108-1 contains one additional unique

tyrosine, whereas Ly108-2 contains two additional unique tyro-

sines (Cannons et al., 2011). Because Ly108-1 and Ly108-2

both are able to inhibit germinal center formation in the absence

of SAP (Figures 3E–3G), we focused on Ly108-2 and generated

a Ly108-2 (‘‘Ly108’’) mutant expression construct in which all

cytoplasmic tyrosines were mutated to phenylalanines (Ly108-

AllF) (Figure S3). We also evaluated a construct that contained

only the single conserved noncanonical ITSM (Ly108-Y3) to

test the importance of the ITSMs for Ly108-negative signaling.
(E–G) Slamf6�/�Sh2d1a�/� SM CD4+ T cells (CD45.1+) were transduced with L

recipient mice, and mice were infected with LCMV.

(E) Germinal center B cells (FashiGL7hi) are shown 8 days after infection, as a pe

(F) Plasma cell (CD19+ IgDloCD138+) frequencies, as a percent of total B cells.

(G) MFI of Ly108 expression on Slamf6�/�Sh2d1a�/� SM CD4+ T cells transd

endogenous Ly108 expression on WT SM cells.

Data are representative of four (A–C, E) or two (D, F, G) independent experiment

are SEM.
Slamf6�/�Sh2d1a�/� SM CD4+ T cells were transduced with

Ly108, Ly108-AllF, Ly108-Y3, or a control construct (RV-GFP)

and transferred into Sh2d1a�/� recipients. RV-GFP-transduced

Sh2d1a�/� SM CD4+ T cells transferred into Sh2d1a�/� recipi-

ents were used as a negative control. After cell transfer, mice

were infected with LCMV and germinal center formation

evaluated at day 8. As anticipated, Slamf6�/�Sh2d1a�/� SM +

RV-GFP drove significantly more germinal centers than did

Sh2d1a�/�SM + RV-GFP (p < 0.05; Figures 4C and 4D). Addi-

tionally, reintroduction of Ly108 in Slamf6�/� Sh2d1a�/� SM

cells inhibited germinal center formation (p < 0.05; Figures 4C

and 4D). However, Ly108-Y3- (p < 0.01) or Ly108-AllF-

(p < 0.05) expressing Slamf6�/�Sh2d1a�/� SM cells were

unable to inhibit germinal center formation in comparison to

Slamf6�/�Sh2d1a�/� SM cells expressing intact Ly108 (Figures

4C and 4D). In follow-up experiments with Ly108-AllF, the inhibi-

tion of plasma cell development by Ly108 in the absence of SAP

was lost when CD4+ T cells expressed the Ly108-AllF mutant

(p < 0.013; Figure 4E). Thus, ITSM phosphotyrosines are impor-

tant for the transduction of inhibitory signals through Ly108

that restrict humoral immune responses.

To examine the roles of individual ITSMs in Ly108-negative

signaling, we created two additional Ly108 mutants containing

only the first or second ITSM tyrosine (Ly108-Y1 and Ly108-

Y2). Slamf6�/�Sh2d1a�/� SM CD4+ T cells were transduced

with RV-Ly108, Ly108-Y1, or Ly108-Y2 and transferred into

Sh2d1a�/� recipients that were then infected with LCMV.

Ly108 with only a single ITSM, either the first ITSM (p < 0.05)

or second ITSM (p < 0.05), provided strong inhibitory signaling

in the absence of SAP protein (Figures 4F and 4G). Because

the ITSMs are the SAP binding motifs, these results indicate

that the ITSM phosphotyrosines can serve as an on-off switch

for CD4+ T cell help to B cells via competition for phosphotyro-

sine binding between SAP (positive signaling) and an unknown

negative signaling protein.

Increased SHP-1 Association with Ly108 in the Absence
of SAP and Disruption of the T Cell:B Cell Synapse
Previous literature suggested that in addition to binding SAP,

different SLAM family members could recruit negative signaling

molecules including the protein phosphatases SHP-2, SHP-1,

Cbl, or Csk (Chen et al., 2006; Eissmann et al., 2005; Kim

et al., 2010; Sayos et al., 1998; Snow et al., 2009; Zhong and Veil-

lette, 2008), as well as the lipid phosphatase SHIP-1 (Latour

et al., 2001; Shlapatska et al., 2001). Limited evidence was

also available for recruitment of negative signaling molecules

to Ly108 (or NTB-A) (Bottino et al., 2001; Snow et al., 2009; Val-

dez et al., 2004; Zhong and Veillette, 2008). To understand the

mechanisms by which Ly108 transduces an inhibitory signal,

we immunoprecipitated Ly108 from WT and Sh2d1a�/� CD4+
y108-1, Ly108-2, SAP, or GFP vector in vitro and transferred into Sh2d1a�/�

rcent of total B cells.

uced with empty vector (GFP) or Ly108 vector (Ly108-2), in comparison to

s; n = 4 or more mice per group. *p < 0.05, **p < 0.005, ***p < 0001. Error bars
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(A and B) Conjugation efficiency of WT, Sh2d1a�/�, and Slamf6�/� Sh2d1a�/� SM CD4+ T cells with B cells pulsed with cognate peptide (LCMV gp66-77).

