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Abstract 

The work presented here addresses the problem of inductive reasoning in medical discoveries. 

The discovery of the causes of scurvy is studied and simulated using computational means. An 
inductive algorithm is successful in simulating some essential steps in the progress of the 
understanding of the disease and also allows us to simulate the false reasoning of previous 
centuries through the introduction of some a priori knowledge inherited from pre-clinical 

medicine. These results confirm the good results obtained by other AI researchers with an 
inductive approach of discovery, and illustrate the importance of the social and cultural environ- 

ment on the way the inductive inference is performed and on its outcome. 0 1997 Published by 
Elsevier Science B.V. 

Keywords: Scientific discovery; Induction; Medicine; Scurvy; Inductive bias 

1. Introduction 

This article explores the potential of symbolic induction for scientific discovery. As 
such, it is related to the data-driven line of research developed since the 1970s in the 

study of computational models of scientific discovery (see for example [ 1.51 for a general 
presentation of this approach, and [ 131 for a presentation of the system BACON). 
However, the specific problem addressed here is original both with regards to the 
application domain, and to the actual task studied. 

Work on computational models of scientific discovery has traditionally focused on 
hard science. Among them, the most important ones are undoubtedly physics and 
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chemistry. A characteristic of these sciences is that they rest, at least over the last 

century, on relatively well-established formalisms. At the opposite, work on medicine is 

in large part based on the interpretation of symptoms, which only point toward the 
underlying physiological phenomena. Medicine remains a rich domain to be explored by 

researchers interested in computational models of scientific discovery. It has been until 
now largely neglected by the AI community, with a few notable exceptions (see for 

example [22,25]). 

The second novelty is in the type of inference studied. As said above, induction has 

been studied extensively in the research on computational models of scientific discovery. 

However, the main tasks modeled with an inductive inference have been the discovery 

of numerical laws with the BACON family of systems, or the formation of taxonomies 

with systems such as GLAUBER [ 141. The work presented here focuses on the induction 

of causal hypotheses applied to the field of medical etiology (the field interested in 
finding the causes of diseases). We return later to the relation between induction and 

causality in the context of medicine. One of the rare computational applications of 

induction of causal hypotheses can be found in the system TETRAD [23], yet this 
system manipulates numeric data and is deeply entrenched in a probabilistic frame- 

work; it is therefore only slightly related to our focus on symbolic induction. 

Another important issue for any work based on historical data is the choice of focus 
on normative (what should have been done by the scientist) or descriptive models 
(what was actually done by the scientist). This distinction is explored in detail in [24]: 

the normative focus was traditionally chosen in philosophy of science (until the 
development of historical philosophy of science), logic and also generally in artificial 

intelligence. Descriptive approaches are more common in history of science. We find it 

useful to introduce a third, intermediary, type of focus, named prescriptiue-interested 
in what a scientist could have done (given the same situation). While a normative focus 
can be interpreted as interested in defining right science, a prescriptive focus would in 

this context be interested in proposing methods for good science, with no claim to 
exclusivity. Our approach in this article is to start from a prescriptive focus in a first 
stage, and then to move toward a descriptive one. Specifically, in a second stage, we are 
interested in a computational reconstruction of the false reasoning performed in history. 

The next section gives some background on the role of induction in medical 

discovery by outlining three major periods, pre-clinical, clinical, and experimental 
medicine. Section 3 presents experiments carried out on the simulation of the discovery 
of the causes of scurvy, both from a prescriptive and descriptive point of view using the 
general inductive algorithm CHARADE. Section 4 concludes by discussing the perspec- 

tives opened by our work for the aid to discovery in contemporary medicine and 

introduces some projects going in this direction. 

2. Discoveries and induction in medicine 

Induction, the inference aiming at the general from the particular, has had a rather 
tumultuous relationship with science over the centuries. The role of induction in 
medicine is possibly even more problematic than in other sciences. This can be 
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surprising to the modern mind for whom basing theories on observation sounds like the 

only natural and correct way of doing science. During a long period culminating in the 
Middle Ages, the very idea of relying mainly on observation to reach a diagnosis or a 
new medical theory was seen as anti-scientific, because “scientific” practice was 

supposed to be based on a number of abstract theoretical systems, these systems being a 
direct reflection of the culture of the scientist. In this article, we will frequently use the 

term system, as it has often been used in the history of medicine, to refer to a type of 

conceptual framework. One instance of such a system is Galen’s fluid theory which was 
inherited from Hippocrates. In modern medicine, genetic determinism constitutes an- 

other such explanatory system. Even though the notion of explanatory system is related 

to the notion of paradigm proposed by Kuhn, they have two features which are not 
typical of paradigms. First, explanatory systems can be implicit, as an element of the 

culture of the scientist which is not necessarily acknowledged. Second, and most 

important, explanatory systems can compete with each other at a given time, but do not 

have to exclude one another; 2 two different systems can coexist within the same 

community and sometimes even for the same researcher. 

The importance of explanatory systems in medicine does not preclude references to 
observations. The role of observations has evolved through history, ranging from the 

status of anecdotal illustration to the one of evidence. In order to have a better idea of 

this evolution, and thus to make clear the role of induction in Western medicine, let us 

see the way it was considered in the different periods which Foucault [8] analyzed. 
In pre-clinical medicine (which developed from the Middle Ages, after the medicine 

of ancient Greece and Rome [5]), the use of direct observation was seen as a definite 
lack of culture, characteristic of a layman. Observations were useful, but only if they fell 
within the framework proposed by the systems inherited from Antiquity. In parallel to 

this official, academic medicine, it is important to realize that other types of medicine 
coexisted. Some branches of medicine were not directly influenced by these theoretical 
systems. This was particularly the case of surgeons who, instead of receiving a 

theoretical teaching in universities, were trained as apprentices under a senior surgeon. 