(A) Representative flow cytometry plots, gated on CD4+ T cells.

(B) Mean frequency of CD4+CD19+ conjugates in total CD4+ events. n = 2.

(C–G) Roles of Ly108 tyrosines in vivo.
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T cells after stimulation with peptide-pulsed B cells. Stimulation

with B cells led to a specific increase in SHP-1 association with

Ly108 in the Sh2d1a�/�CD4+ T cells (Figure 5A), with less SHP-1

association in WT CD4+ T cells. Thus, in the absence of SAP,

CD4+ T cells show increased association of the phosphatase

SHP-1 with Ly108.

We subsequently used confocal immunofluorescence micros-

copy to examine SHP-1 localization in T cell:B cell conjugates.

SHP-1 accumulated at the synapse of WT, Sh2d1a�/�, and

Sh2d1a�/�Slamf6�/� CD4+ T cell conjugates with WT B cells

pulsed with cognate peptide (Figure 5B, top). Rotation of the

images and a more detailed en face evaluation of the T cell:B

cell synapse revealed marked differences in SHP-1 localization

(Figure 5B, bottom). WT CD4+ T cells exhibited a clearance of

SHP-1 from the center of the B cell contact site, resulting in an

O-shaped SHP-1 pattern around the perimeter of the synapse

(Figures 5B–5D). In contrast, Sh2d1a�/� CD4+ T cells failed to

restrict SHP-1 localization and SHP-1 was diffusely spread

throughout the entire T cell:B cell synapse (Figures 5B–5D).

Strikingly, SHP-1 was cleared from the central synapse in a large

fraction of Sh2d1a�/�Slamf6�/� T cell:B cell conjugates (Figures

5B–5D). Together, these data suggest that the impaired clear-

ance of SHP-1 from the immune synapse has a pronounced

negative impact on the adhesion of Sh2d1a�/� CD4+ T cells

with antigen-presenting B cells.

To validate the requirements of the Ly108 tyrosine residues

and SHP-1 recruitment, Slamf6�/� and Slamf6�/�Sh2d1a�/�

CD4+ SM T cells were retrovirally reconstituted with either

WT Ly108 or Ly108-AllF. After stimulation with peptide-pulsed

B cells, SHP-1 selectively associated with WT Ly108 in the

Slamf6�/�Sh2d1a�/� CD4+ T cells (Figure 5E), consistent with

the increased SHP-1 associated with Ly108 observed in

Sh2d1a�/� cells (Figure 5A). Additionally, to visualize Ly108

and SHP-1 localization, Ly108 constructs were designed as

fusion proteins with GFP and introduced into Slamf6�/� and

Slamf6�/�Sh2d1a�/� CD4+ SM T cells. Ly108 is present

both in central and peripheral regions of the synapse, as

seen in Slamf6�/� cells reconstituted with Ly108-GFP or

Ly108-AllF-GFP (Figures 5G, 5H, and S4). SHP-1 is predomi-

nantly restricted to an outer ring at the synapse in Slamf6�/� +

Ly108-GFP cells (Figures 5F and 5G), comparable to WT

and Slamf6�/�Sh2d1a�/� CD4+ T cells (Figures 5B–5D).

Slamf6�/�Sh2d1a�/� CD4+ T cells reconstituted with Ly108

show increased SHP-1 recruitment in the center of the synapse

(Figures 5F and 5G), consistent with enhanced SHP-1 re-

cruitment by Ly108 in the absence of SAP. However,

Slamf6�/�Sh2d1a�/� CD4+ T cells reconstituted with the
(C–E) Slamf6�/�Sh2d1a�/� SM CD4+ T cells were transduced with GFP, Ly108

Sh2d1a�/� recipient mice. An additional group received Sh2d1a�/� SM cells tran

spleen were analyzed 8 days after infection.

(C) Representative germinal center B cell FACS plots are shown, gated on total

(D) Quantitation of GC B cells as gated in (C).

(E) Quantitation of the plasma cell response.

(F and G) Slamf6�/�Sh2d1a�/� SM -Ly108-Y1 mutant or -Ly108-Y2 mutant CD4+

Sh2d1a�/� recipient mice subsequently infected with LCMV.

(F) Representative germinal center B cell FACS plots are shown, gated on total B

(G) Quantitation of GC B cells as gated in (F).

Data are representative of two independent experiments; n = 4 or more per grou
Ly108-AllF mutant show SHP-1 localization in an outer ring,

comparable to WT CD4+ T cells (Figures 5F and 5H). These

experiments support a model whereby Ly108 recruits SHP-1 to

the central area of the synapse in the absence of SAP and

confirms the requirements for the tyrosine residues for such

recruitment. Thus, both in vitro and in vivo experiments suggest

that in the absence of SAP, Ly108 mediates a potent negative

signal primarily via SHP-1 phosphatase recruitment to ITSM

motifs.