A key shift in the history of medicine occurred when the medical community 
developed clinical medicine. One of the central ideas in this shift was to raise the status 

of direct observation to such a level that it became the only acceptable element on which 
medicine should be based, thus rejecting any theory or system that was not the direct 
result of observation. This shift is well illustrated by Corvisart claiming: “Theories are 

silent or vanish at the sick-bed” (quoted in [S]). The scientific progress resulting from 
this new approach should not be underestimated. Medical expertise which, until then, 

was often evaluated according to the number of references to previous research 
produced by the so-called expert, was now evaluated according to clinical efficacy: 

’ As defined by Kuhn in [12, p. 2941, “a paradigm is what the members of a scientific community, and they 

alone, share. Conversely, it is their possession of a common paradigm that constitutes a scientific community 

of a group of otherwise disparate men.” This definition therefore does not allow for the coexistence of two 

competing paradigms in the same community for a period of time. 
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could the patient be saved, could a cure be found? This resulted in many of the 

astounding progresses of medicine during the last century. 
Soon after the development of clinical medicine, the field saw the development of 

experimental medicine. Experimental medicine is not opposed to clinical medicine 

because it is also based on observation. The main difference (beautifully analyzed in 
[2]), is that experimental medicine generates the observations to test a hypothesis already 
formulated, while clinical medicine is more passive (cognitive activity aside). Experi- 

mental medicine has been very successful and thus soon overshadowed the clinical 

revolution. By generating observations, experimental medicine does not directly reach 

its conclusion through induction. It is worth noting that experimental medicine does use 

induction, but mainly at the stage of hypothesis formation. 

This historical perspective raises important questions for machine discovery about the 

potential scope of purely data-driven approaches. Reciprocally, computational methods 

can be used to study experimentally these questions, which are essential to epistemology 
and history of medicine. Nevertheless, medical discovery has been largely neglected by 

the AI community. In the next section, we present our experiments on an inductive 

reconstruction of the discovery of the causes of scurvy. 

3. The discovery of the causes of scurvy 

A brief history of the discovery of the causes of scurvy is given in Section 3.1. 

Afterwards, Section 3.2 presents some experiments on the rational reconstruction of the 
inductive reasoning performed by 18th and 19th century physicians, using computational 

means. Historical observations of cases of scurvy have been collected in the medical 
literature and given as inputs to the symbolic induction system CHARADE. The rules 
which are produced by the system are similar to the explanations given for scurvy in the 

18th and 19th centuries. However, physicians had great difficulties in perceiving and 
understanding the causes of scurvy. As seen in Section 3.3, our results show the 
importance of the implicit knowledge of the scientists-related to the notion of 
inductive bias studied in the field of machine learning-to explain these difficulties. 

3.1. A brief history of scurvy 

Scurvy has been the cause of over a million of deaths aboard commercial and navy 
ships, and also on land, though to a lesser extent [1,20]. The disease took on an 
increased importance in the 15th century, with the development of long circumnaviga- 
tions [4], and also in the 17th and 18th century, with the development of long missions 
in European navies, which involved numerous seamen. It is striking to note that scurvy 
is said to have caused more deaths in the French navy than combat with other European 
navies. 

Consequently, research on the causes of scurvy attracted the brightest minds of the 
time. Among them, James Lind is famous for his remarkable Treatise of the Scurvy [ 161. 

From the 17th to the 20th century (when the actual cause of the disease, i.e., the lack of 
vitamin C, was discovered), dozens of theories were put forward on the origins of the 
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disease. Many of these were totally disconnected from the real cause such as those 
referring to the psychological effect of being at sea, far away from home. Other theories 
were quite close to finding the real cause, especially the one that became widely 
accepted, which said that scurvy was the result of the conjunction of the humidity in the 

air and of the lack of fresh fruits and vegetables in the diet. 
The lack of fresh fruits and vegetables was eventually accepted as the only cause of 

scurvy in the early 20th century. A first explanation for this late discovery is the lack of 

a concept necessary for a global understanding of the disease. The concept of vitamin, 

i.e., the idea that a small quantity of a chemical has a great influence on the functioning 

of the human body, is a key to the comprehension of the mechanism leading to scurvy. 

However, knowing that seamen were acquainted with the importance of fresh fruits and 

vegetables as early as the 15th century, it is surprising that a practical cure was not 
widely accepted earlier. To put it into more forma1 terms, though the lack of an 

explanatory adequate theov of scurvy is easily understandable due to the necessity of 
the concept of vitamin, the reason for the absence of a descriptively adequate theory 

(i.e., a theory establishing only the conditions of development of the disease) is unclear. 

This last question provided a good motivation to try modern inductive techniques on 
observational data available in the 19th century, before the actual discovery was made. 

This attempt is described in the following sections. 

3.2. Induction on scurvy cases 

3.2.1. tntroduction 

A first experiment makes the assumption of pure inductivism: only the descriptions of 
cases are given to the inductive system. The rules induced are then analyzed according 
to a number of steps. The next sections detail the process of data collection, and the 

algorithm used. A third section focuses on the method used for the analysis of results 

proposed by the algorithm. 

3.2.2. Data collection 
In order to give our work a real simulation value, it has been necessary to use as 

training examples case descriptions that were as close as possible to the descriptions that 
were made before the discovery of the causes of scurvy. Therefore, the examples used 
all come from the 1880 Dictionnaire Encyclopbdique des Sciences Mkdicales [17], 

which provides relatively detailed descriptions of 2.5 cases of scurvy. 3 During the 

necessary translation of these natural language descriptions into the description language 
of the inductive system, one main objective was to remain as close as possible to the 
original, without modifying the description by using our own knowledge of the disease. 