Sh2d1a–/– T Cell:B Cell Adhesion Can Be Restored by
Inhibition of SHP-1 or Reduced Ly108 Expression
If the negative signaling through Ly108 depends on SHP-1

recruitment, disruption of SHP-1 recruitment or function is pre-

dicted to prevent Ly108-negative signaling. Furthermore, disrup-

tion of SHP-1 recruitment or function would be predicted to

reverse the severe cell:cell adhesion defect observed for SAP-

deficient CD4+ T cells. To test this hypothesis, we preincubated

SM CD4+ T cells with sodium stibogluconate (SSG), a specific

SHP-1 inhibitor (Iype et al., 2010), and evaluated T cell:B cell

conjugate formation. Sh2d1a�/� CD4+ T cell adhesion to B cells

in the presence of cognate peptide is severely defective (Figures

6A and 6B). Strikingly, treatment of Sh2d1a�/� CD4+ T cells with

SSG restores T cell:B cell adhesion to the same level achieved by

wild-type CD4+ T cells (Figures 6A–6C). Thus, excessive Ly108-

mediated SHP-1 recruitment is the primary functional cause of

the profound Sh2d1a�/� CD4+ T cell adhesion to B cell defect.

Ly108 is a self-ligand. This implies a requirement for Ly108 on

both the CD4+ T cell and B cell for Ly108- and SHP-1-dependent

inhibitory signaling to occur in CD4+ T cells. Inhibition of T cell:B

cell adhesion does require Ly108 expression on both the CD4+

T cells and the B cells, as shown by the fact that Sh2d1a�/�

CD4+ T cells exhibit adhesion to Slamf6�/�B cells that is compa-

rable toWTCD4+ T cell adhesion toWTB cells in the presence of

high-dose cognate peptide (Figure 6D). In addition, at 100-fold

lower peptide concentrations, Sh2d1a�/� CD4+ T cells exhibit

reduced adhesion to Slamf6�/� B cells compared to WT CD4+

T cell adhesion to Slamf6�/�B cells (Figures 6B and 6D). We infer

from these results that positive SAP-dependent signaling

through SLAM family receptors is most important under limiting

concentrations of antigen (Figure 6D), whereas negative

signaling through Ly108 can be potent at all antigen concentra-

tions (Figure 6B). In summary, ligation of Ly108 on CD4+ T cells

by Ly108 on B cells triggers SHP-1 recruitment in the absence of

SAP, resulting in truncated synapse formation and abortive T cell

help (Figure S5). This potent inhibitory mechanism downstream

of Ly108 can be reversed by selective inhibition of SHP-1.
-2 (‘‘Ly108’’), Ly108-Y3 mutant, or Ly108-AllF mutant RV and transferred into

sduced with RV-GFP. Mice were infected with LCMV and B cell responses in

B cells (CD19+CD4�).

T cells were transduced with RV-GFP, -Ly108-2 (‘‘Ly108’’) and transferred into

cells (CD19+CD4�), analyzed at day 8 after infection.

p. *p < 0.05, **p < 0.005; error bars are SEM. See also Figure S3.
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that were untreated or pulsed with PCC peptide. Lysates were immunoprecipated for Ly108 and blotted for SHP-1 and Ly108. Total cell lysates (TCL) were

examined for pERK activation and total ERK protein levels. NP, no peptide.
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NKT Cell Development Is Rescued in Sh2d1a–/– Mice by
the Elimination of Ly108
In addition to the dramatic humoral immunity defect, a severe

defect in NKT cell development is a second prominent pheno-

type in both SAP-deficient mice and humans (Griewank et al.,

2007; Ma et al., 2005; Nichols et al., 2005; Pasquier et al.,

2005). SLAM family receptors Ly108 and SLAM have been

shown to contribute to the development of NKT cells in the

thymus (Griewank et al., 2007). We therefore examined whether

the absence of NKT cells in Sh2d1a�/� animals was related to

negative signaling by Ly108. WT, Sh2d1a�/�, Slamf6�/�, and
Slamf6�/�Sh2d1a�/� mice were analyzed for the presence of

splenic NKT cells. Consistent with previous studies, NKT cells

were absent in Sh2d1a�/� mice (99.9% loss, p < 0.0001),

whereas Slamf6�/� animals had 61% reduced frequencies

compared to WT (p < 0.0001; Figures 7A and 7C). Quantifying

absolute cell numbers gave the same results (p < 0.001, p <

0.002; Figure 7B). Surprisingly, NKT cell frequencies were

substantially rescued by deletion of Slamf6 from Sh2d1a�/�

mice (252-fold NKT cell increase in Slamf6�/�Sh2d1a�/�

versus Sh2d1a�/� mice; p < 0.0001; Figures 7A and 7C).

The Slamf6�/�Sh2d1a�/� mice did, however, have fewer

splenic NKT cells than did WT (p < 0.0001). Notably, the

Slamf6�/�Sh2d1a�/� mice also had fewer splenic NKT cells

than Slamf6�/� mice (p < 0.0034; Figures 7A and 7C).

NKT cell development depends on thymocyte-thymocyte

interactions, where CD1d on one thymocyte is engaged by the

TCR of another thymocyte (Bendelac et al., 2007). NKT cell

development in Sh2d1a�/�mice is blocked at an extremely early

stage, referred to as stage 0. NKT cell thymic development

is rescued in Slamf6�/�Sh2d1a�/� mice (Sh2d1a�/� versus

Slamf6�/�Sh2d1a�/�, 0.008% and 2.62%, respectively; Figures

7D and 7E). However, the rescue does not completely restore

developing thymic NKT cell numbers to wild-type numbers

(Figures 7D and 7E). Liver is a major site of NKT cells in the

periphery. Whereas Sh2d1a�/� mice have a complete absence

of liver NKT cells, Slamf6�/�Sh2d1a�/� mice have substantial

liver NKT cells (0.007% versus 3.1%; Figures 7G and 7H). Never-

theless, the liver NKT cell frequency in Slamf6�/�Sh2d1a�/�

mice is still reduced in comparison to wild-type mice (Figures

7G and 7H), comparable to the NKT cells in spleen.

Slamf6�/�Sh2d1a�/� NKT cells are fully differentiated, with

normal proportions of stage 2 (NK1.1�) and stage 3 (NK1.1+)
(B–D) WT, Sh2d1a�/�, and Slamf6�/� Sh2d1a�/� SM CD4+ T cell conjugates w

stained with Hoechst (blue) and antibodies to CD4 (white) and SHP-1 (green).

(B) Cells were examined from the side as a confocal projection in the x-y plane (t

plane.

(C) Representative immunofluorescence images of SHP-1 localization at the imm

(D) Quantification of SHP-1 localization at the immune synapse. Data represent tw

each experiment.

(E) Activated Slamf6�/� and Slamf6�/�Sh2d1a�/� SM CD4+ T cells expressing

activated B cells pulsed with cognate peptide (LCMV gp66-77). Lysates were im

(F–H) Slamf6�/� and Slamf6�/�Sh2d1a�/� SM CD4+ T cells were transfected with

targets pulsed with cognate peptide (LCMV gp66-77). Cells were stained wit

fluorescence.

(F) Quantitation of SHP-1 localization at the synapse.

(G) Representative immunofluorescence images of cells expressing Ly108-GFP.

(H) Representative immunofluorescence images of cells expressing Ly108-AllF-G

Further examples are shown in Figure S4. Data for each experiment depicted ar
NKT cells (Figures 7F and 7I). Overall, Slamf6�/�Sh2d1a�/�

mice have a significant loss of NKT cells, in the rank order:

wild-type > Slamf6�/� > Slamf6�/�Sh2d1a�/�. This shows the

positive signaling role of Ly108 in NKT cell development also.

In conclusion, inhibitory signaling by Ly108 is potent in both

CD4+ T cell function and NKT cell development.

DISCUSSION

A central role for SAP has been shown in Tfh cell differentiation

and function and the generation of B cell immunity, both in

mice and humans; however, how SAP facilitates these feats

has been incompletely understood. We have found that Ly108

can transmit positive and negative signals to CD4+ T cells and

NKT cells, such that absence of SAP results in both the loss of

a positive signal and the exacerbation of a negative signal. Our

findings help resolve the conundrum of why SAP deficiency

results in such a severe humoral immunity defect encompassing

virtually all T cell-dependent immune responses. Equally impor-

tantly, these findings reveal a mechanism whereby Ly108

appears to serve as a rheostat for T cell:B cell interactions and

other lymphocyte:lymphocyte interactions (e.g., NKT cell thymic

selection), via modulation of the ratio of positive and negative

signals transmitted by SAP and SHP-1 competing for occupancy

of the same ITSMs of Ly108. The broader role of Ly108 is

confirmed by similar findings in CD8+ T cells (Zhao et al., 2012,

this issue of Immunity).

Negative signaling by SLAM family receptors was previously

observed, but this was primarily in the context of 2B4 in SAP-

deficient human NK cells (Moretta et al., 2001; Nakajima et al.,

2000; Parolini et al., 2000), and it was generally considered to

be an unusual feature of NK cell receptor inhibitory signaling

biology (Moretta et al., 2001; Raulet et al., 2001; Veillette et al.,

2009) that was extended to include both 2B4 andNTB-A (Slamf6)

(Bottino et al., 2001). Our CD4+ T cell and NKT cell work pre-

sented here, and new studies on CD8+ T cells (Zhao et al.,

2012, this issue; Palendira et al., 2011), indicate that a potent

negative signaling role of Ly108 is broadly active in lymphocytes.

This is not a generalized property of SLAM family receptors.