Ten features which constitute the description language given to the inductive system 
were found in most historical cases. They are summarized in Fig. 1. Besides the date and 
location of the case, they include the temperature, the humidity in the air, the hygiene 

3 The database of 25 cases used for these experiments can be obtained by following pointers from the first 

author’s web page (http://www-laforia.ibp.fr/-corruble) or by sending e-mail (corruble@laforia.ibp.fr). 
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Attribute TYPO Domain 

Ya integer N’ 

location string NA 
temperature ordered set scvcre-cold < cold < average < hot c very-hot 
humidity ordered set low < high < very-high 
food-quantity ordered set starvation<severc-restrictions<rcstrictions<~K 
food-variety ordered set low < average < high 
hygiene ordered set very-had < bad < average < good < very-good 
type-of-location unordered set land, sea 
fresh_fruits/vegetabIcs Bmlean yes, no 
disease-severity integer (0,1,2 )..., 5) 

Fig. I. List of attributes with their characteristics. 

level, the quantity of food, its variety, the use or absence of fresh fruits and vegetables, 

the type of location (at sea or on land), and, lastly, the severity of the disease. Each of 
these attributes is defined by a type (ordered or unordered set, integer, etc.) and domain, 

thus enabling the induction process to take full advantage of the structure of the data. It 

is important to notice that the choice of features used for our representation is done 
based on a syntactical analysis of the historical text. If a feature is present in the 

historical descriptions of more than a very few cases, then it is included in the 
description language of all the cases. Also, the induction system used does not require a 
value for every attribute and each case, so that missing values did not have to be filled 

arbitrarily with estimates. 

Note that no attribute in the description language refers to the time spent at sea. The 
main reason for this is that the original descriptions found in the literature did not 

usually contain this information, or when they did, it was in a very qualitative way, 
difficult to reuse. These descriptions however often mention that the disease severity has 
developed over time, in which case the value chosen for the disease severity attribute is 
the one observed at the end (the beginning being seen as a transition phase). In some 

other cases, the disease can develop in a first phase, and then decrease or even disappear 
in a second phase. Since this second phase usually corresponds to new environmental 
conditions (new values for the other attributes), the phenomenon has been represented 

by creating two training cases: one corresponding to the first phase, and one for the 
second phase. Theses cases of remission are particularly useful in providing “negative” 
examples of the disease to the system, necessary for any supervised learning (Fig. 2 

contains such a negative example). Also, by providing two training cases which are 
relatively similar except for a few attributes, each case of remission greatly helps the 

inductive process. 
Examples of training cases will be given in the following sections but it is necessary 

first to provide some details on the inductive system used. 

3.2.3. The induction system CHARADE 
CHARADE [9,10] is a symbolic inductive system which extracts logical rules 

expressing empirical regularities between attributes in a set of examples. More precisely, 
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Original description: 

(affcction-sevvily = 0) 

(hesh_fruit~vegetables = yes) 

(dd-varidy t low) 
(foodquantity 2 ok) 

(lype~rl’ltrrlion = land) 

(lowtion = mlifornic) 

(yerlrs 1604) 

(ycaz 1602) 

(hy&ne 5 average) 

SATURATION 

Some ahiitional description obtained 
using only builtin genenl knowle$e 

(affatitxl%vany 5 I) 

(afflclion-scvcnly S 2) 

(affection-wwity 5 3) 

(affmtion-severity r; 4) 

(foodyantity 5. restridions) 

(foo&qr;nlity 2 stoat-rtstriclions) 
(hy@.ne zz t~!otxl) 

Fig. 2. An example of saturation on one training case. 

CHARADE can be classified as a k-DNF learner, which means that it generates sets of 

formulae of the type dl & d2 & . . . & dn - c. These rules correspond to regularities 

observed on a set of training examples. CHARADE is able to generate all non-redundant 

regularities, but it can also be restricted to generate rules verifying some particular 
properties corresponding to what is called a learning bias in the area of machine 

learning (see for instance [ 10,2 1,271). The aim of this paper is not to explain the theory 
of CHARADE; those interested are referred to the previous papers to obtain more 
details. However, some interesting features of CHARADE are highlighted in this 

section. 
One of the main advantages of CHARADE is that most of its learning bias is explicit. 

CHARADE takes as input a description language which defines all attributes, their type 
(unordered set, ordered set, etc.), and their domain. Another input is the set of training 
examples. Also, a feature of particular interest here is the possibility of formalizing 

some domain knowledge using axioms. This knowledge (entered as production rules), as 

well as some built-in general knowledge about the types of attributes, is taken into 
account during a first phase, named saturation. This phase is used to enrich the 
description of each training case, as illustrated in Fig. 2 using example #6 from the 
database. 

The inductive process takes advantage of the lattice structure of the search space to 
produce all the logical IF-THEN rules consistent with the training examples that can be 

expressed with some conjunctions of elements of the descriptions. Some algebraic 

properties of this lattice are taken into account to cut out of the search some large parts 
of this lattice (an exponential search space), which are known not to contain any new 
rules. The algorithm finds the rules that do not have any exceptions: a rule does not need 
to cover 4 all the examples to be produced, but if at least one of the examples 
contradicts the candidate rule, the rule will not be produced. Even if a training case has 

J A rule couers an example when all the premises of the rule are matched by the description of the example. 

An example contradicts a rule if and only if the example is covered by the rule and the conclusion of the rule 

is not matched by the description of the example. The cover of the rule is, depending on the context, the set of 
cases it covers, or the number of cases in this set. 
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been successfully classified by a rule, the system will continue searching for other rules 
for this example, hence providing alternative rules for each case. This last feature of 
CHARADE is useful to our study here, which is based on the empirical comparison of 
competing induced theories. 

The last type of bias which can optionally be defined by the user is the desired 

structure of the output rules. It is possible to restrict the search to all the rules that 

conclude on one group of attributes. For instance, in the case of scurvy, the rules which 

are searched for are the ones that conclude on the severity of the disease, because this is 

what we want to predict or explain. 

3.2.4. Methodology for analysis of results 

What the inductive algorithm outputs is a rule base. These rules do not have a 

specific ordering or structure; they are proposed in the order in which they were found. 
This section presents the three steps of analysis performed manually in our experiments. 

l Regrouping of rules. 

The rule set obtained is partitioned in a number of subsets. Two rules are put in 
the same subset, if (1) their premises use the same factor for prediction, and (2) 

they are consistent (they should not contradict each other). Note that a rule using 

two different attributes in its condition could potentially be assigned to two 
subsets according to this procedure. Then, it is possible either to assign the rule to 

both subsets (in which case this step does not lead to a partition), or to assign the 
rule only once to a new subset of rules combining these two factors. This situation 
did not occur in our experiments on scurvy. 

Each subset of rules obtained this way can then be considered a proto-theory 
because of its coherence (in the factor put forward, and in the predictions of the 

rules). An application of this step is found in Fig. 3. 
l Evaluation of explanatory power. 

The evaluation here is not done according to the formal method advocated by 
statistics or most machine learning work (prediction on new data). We are here 

more interested in an informal, exploratory prior-assessment as done in medical 

research to decide which hypothesis to pursue (the concepts of prior-assessment 
and pursuit are well explained in [22]). Therefore, we use the number of individual 

cases explained by each subset of rules as a criterion. This is indirectly related to 
the concept of consilience [24] and verisimilitude [ 191 except (this is a significant 
difference) that these refer to classes of facts explained rather than indiuidual 

cases. On the practical side, it is important to see that the cover of a subset is not 

obtained by adding the covers of each individual rule of the subset (this would 
count more than once cases covered by more than one rule). Instead, the cover is 
the cardinal of the union of the sets of examples covered by each rule in the 
subset. 

l Correspondence with history. 

The last step is to look at the correspondence with history. Does each proto-theory 

correspond to a theory proposed in history ? Reciprocally, does each theory 
proposed in history find a corresponding theory in our reconstruction? This notion 
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Set I: Rules 3,4,8 use in their premises the variety of the diet. 

R3: IF diet-variety >- high THEN disease-severity i 0. [51 

R4: IF diet-variety 5 average THEN disease-severity ? 3. [41 

R8: IF diet-variety z average THEN disease-severity -< 2. Cl11 

Set II: Rules 7, 10 use in their premises the presence (or absence) o 
fresh fruits and vegetables in the diet. 

R7: IF fresh-fruits/vegetables = no THEN disease-severity 2 2. c51 
R1O: IF fresh_fruits/vegetables = yesTHEN disease-severity 5 2. Cl31 

Set III: Rule 2 uses in its premises the quantity of food available. 

R2: IF food-quantity 2 ok THEN disease-severity 5 0. [4] 

Set IV: Rules 5,6,9,12 use in their premises the level of hygiene. 

R5: IF hygiene 5 bad 

R6: IF hygiene 5 average 

R9 : IF hygiene ? average 

R12: IF hygiene >- good 

THEN disease-severity ?: 3. c31 

THEN disease-severity z 2. c41 

THEN disease-severity 5 2. c71 

THEN disease-severity 5 1. WI 

Set V: Rules 1, 11 use in their premises the temperature. 

Rl: IF location = land, 

temperature ? hot THEN disease-severity 5 0. c41 

Rll: IF temperature _< severe-cold THEN disease-severity ? 1. c51 

f 

Fig. 3. Rules proposed by CHARADE regrouped according to the factor they put forward. Note that number 

between brackets at the right of each rule stating how many examples it covers (i.e., the number of examples 

that match the premises of the rule). Disease seuerify is a ranking from 0 (no disease at all) to 5 (most severe). 

of correspondence, essential to the enterprise of rational reconstruction, is periph- 

eral to our first experiment, and becomes central in the second one. Here 
correspondence does not aim at a full isomorphism between history and our 
simulation. Our reconstruction, in our first and also in our second experiment, 
does not take into account all the facts, knowledge and beliefs about scurvy 
available to physicians in the 18th and 19th century. Our reconstructions are 

therefore a simplification from a psychological standpoint. Yet they are powerful 

means for evaluating hypotheses about the nature of the discovery process, both 
prescriptively (e.g. how inductive could this discovery have been?) and descrip- 

tively (e.g. why was this wrong theory defended for so long‘?). 

3.3. Experimentation 

3.3. I. First results and analysis 

Our first experiment was done without giving any domain knowledge to the system. 
This “pure” induction produced 12 logical rules which are provided in Fig. 3 with some 
analysis. These 12 rules were then manually regrouped according to the factor they put 



It war 73 Bachstrti (1734) who first eapressed the op+t+m that, “abstinence of uegctabfcs in 

the &ii, tfic Inu, &first c-0 ojscu~j.“[l71 * 

Set I: Rules 3,4,8 use in their premises the variety of the diet. 

R3: IF diet-voriety 2 high THEN disease-severity 
R4: IF diet-variety s average THEN disease-severity 

R8: IF diet-variety t overage THEN disease-severity 

5 0. c51 
t 3. c41 
s 2. ml 
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Dim (food vuriety): 

Set II: Rules 7,lO use in their premises the presence (or absence) of fresh fruits 
vegetabks in the diet. 

R7: IF fresh_fruits/vegetables = no THEN disease-severity 2 2. 151 
R10 IF fresh_fruits/vegetables = yesTHEN disease-severity 6 2. Cl31 

Fig. 4. Excerpts from the 1880 medical encyclopedia followed by the corresponding rules proposed by 

CHARADE. 

forward to predict disease severity. Each group constructed this way can be interpreted 

as a proto-theory on the cause of the disease. 