Slamf1�/�Sh2d1a�/� mice phenocopy the severe germinal

center defect of Sh2d1a�/� mice, indicating that SLAM has

only positive signaling functions (Yusuf et al., 2010). Disruption

of Cd84 also failed to rescue the negative signaling observed
ith LPS-activated B cells pulsed with cognate peptide (LCMV gp66-77) were

op row), at 45� (middle row), and 90� (en face, bottom row) rotations in the y-z

une synapse.

o independent experiments with more than 40 conjugates scored/genotype for

Ly108-GFP or Ly108-AllF-GFP (Ly108-AllF) constructs were incubated with

munoprecipated for Ly108 and blotted for SHP-1 and Ly108.

either Ly108-GFP (WTLy108) or Ly108-AllF-GFP and conjugated to WT B cell

h Hoechst (blue) and antibodies against SHP-1 (red). Green is Ly108-GFP

FP.

e representative of two or more experiments.
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Figure 6. Inhibition of SHP-1 Reverses the Adhesion Defect of SAP-Deficient CD4+ T Cells

(A–C) Activated WT, Sh2d1a�/�, Slamf6�/�, and Slamf6�/�Sh2d1a�/� SM CD4+ T cells were incubated with activated WT B cells pulsed with cognate peptide

(LCMV gp66-77. 0, 0.01, or 1.0 mg/ml), in the presence or absence of SSG, followed by flow cytometry.

(A) Representative flow cytometry plots, gated on CD4+ T cells.

(B and C) Mean frequency of T cell:B cell conjugates in total CD4+ events, in the absence (B) or presence (C) of SSG.

(D) CD4+ T cells incubated with activated Slamf6�/� B cells pulsed with cognate peptide (LCMV gp66-77. 0, 0.01, or 1.0 mg/ml). Data are shown from one of two

experiments with equivalent results. See also Figure S5.
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in Sh2d1a�/�mice. Therefore, the capacity for both negative and

positive signaling appears to be restricted to Ly108 and 2B4

SLAM family receptors, of which only Ly108 is expressed on

CD4+ T cells and developing NKT cells.

The potent negative signaling by Ly108 is primarily mediated

by SHP-1. Ptpn6�/� (motheaten, SHP-1-deficient) mice have
996 Immunity 36, 986–1002, June 29, 2012 ª2012 Elsevier Inc.
a phenotype consistent with the importance of SHP-1 in

Ly108-negative signaling and balancing signaling through

Ly108, as shown by the fact that Ptpn6�/� mice have rapid

hyperglobulinemia (Green and Shultz, 1975; Shultz and Green,

1976). SHP-1 is a key protein phosphatase, functioning in

a variety of signaling pathways, and the importance of SHP-1
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is reinforced by the severe phenotype of Ptpn6�/� mice, which

become severely ill and die at approximately 3 weeks of age

as a result of autoimmune pneumonitis and other autoimmune

sequelae. Further examination of the kinetics of SHP-1 regula-

tion of T cell:B cell interactions and other Ly108-dependent func-

tions of lymphocytes is an important area for future investigation,

which will require refined experimental approaches.

Positive signaling mediated by SAP has been shown previ-

ously for multiple SLAM family receptors, including SLAM,

CD84, and Ly108. Positive signaling through SLAM has been

studied in themostmolecular detail and has served as a template

for understanding SLAM family receptor signaling (Veillette,

2006). SAP binds phosphotyrosines of the SLAM ITSM motifs

and recruits Fyn kinase and PKC-q, and together this signaling

complex mediates induction of IL-4 expression (Cannons et al.,

2011; Crotty, 2011). The biological role of this pathway in CD4+

T cells has recently become clearer, as GC Tfh cells produce

IL-4 (Crotty, 2011; Harada et al., 2012; Vijayanand et al., 2012)

and SLAM receptor engagement induction of SAP signaling is

required for expression of IL-4 by GC Tfh cells (Yusuf et al.,

2010). A positive signaling role for SAP in CD4+ T cells is also

seen for CD84 adhesion and Ly108 adhesion (Cannons et al.,

2010a). A positive signaling role for Ly108 is clearest from the

study of NKT cell development. A consistent �50% reduction

in NKT cell numbers was observed in Slamf6�/� mice (Griewank

et al., 2007) and confirmed here. Notably, Slamf6�/�Sh2d1a�/�

mice have fewer NKT cells than do Slamf6�/� mice. This indi-

cates that not only does Ly108 provide a negative signal in the

absence of SAP and a positive signal in the presence of SAP,

additional SLAM family receptors also provide positive SAP-

dependent signals that facilitate NKT cell development. The

role of SLAM itself in NKT cell development was primarily re-

vealed only in the combined absence of Ly108 and SLAM, high-

lighting the redundancy between SLAM family receptors for

positive signaling via SAP.

The positive signaling contribution of SAP in CD4+ T cells

is best revealed in the studies of Slamf6�/�Sh2d1a�/� CD4+

T cell-intrinsic defects. Both germinal center B cell and GC

Tfh cell frequencies were �50% lower compared to WT

CD4+ T cell recipients. This shows a genetic requirement

for positive signals through SAP and/or Ly108, paralleling

the NKT cell biology. Furthermore, SAP overexpression in

Slamf6�/�Sh2d1a�/� CD4+ T cells enhanced germinal center B

cell numbers, again showing a positive role for SAP signaling.

A positive signaling role for Ly108 in CD8 T cells is seen in

reduced signaling and killing by Slamf6�/� CD8+ T cells (Zhao

et al., 2012, this issue).

The observation that Ly108 can transmit both positive and

negative signals led us to examine the molecular mechanism

of this process. We found that the negative signal is ITSM

dependent and requires SHP-1 recruitment to Ly108 and the

immunological synapse. This intimate linking of both positive

and negative signaling to a single Ly108 binding site, the ITSM,

forces a direct competition between SAP and SHP-1 for occu-

pancy. Therefore, the simplest interpretation of these data is

that the magnitude of negative or positive signaling transmitted

by engaged Ly108 during T cell:B cell interaction is determined

by the ratio of available SAP versus SHP-1 in the local subcellular

microenvironment. This suggests that the ratio of SAP and SHP-
1 occupancy of Ly108 acts as a rheostat for the magnitude of

T cell help to B cells. Ly108 expression is dynamically regulated

on many hematopoietic cells. SAP expression is dynamically

regulated in T cells. SHP-1 recruitment to membrane is dynam-

ically regulated. We suggest that this Ly108 rheostat concept

may apply to a variety of cell:cell interactions.

SAP’s impact on the duration of cell:cell interaction is particu-

larly important for Tfh cell function. Tfh cells are specialized for B

cell help, which is primarily provided via cell:cell interactions

(Crotty, 2011). In addition, Tfh cell differentiation itself is strongly

dependent on T cell:B cell interactions. Tfh cell differentiation is

a multistage process (Crotty, 2011), such that in the absence of

SAP there is still sufficient T cell:B cell interaction for early Tfh cell

differentiation (Bcl6+CXCR5+) but not full polarization to GC Tfh

cells (Bcl6hiPD1hi) (Choi et al., 2011; Crotty, 2011; Deenick

et al., 2010; Qi et al., 2008; Yusuf et al., 2010). This is also impor-

tant for the cognate B cells, because in the absence of extended

T cell:B cell interactions, germinal center B cells fail to develop

(Qi et al., 2008). Furthermore, in the absence of sufficient survival

signals from CD4+ T cells, germinal center B cells apoptose

within hours (Liu et al., 1989). GC Tfh cells regulate maintenance

of germinal center B cells (Eto et al., 2011; Linterman et al., 2010;

Victora et al., 2010), and altering the duration of T cell:B cell

contact controls the quantity of information transfer between

the two cells, thereby controlling germinal center B cell survival

and further differentiation (Crotty, 2012). Altering the duration

of T cell:B cell contact also probably alters the quality of the infor-

mation transferred, because some information transfer probably

takes the form of an initial contact-dependent B cell/T cell

signal (i.e., MHCII-TCR engagement) and then ‘‘help’’ from the

T cell back to the B cell after a lag phase of additional signal inte-

gration and protein translation. The duration of the contact is crit-

ical for such information transfer. As such, Ly108 modulation of

the overall time of adhesion appears to serve as a powerful rheo-

stat for T cell/B cell help, indirectly influencing a range of

receptor:ligand interactions. This is consistent with the observa-

tion that GC Tfh cells have the highest SAP protein expression

among CD4+ T cells. NKT cell development is also consistent

with this, given that thymocyte interactions are potentially of

insufficient duration to facilitate early NKT cell development in

the thymus in the absence of SAP. In support of this model,

recently it has been shown that thymic NKT cell development

depends on strong sustained TCR signaling (Moran et al.,

2011). Further understanding the stages of Ly108 and SLAM

family-mediated cell:cell communications is important for unrav-

eling germinal center biology.

The characterization of the ITAM and ITIM motifs has greatly

informed our understanding of how lymphocytes interpret inter-

actions with other cells. The ITSM motif has proven to be chal-

lenging to understand. The data herein highlight the bimodal

positive-negative signaling that can occur through this motif.

The fact that SAP or SHP-1 need only one pY for binding,

whereas Ly108 and other SLAM family receptors have two

ITSMs, adds complexity to the signaling competition possibili-

ties. The presence of non-ITSM tyrosine motifs adds a further

level of complexity yet to be examined. A third isoform of

Ly108 with only a single ITSM was recently identified, and this

isoform ameliorates autoimmunity (Keszei et al., 2011). It is

also worth noting that PD-1, a potent inhibitory receptor
Immunity 36, 986–1002, June 29, 2012 ª2012 Elsevier Inc. 997
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Figure 7. Ly108 Provides Both Positive and Negative Signals for NKT Cell Development

WT, Slamf6�/�, Sh2d1a�/�, and Slamf6�/�Sh2d1a�/� (DKO) mice were analyzed for NKT cells.