The first point of interest is the parallel between the rules produced by CHARADE 

and the competing explanations proposed for the disease until the end of the 19th 
century and provided in [17]. Every group of rules produced by the system corresponds 
to an explanation from the medical literature. In Figs. 4-7, the corresponding explana- 
tion from history is given just above each group of rules. 

The second striking observation is obtained by looking at the number of examples 

covered by each subset of rules. The three main factors causing scurvy are, according to 
CHARADE, the presence of fresh fruits and vegetables in the diet, the variety of the diet 
(closely linked to th e previous factor), and the hygiene level. A bar graph plotting the 

number of examples covered by each proto-theory is given in Fig. 8. The lack of fresh 

fruits and vegetables covers 13 + 5 = 18 examples, i.e., more than two thirds of the 
total. So, THE factor set forth by CHARADE (according to this criterion) is the real 

cause of scurvy. It is important to remember that these results have been obtained 

DlEr (food quantity): 

tie are tcadto conclude that a decrease in quwity of food or to spc&cleady, starvation, can 

occasiomdfy seme the cause of scurry, but it cannotpro&c it by itself. [ 171 

Set IV: Rule 2 uses in its premises the quantity of food 
available. 

R2: IF food-quantity t ok THEN disease-severity 5 0. c41 . 

Fig. 5. Excerpts from the 1880 medical encyclopedia followed by the corresponding rules proposed by 

CHARADE. 
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HYGIENE: 

If Co&s crews Were entirely sparedfrom sanVy. in a rektively h7rge c@ent coWi&infl the times. 
it is thought that these great results were precisely the + consequcmc of the care giuen to the 

demdine~ unda$rg of the ships. [ 171 

Set II: Rules 5,6,9,12 use in their premises the level of 
hygiene. 

R5: IF hygiene 5 bad THEN disease-severity 2 3. c31 
R6: IF hygiene 5 average THEN disease-severity ? 2. c41 
R9 : IF hygiene 2 average THEN disease-severity 5 2. c71 
R12: IF hygiene 2 good THEN disease-severity 5 1. E61 

Fig. 6. Excerpts from the 1880 medical encyclopedia followed by the corresponding rules proposed 

CHARADE. 

Fig. 7. Excerpts from the 1880 medical encyclopedia followed by the corresponding rules proposed 

CHARADE. 

:LIMATE: 

g#&nxdwhtHmz~~~/~~ scaw~ y+&ed?v~~~_rff~~~ [I 71 

iet III: Rules 1, 11 use in their premises the temperature. 

:1: IF location = land, 

temperature t hot THEN disease-severity 5 0. c43 
!ll: IF temperature 5 severe-cold THEN disease-severity 2 1. CSI 

by 

by 

Hypotheses 

Fig. 8. Absolute covers of causal hypotheses. 
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Hypotheses 

Fig. 9. Relative cover of causal hypotheses 

without any domain knowledge. Nevertheless, in this case, one can say that CHARADE 

obtains better results than the scientists of the past centuries, in the sense that it puts 
forward the real cause of scurvy while physicians were misled until the end of the last 

century toward other theories. 
Furthermore, it is useful to realize the existence of a bias in the previous prior-assess- 

ment of the various hypotheses. Since the data used for the experiment are real data, the 

descriptions are not all standardized. Hence, some cases are not described with the same 
level of detail, some attribute values are missing. A direct consequence is that an 
hypothesis putting forward a factor cannot explain a case for which this factor is not 

known. This evaluation procedure is therefore biased in favor of well-informed at- 
tributes. An alternative prior-assessment mechanism which does not have this bias is 

proposed next: it is based on the cover as the previous one, but is defined as a 
percentage: the ratio of the former cover over the potential cover (i.e., the number of 
examples for which the factor is known). The results of this relative prior-assessment are 
given in Fig. 9. It can be seen that the hypotheses putting forward the role of the diet 

(either its variety, or more specifically the lack of fresh fruits and vegetables) stand out 
even more: 100% of the cases potentially explainable with these factors are covered by 
these two hypotheses. 

Though all the rules proposed by CHARADE correspond to some explanations of the 
scurvy found in the medical literature, there are some explanations from the literature 
which are not produced by CHARADE. Among these, the most important one is 

undoubtedly the explanation referring to the humidity of the air as the main predisposing 
cause of scurvy. This theory was for a long time the most widely accepted, and was 
defended by people such as Lind. It is also the theory which is favored by the authors of 
the medical encyclopedia from which the examples are extracted. Therefore, it is 

surprising, considering the overall similarity, that it does not appear, at least marginally, 
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in the rules produced by CHARADE. The next section attempts to provide a computa- 
tional explanation for this phenomenon through a simulation. 

3.4. The problem of humidity 

The influence of a cold and humid atmosphere has been said to be the key factor for 
the apparition of scurvy. “Air humidity is the main predisposing cause of this 
disease ’ ’ , according to Lind [17]. 

CHARADE does not conclude that the humidity of the air has any impact on the 

presence or absence of the disease, even though this was the most widely accepted 

theory in the 18th and 19th century. A possible explanation could be that, to reach this 

conclusion, the scientists had an inductive bias: maybe they had some a priori 
knowledge on the issue which biased their judgment on the origin of the disease. 

A good way to test this hypothesis would be to have the inductive system reproduce 
the “wrong” induction of the scientists by formalizing the implicit knowledge they used 

while working on the subject. This task is greatly assisted by the work of historians of 

medicine who have tried to reconstitute the conceptual and reasoning framework of 
physicians like Lind. In [4] for instance, it appears that the system of blocked 
perspiration was very widely accepted by the medical community at Lind’s times (see 

Fig. 10). In this system, the body is made mainly of solid tissues and fluids. The fluids 

naturally tend to become corrupted. An important function of all the excretions, and 
especially of perspiration, is to evacuate these corrupted fluids from the body to keep 

only healthy fluids inside. If the perspiration is blocked, the corrupted fluids act as a 
poison and produce diseases. One can fight against the poisonous effect of the corrupted 
fluids by eating fruits whose acidity acts as a “detergent”. This being accepted as a 

reasoning framework, the explanation of the role of humidity becomes clearer: humidity 
tends to block the pores of the skin; therefore it prevents good perspiration and is the 
main cause of scurvy. 