(A) Frequencies of splenic NKT cells, gated as shown in (C).
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expressed on T cells with great interest as an immunothera-

peutic target for treating chronic viral infections and tumors

(Barber et al., 2006), is unusual in that it possesses a single

ITSM (Sidorenko and Clark, 2003) and has not been reported

to bind SAP. In conclusion, these surprising results illuminate

several interesting aspects of lymphocyte biology centered on

the elucidation that the severe humoral immunity and NKT cell

development defects observed in SAP deficiency stem from

the duality of Ly108 functions.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6J (B6) mice were purchased from the Jackson Laboratory. Sh2d1a�,
Slamf6�/�, Slamf6�/�Sh2d1a�, SMARTA TCR transgenic (SM, LCMV gp66-77

I-Ab specific) CD45.1+, Sh2d1a� SM, Slamf6�/� SM, and Slamf6�/�Sh2d1a�

SM mice were all on a fully B6 background and bred at LIAI. AND TCR trans-

genic mice were purchased from Jackson. Cd84�/� mice were generated as

previously described (Cannons et al., 2010a). Slamf6�/� mice were generated

by Lexicon Genetics on the 129 background via homologous recombination

targeting exon 1 of Slamf6. The neomycin resistance gene cassette remains.

Ly108 protein expression is completely absent (Dutta and Schwartzberg,

2012).Slamf6�/�mice have no gross B cell, CD4+ T cell, or CD8+ T cell defects.

Mice were obtained through the NIH KOMP program and then backcrossed

ten generations to the B6 background at LIAI. Whole-genome microsatellite

analysis through the University of California, Los Angeles, Southern California

Genotyping Consortium verified that the Slamf6�/�mice were 99%B6. The re-

maining 1% was of the Sv129 background around the SLAM locus, incorpo-

rating the region between the SNP markers mCv22849619 and rs13476259.

Expression of SLAM and CD84 on Slamf6�/� lymphocytes is normal (data

not shown). Sh2d1a� mice were greater than 99% B6 by SNP analysis, with

a small region of the X chromosome remaining Sv129. All animal experiments

were conducted in accordance with approved animal protocols.

Adoptive Transfers, Retroviral Transductions, and Transfections

Sh2d1a (SAP) expressing retroviral vector (pMIG-SAP) was reported previ-

ously (McCausland et al., 2007). Ly108-1 and Ly108-2 sequences were cloned

into the pMIG vector. Site-directed mutagenesis of Ly108-2 was done to

create single tyrosine to phenylalanine mutants. Viral particles containing

expression constructs of interest (RV) were produced from the Plat-E cell

line as previously described (Johnston et al., 2009). SMCD4+ T cells were puri-

fied from spleen by negative selection with magnetic beads (Miltenyi). Cell

transfers were done with either 53 103 for naive cells or 2.53 104 for retrovir-

ally transduced cells by intravenous injection via the retro-orbital sinus. For

biochemical analysis, retrovirally transduced cells were sorted based on

GFP expression and restimulated with peptide-pulsed B cells. Ly108 and

Ly108-AllF were cloned into a GFP fusion expression construct (Zhao et al.,

2012, this issue). Constructs were introduced into cells via Amaxa nucleofactor

as previously described (Qi et al., 2008).

Viruses

LCMV Armstrong stocks were prepared and quantified as previously

described (McCausland et al., 2007). All infections were done by bilateral intra-

peritoneal injection of 2 3 105 plaque-forming units of LCMV Armstrong per

mouse. Vaccinia virus Western Reserve strain (VACV-WR) stocks (mature
(B) Absolute numbers of splenic NKT cells.

(C) Representative flow cytometry plots of splenic NKT cells, gated on total CD4

(D) Representative flow cytometry plots of thymic NKT cells, gated on total live C

(E) Quantitation of (D), combining two independent experiments.

(F) Developmental profiles of thymic NKT cells, gated as described in (D), from o

(G) Representative flow cytometry plots of liver NKT cells, gated on total live CD

(H) Quantitation of (G), combining two independent experiments.

(I) Developmental profiles of liver NKT cells, gated as described in (G), from one

**p < 0.005, ***p < 0.0005. Error bars are SEM.
virion) were prepared and quantified as previously described (Benhnia et al.,

2009). Mice were infected with VACV by bilateral intraperitoneal injection of

2 3 105 plaque-forming units per mouse.

Flow Cytometry

Single-cell suspensions of spleen were prepared by standard gentle mechan-

ical disruption. Monoclonal antibodies against surface markers were used

with FACS buffer (PBS + 0.5% BSA): GL7, Fas, and CD138-biotin (281-2)

came from BD PharMingen; CD4 (RM4-5 and GK1.5), CD8a (Ly-2), B220

(RA3-6B2), PD1 (J43), CD45.1 (A20), CD45.2 (104), CD62L (MEL-14), Ly108

(13G3-19D), and CD44 (IM7) came from eBioscience; and SLAM (TC15-

12F12.2) came from Biolegend. FITC-labeled peanut agglutinin (PNA) was

from Vector Laboratories. CXCR5 staining was done with purified anti-

CXCR5 (2G8, BD PharMingen), followed by biotinylated goat anti-rat IgG

(Jackson Immunoresearch), and then PE- or APC-labeled streptavidin (Caltag

Laboratories) with each staining step done in PBS + 0.5% BSA + 2% FCS +

2% Normal Mouse Serum on ice; samples were acquired without fixation.

CD1d tetramers were provided by M. Kronenberg (Sidobre and Kronenberg,

2002). All FACS samples were washed twice with FACS buffer, acquired

with an LSRII or Canto (BD Biosciences), and then analyzed with FlowJo

(Tree Star).

ELISA

Serum from mice 30 days after LCMV infection was used. Anti-LCMV IgG was

quantified by ELISA with LCMV-infected cell lysate as the capture antigen. 96-

well Polysorp microtiter plates (Nunc) were coated overnight with LCMV-in-

fected cell lysate in PBS. After incubation of sample serum, HRPO-conjugated

goat anti-mouse IgGg (Invitrogen) was used for detection. VACV ELISAs used

a similar procedure, with VACV antigen (Moyron-Quiroz et al., 2009).

Immunoprecipitation and Immunoblotting

LPS-activated B cells were untreated or pulsed with PCC peptide for 1 hr at

37�C, washed, and mixed with either WT or Sh2d1a�/� antigen-specific

CD4+ T cells for 20 min at 37�C. Note that pervanadate treatment of T cells

did not result in Ly108 SHP-1 binding, indicating that physiological Ly108 liga-

tion is required (data not shown). Stimulated cells were lysed with cold HNGT

buffer (pH 7.4) containing 50 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM

MgCl2, 10% glycerol, 1% Triton X-100, and protease inhibitors. Lysates

were incubated overnight with 2.5 mg/ml anti-mouse Ly108 (eBio13G3-191)

at 4�C, followed by 2 hr incubation with protein-A (Santa Cruz). Immunocom-

plexes were washed and boiled in nonreducing SDS sample buffer for 5 min

at 95�C. Proteins were separated by SDS-PAGE and transferred to nitrocellu-

lose. Membranes were blocked with TBS containing 5% BSA, 0.1%

Tween-20. For immunoblotting, the following reagents were used: rabbit

anti-SHP-1, rabbit anti-pERK, rabbit anti-ERK (Cell Signaling Technologies),

mouse anti-Ly108 (eBioscience), and rabbit anti-Ly108 (Dutta and Schwartz-

berg, 2012). HRP-conjugated secondary reagents were from Jackson Immu-

noResearch Laboratories.

Conjugate Adhesion Assay

SMARTA CD4+ T cells (5 3 105/well) were incubated for 30 min (37�C) in
96-well U-bottom plates with LPS-activated B cells (2 3 106/well) pulsed

with gp66 peptide (LCMV gp66-77, or gp61-80 in some assays). Conjugate

frequencies were enumerated by flow cytometry after the cell mixture was

stained at 4�C for CD4 and CD19 as previously described (Qi et al., 2008).

Sodium stibogluconate (SSG, Calbiochem) was resuspended in H2O at

100 mg/ml.
+ cells. Data are representative of two independent experiments.

D8� cells.

ne of two representative experiments.

19� mononuclear cells.

of two representative experiments.
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Immunofluorescence Microscopy

LPS-activated B cells pulsed with gp66 LCMV peptide for 1 hr at 37�C were

washed and mixed with either activated, WT SMARTA, Sh2d1a�/� SMARTA,

Slamf6�/� SMARTA, or Sh2d1a�/�Slamf6�/� SMARTA CD4+ T cells at a 1:1

ratio in serum-free media for 5 min at 37�C to allow conjugates to form. Conju-

gates were plated on glass multiwell slides for 15 min at 37�C. Samples were

fixed and permeablized with �20�C methanol, washed several times in PBS,

and blocked with PBS containing 0.1% BSA for 20 min at room temperature.

Samples were incubated with primary antibody in PBS containing 0.1% BSA

for 1 hr at room temp, washed five times with PBS followed by staining with

secondary reagents for 40 min at room temp. For immunofluorescence the

following reagents were used: rabbit anti-SHP-1 (AbCam) and rat anti-CD4

(BD PharMingen). Secondary reagents conjugated with Alexa Fluor dyes

(excited at 488, 568, 633) were purchased from Invitrogen. Hoechst staining

was completed in PBS for 5 min at room temp. Conjugates were examined

by immunofluorescence with a Zeiss LSM 510 confocal microscope with

a 633 oil immersion objective. Three-dimensional reconstruction of z stacks

were made with the Imaris Scientific 3D/4D image processing and analysis

software (Bitplane Scientific Software). 40 conjugates were examined per

genotype per experiment.

Statistical Analysis

Statistical tests were performed with Prism 5.0 (GraphPad). p values were

calculated by two-tailed unpaired Student’s t tests with a 95% confidence

interval. Error bars depict the standard error of the mean (SEM).
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