The major steps of the reasoning framework in which the blocked perspiration theory 
could be articulated have been formalized into a set of axioms presented in Fig. 11. As 
seen in the figure, two new concepts (the perspiration quality, and the fluids quality) had 

to be added in the description language. Indeed, these two concepts, presented in Fig. 12 
are not obtained through direct observations. The axioms state how the two theoretical 
concepts are logically linked to the observable features according to the theory. 

Also, we want to point out that these axioms do not constitute a global theory of 

scurvy, since they do not express how the disease severity is logically linked to the 
observable features by a series of deductions. They introduce only the abstract concepts 

proposed by the blocked perspiration theory. The role of fresh fruits and vegetables 
appears in the conditions of two rules, because, as noted above, the blocked perspiration 
theory considered that the acidity from the fruits could have a cleaning effect on 

corrupted fluids. Also the last two axioms are related to the blocked perspiration theory 

and express some 19th century common-sense knowledge left implicit in the literature. 
They concern the link between humidity and the level of hygiene in a ship: one of the 

main hygiene measures taken aboard ships consisted, especially since Cook, in keeping 
them dry. 



218 V. Corruble, J.-C. Gunuscia /ArtQiciul Inrellingence 91 (I 997) 205-223 

The “Blocked Persnimtion” theor\l 

ULind’s theory was based on the concept that a cold, wet climate (and also an unhappy 
psychological state and inactivity) could result in either a constriction or clogging of the 
pores in the skin and a consequent reduction in insensible perspiration. The idea that the 
skin was a major route of excretion of undesirable “vapors and humors” from the body 

dates back to Galen’s time, but was very mu& developed by Sanctorius in the early 1600’s. 
The idea that obstruction, caused by cold and damp, could result in a variety of putrid 
diseases became increasingly popular in the mid-eighteenth century and was put forward 
as the cause of fevers and cholera in military units. Another Edinburgh physician wrote in 
1759: ‘There is no discovery next to that of circulation of blood, that has so mu& affected 
our reasoning in Medicine as that of insensible perspiration. The origin of most diseases 
and the operation of most medicines are accounted for it.” 

To return to Lind, he began his argument by pointing out that with the uninterrupted 
circulation of the body’s fluids, the friction and mutual interaction with the solid tissues 
resulted in sweet and healthful components being “abraded and degenerated” into “various 
degrees of acrimony and corruption.” Just as food had to be ingested to replace these 
components, so had the end products to be excreted. This sfems a reasonable statement for 
someone to make in a period dominated by the success of physical (i.e. mechanical) theories 
in explaining different natural phenomena. He went on to say that minerals and acid salts 
we mostly excreted in the urine, but that a greater part of the total excretion was through 
the skin. He was impressed (we would say overly impressed) by the quantitative 
experiments that were supposed to have proved this,beyond doubt. They involved a subject 
weighing his food and drink and also his excreta over a period, and also himself at the 
beginning and end. If the intake weighed nlm than the urine and feces, together with any 
gain in body weight, it was said that the excess was lost by perspiration. If the subject had 
not visibly sweated, this loss was entirely “invisible perspiration.” It was probably the 
quantitative aspect that particularly appealed to Lind, but of course, there was no measure 
of the carbon dioxide gas and water vapor lost in the air expired from the lungs. [. .]D 

Fig. 10. The blocked perspiration theory described in [41. 

IF (humidity = high) THEN (perspiration 2 hard) 

IF (hygiene ?: good) (humidity 5 high) THEN (perspiration 5 hard) 

IF (humidity ? very-high) THEN (perspiration > blocked) 

IF (perspiration 5 hard) THEN (fluids 5 healthy) 

IF (fresh_fruits/vegetables = yes) THEN (fluids 5 healthy) 

IF (fresh_fruits/vegetobles o yes) 

(perspiration > blocked) THEN (fluids > corrupted) 

IF (hygiene s average)(location = sea) THEN (humidity t very-high) 
IF (hygiene 2 good) THEN (humidity 5 high) 

Fig. 11. Axiom set describing the "blocked perspiration" theory. 

Attribute Type Domain 
perspiration oldlXed set normal < hard < blocked 
fluids Ordeti set healthy < corrupted 

Fig. 12. Definitions of the two new concepts. 
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3riginal description: 
(dsCW-scverity = 0) 
(fiesh_fmitslvegetables = yes) 

(det-vadety 2 low) 

(foo&quantity 2 ok) 

(typoof-location = Iand SATURATION 

(locaion =californie) 

(par 5 16lM) 

(year t 16@) 

(hygene s averaF) 

Some addtional descdption 
lbtrincd wing built-in knowledge 

md domain knowledge 
(airection-Welily S 1) 

(Gection-sLvelity 5 2) 

(affection-scTeity S 3) 

(affection-seveity ~3 4) 

(foodqumtity 2 restrictions) 

(foodqumtity z sevenxestlictiow) 

(hygime 5 goood, 
(fluids s healthy) 

Fig. 13. Saturation on one exampie with Some domain knowledge 

We repeated the previous experiment giving this set of axioms to CHARADE. The 

aim was to observe the behavior of the system within the conceptual framework of the 
blocked perspiration theory given as domain knowledge to the system. To illustrate how 

CHARADE practically uses the domain knowledge, Fig. 13 shows how the saturation is 

done in this experiment on example #6. It can be compared to Fig. 2 when only general 

built-in knowledge on the types of attributes was used. 
The results confirm our hypothesis about the importance of implicit knowledge. The 

rules produced (cf. Fig. 14) correspond very well to the explanations given by 18th and 
19th century physicians: the humidity appears (in conjunction with other factors) as an 

important predictor. Moreover, considering the number of examples covered, the rules 
using the fluids quality in their premises override the simpler (and true) rule found in 
the previous experiment condemning the lack of fresh fruits and vegetables. They indeed 
cover 14 + 9 = 23 examples out of 25 instead of 13 + 5 = 18 for the rules putting 

forward fresh fruits and vegetables. This is illustrated by a new plot comparing the cover 
of the competing hypotheses in Fig. 15. In this experiment, since the new factor (the 
quality of fluids) has a potential cover of 23, the relative cover of the new hypothesis is 
loo%, which places it at the same level as the one based on diet variety on the relative 
scale. 

This phenomenon has been analyzed within a machine learning framework. It can 

also be explained in epistemological terms. In other words, the induction bias constituted 
by the domain knowledge can be seen as a hypothesis (implicit in 19th century writings) 
about the effect of the environment on some internal functions of the human body. The 

induction itself is then an attempt to generate some rules from examples using this 

IF humidity 2 high 

fresh-fruits/vegetables = unknown, THEN disease-severity 2 2. c41 
IF humidity 5 high, hygiene z average THEN disease-severity 5 1. Ccl 
IF perspiration 6 hard THEN disease-severity 5 1. [6] 

IF fluids 2 corrupted THEN disease-severity 2 2. cg1 
IF fluids i healthy THEN disease-severity 5 2. Cl43 

Fig. 14. New rules produced when the domain knowledge is given to the system 
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Hypotheses 

Fig. 15. Absolute cover of causal hypotheses, with a priori knowledge. 

hypothesis. Therefore, the rules produced and their evaluation can be seen as a test of 
the explanatory or descriptive power of the hypothesis. In our case, the fact that the rules 
which use the abstract concepts cover a larger number of examples than the ones that we 
found in our first experiment is a sign of their greater explanatory power. We think that 
this might provide a good explanation for the importance given to humidity over the 
lack of fresh fruits and vegetables until the end of the nineteenth century. This analysis 

meets the point of view expressed in [26] about the role of the explanatory power of a 
theory to explain its acceptance by the scientific community at a given time, given a 

particular conceptual framework. 

4. Conclusion and perspectives 

There are two axes to the work just presented. The first one is the use of symbolic 
induction for discovery. In the case study that we have treated here, pure induction on 
25 scurvy cases gave surprisingly good results in bringing forward the real cause of 
scurvy. However, this pure induction did not produce the theory that was the most 
widely accepted in the 18th and 19th century. The idea of reproducing these explana- 
tions expresses what we pursue in a second, descriptive axis of research: the reconstruc- 

tion of reasoning as it took place in history. A second experiment in which some domain 
knowledge was given to the system eventually produced the missing explanation. This 
shows the importance of taking into account the conceptual framework of the scientists 
-even in a science which has reputedly relied only on observation since the beginning 
of the 19th century-to understand their reasoning. 

The analysis of experimental results has used two exploratory criteria for the 
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prior-assessment of causal hypotheses. The first one is a straight-forward count of 

examples covered by consistent subsets of rules. It was useful in bringing forward the 
real cause of scurvy, and then the cause put forward historically given appropriate CJ 
priori knowledge. This criterion however showed a bias in favor of well-described 

attributes. A second relative criterion, less biased by the quality of the data, uses a ratio 
of the previous criterion over the potential cover of the factor. It is even more efficient 

in bringing forward the real cause of scurvy, but does not put forward the cause favored 

in history as effectively, even with the appropriate background knowledge. Therefore, 

even though this second relative criterion seems more appropriate from a normative 

standpoint, it appears less useful from a descriptive standpoint: in our experiment, it is 

the absolute criterion, which does not take into account the quality of the data, that leads 

to the selection of the same hypothesis as the one selected by physicians in the 18th and 

19th century. 
In these experiments, the inductive bias seems to have a harmful effect, since it hides 

the real cause of scurvy. However, it is obviously not our goal to convince the reader 

that the inductive bias is harmful by nature. We know (especially from machine learning 

research [ 181) that in most cases of induction, even more importantly in cases of human 

induction, a bias is necessary to constrain the search space. However, a lesson from our 
research is that it is critical to take into account one’s induction bias to understand one’s 

reasoning. In order to do so, it seems necessary to render this bias explicit since it is 
often the result of implicit knowledge, especially in medicine. It is our belief that 
computer simulation can be very helpful in this task. 

From our experiments on scurvy, it seems that, in one case of a major medical 

discovery, artificial induction can be useful to reproduce or assist the reasoning of a 
physician, both normatively, and descriptively. Even though many discoveries in 
medicine are not the result of such an inductive process (e.g. the ones resulting from a 
unique observation with a microscope), more experimentation has been carried out on 
other historical medical discoveries in etiology. We obtained similar results in the 

simulation of the discovery of the causes of leprosy as an inductive process, though this 

required using a new inductive algorithm (PASTEUR) designed to model exceptions 
explicitly [7]. 

Similar ideas are currently being applied in joint projects with physicians to aid 
contemporary medical research. The first project involves a collaboration with hematolo- 

gists working on leukemia research. From patient data collected in a number of US 
hospitals, we use the same type of computational induction presented here to come up 

with new hypotheses on the reasons why only some of the patients affected with 
myelodysplasia (often named pre-leukemia) develop acute leukemia. In this project, we 

hope that, as for the discovery of the causes of scurvy and the discovery of the causes of 
leprosy, the limitations in our understanding of the disease are more the results of 
erroneous reasoning than of a lack of necessary data. If this hypothesis proves true, then 
computational modeling and simulation of experts’ inductive reasoning on leukemia 

should prove useful to elucidate the dogmas which limit our ability to reason on this 
particular problem [6]. A look at the recent history of leukemia research [3], or at other 
areas of cancer research [ill suggests that these dogmas are still numerous. Another 
project applies this approach to psychiatric research on human depression. 
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The main issue in moving from historical reconstruction to contemporary research is, 

apart from the scaling up in the complexity of the problems tackled, the absence of an 
important resource available in historical work: the analyses performed over time in the 

field of history of medicine. An exciting research direction is therefore to use the type of 

modeling and simulation presented in this article as a tool to aid this elicitation process. 

Acknowledgements 

The early stages of the work reported here owe enormously to a collaboration with 

the late Professor Marcel Bessis who shared his knowledge and questions about history 
of medicine and current issues for medical research, and suggested the discovery of the 

causes of scurvy as candidate for an initial case study. This work benefited from a grant 

of the Fondation de France. This article was greatly improved thanks to the judicious 

comments made by the reviewers of its earlier drafts. 

References 

[I] J.A. Barker, Lind and limeys, J. Biol. Educ. 26 (I), (2) (1992) 45-53, 123-129. 

[2] C. Bernard, Introduction 2 l’ktude de la Mtfdecine Expe’rimentule (Champs Flammarion, Paris, 1865, 

1984). 

[3] J. Bernard, History of concept and dogmas, Blood Cells 19 (1994) 549-553. 

[4] K.J. Carpenter, The History of Scurvy and Vitamin C (Cambridge University Press, Cambridge, 1986). 

[5] V. Corruble, Une approche inductive de la decouverte en medecine: les cas du scorbut et de la Iepre, PhD 

Thesis, Universite Pierre et Marie Curie, Paris (1996). 

[6] V. Corruble and J.G. Ganascia, Aid to discovery in medicine using formal induction techniques, Blood 

Cells 19 (1994) 649-659. 

171 V. Corruble and J.G. Ganascia, Discovery of the causes of leprosy: a computational simulation, in: 

Proceedings AAAI-96, Portland, OR, (1996) 731-736. 

181 M. Foucault, Naissance de lu Clinique (Presses Universitaires de France, Paris, 1963). 

[9] J.G. Ganascia, AGAPE et CHARADE: deux techniques d’apprentissage symbolique appliqutes h la 

construction de base de connaissances, PhD Thesis (Doctorat d’Etat), UniversitC Paris-Sud, Centre 

d’Orsay (1987). 

[IO] J.G. Ganascia, Deriving the learning bias from rule properties, in: J.E. Hayes, D. Michie and E. Tyugu, 

eds., Machine Intelligence 12 (Oxford University Press, Oxford, 199 1) I5 I - 168. 

[I I] D. Hellman, Dogma and inquisition in medicine: breast cancer as a case study, Cuncer 71 (7) (1993). 

[12] T.S. Kuhn, The Essential Tension (The University of Chicago Press, Chicago, IL, 1977). 

[13] P. Langley, G.L. Bradshaw and H.A. Simon, Rediscovering chemistry with the bacon system, in: R.S. 

Michalski, J.G. Carbonell and T.M. Mitchell, eds., Machine Leurning: An Artificial Infelligence 

Approuch 1 (Morgan Kaufmann, Los Altos, CA, 1983) 307-330. 

[14] P. Langley, H.A. Simon, G.L. Bradshaw and J.M. Zytkow, Scienffic Discocety: Computational 

Explorurions of the Creatioe Processes (MIT Press, Cambridge, MA, 1987). 

[15] P. Langley and J. Zytkow, Data-driven approaches to empirical discovery, Art@ Inrell. 40 (1989) 

283-312. 

[16] J. Lind, A Treatise of the Scuruy (Millar, Edinburgh, 1753). 

1171 J. Maht, Le scorbut, in: Dicrionnaire EncyclopCdiyue des Sciences Me’dicales, Sirie 3, Tome R (Masson, 

Paris, 1880) 35-257. 

[ 181 T. Mitchell, Generalization as search, Arri& Intell. 18 (1982) 203-226. 

[I91 K. Popper, The Logic qfScienriJic Discovery (Basic Books, New York, 1959). 



V. Corruble. J.-G. Gunusciu /Art(ficiul Intellingence 91 (1997) X-223 223 

[ZO] L.E. Roddis, Jumes Lind, Founder of‘Nuw1 Medicine (William Heinemann, London, 195 1). 

[21] S. Russel and B. Grosof, Declarative bias: an overview, in: P. Benjamin. ed., Churr~e of Representution 
und fnductive Bius (I 990). 

[22] K.F. Schaffner, Discovery urrd Expkunution in Biology und Medicine (University of Chicago Press, 

Chicago, IL, 1993). 

[23] P. Spirtes, C. Glymour and R. Scheines, Cuusurw~, Prediction, und Seurch (Springer, Berlin, 1993). 

[24] P. Thagard, Computational Philosophy of Science (MIT Press, Cambridge, MA, 1988). 

[25] P. Thagard, Ulcers and bacteria I: Discovery and acceptance, Studies in Hiztory and Philosophy of 

Science (forthcoming). 

[26] P. Thagard and Cl. Nowak, The conceptual structure of the geological revolution, in: J. Shrager and P. 

Langley, eds., Computationul Models qf ScienrQic Discovery and Theor) Formation (Morgan Kaufmann, 

Los Altos, CA, 1990) 27-72. 

[27] P. Utgoff, Shift of bias for inductive concept learning, in: R.S. Michalski, J.G. Carbonell and T.M. 

Mitchell, eds., Machine Learning: An Artjficiul Intelligence Approach 2 (Morgan Kaufmann, Los Altos, 

CA, 1986) 107-149. 


