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Abstract

In this paper we discuss a useful family of graph drawing algorithms, characterized by their ability to
graphs in one dimension. We define the special requirements from such algorithms and show how seve
drawing techniques can be extended to handle this task. In particular, we suggest a novel optimization a
that facilitates using the Kamada and Kawai model [Inform. Process. Lett. 31 (1989) 7–15] for producin
dimensional layouts. The most important application of the algorithms seems to be in achieving graph dra
axis separation, where each axis of the drawing addresses different aspects of aesthetics.
 2005 Elsevier B.V. All rights reserved.

Keywords:Graph drawing; Force-directed algorithms; Stress energy; Multidimensional scaling; Principal component a
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1. Introduction

A graphG(V,E) is an abstract structure that is used to model a relationE over a setV of entities.
Graph drawing is a standard means for the visualization of relational information, and its ultima
fulness depends on the readability of the resulting layout; that is, the drawing algorithm’s capab
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conveying the meaning of the diagram quickly and clearly. Consequently, many approaches t
drawing have been developed [8,18]. We concentrate on the problem of drawing graphs so as to
pictorially the proximity relations between the nodes. The most popular approaches to this appe
force-directed algorithms. These define a cost function (or a force model), whose minimization d
mines the optimal drawing. Graph drawing research traditionally deals with drawing graphs in
three dimensions. In this paper, we identify and discuss a new family of graph drawing algorithms
goal is to draw the graph in one dimension. In fact, the methods that we utilize are not limited to
tional graph drawing and are also intended for general low-dimensional visualization of a set of
according to their pairwise similarities/distances and even their multidimensional coordinates; se
Fig. 1.

An obvious question that the reader might have is: why could we be interested in one-dime
graph drawing? Well, of course by using two dimensions we can convey much more information
the graph, but as we are going to show, in certain cases, working in two dimensions is impossib
most common case is graph drawing byaxis separation; a technique that was employed by, e.g., [2,2
Here, we would like to build a multidimensional layout axis-by-axis, so that each axis can be com
using a different algorithm, perhaps accounting for different aesthetical considerations. This fac
an appealing “divide-and-conquer” approach to graph drawing. In particular, we have implement
axis-separation-based applications from which we drew our inspiration and that served us for ex
and evaluating the various algorithms. One application deals with drawing directed graphs (dig
whereas the other one is concerned with the visualization of clustered data. We now turn to d
these applications.

Drawing digraphs. A well-known example of using axis separation is the problem of drawing dire
graphs (digraphs), where we want to give some sense of the overall directionality as well as to fa
represent the relative similarities of the nodes. The dominant strategy, rooted in the work of Su
et al. [28], is based on separating the axes, where they-axis represents the directional information,
hierarchy, and thex-axis allows for additional aesthetic considerations, such as shortening edge len
minimizing the number of edge crossings. Our implementation is based on the graph drawing alg
of [4], where they-axis conveys the hierarchy structure of the graph by minimizing the hierarchy en
The x-axis shows additional properties of the graph, which are unrelated to edge directions, us
various 1-D graph drawing algorithms that are developed here.

Visualization of clustered data.As another example, we have recently worked on visualizing clust
data using axis separation [21]. There, thex-coordinates guarantee the visual separation of clus
whereas they-coordinates address additional aesthetics while ignoring the clustering structure. T
are represented by a weighted graph that reflects pairwise similarities/distances. We are also
hierarchical clustering of the data represented as adendrogram—a full binary tree in which each subtre
is a cluster and the leaves are individual elements

Our goal is to convey the data visually by associating each data element with a point in the plane
also guaranteeing the visual separation of every two disjoint clusters in the dendrogram. Algorithm
this is done by utilizing the axis-separation paradigm. Specifically, thex-coordinates are responsib
for preserving the clustering structure of the data. This is based on a dynamic programming alg
for calculating the “best” ordering of the dendrogram. We convey additional information about th
using they-coordinates, disregarding the clustering information that is exhaustively taken care
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Fig. 1. (Taken from [21].) Using axis separation to draw hierarchically clustered fibroblast gene expression data. We con
the similarities between the nodes and their clustering decomposition, using an ordered dendrogram coupled with a 2
that adheres to its structure. We have colored six salient clusters that are clearly visible. (For interpretation of the refe
color in this figure legend, the reader is referred to the web version of this article.)

the x-axis. Suitable methods for computing they-axis are appropriately tuned one-dimensional gr
drawing techniques.

Fig. 1 shows a sample result of this, containing a hierarchically-clustered biological dataset (m
by a weighted graph). Consequently, thex-axis was computed so as to adhere to the dendrogram s
ture, while they-axis was computed by a 1-D graph drawing algorithm (using the classical-MDS me
as described in Section 3.3).

Further applications. Sometimes a single dataset can be modeled by different graphs. Conseq
it might be instructive to draw the data by assigning each of the axes to a different graph, an
simultaneously examine and compare the characteristics of the two models. For example, pr
relationships between web pages can be modeled either by connecting pages that have a simila
or by relying on their link structure. We can draw the web pages as points in the plane according
two models by using axis separation, thus making it possible to see at a glance which elements ar
by each of them.

Another tightly related case is when we already have one coordinate for each node. Such a co
might be a numeric attribute of the nodes that we want to convey spatially. In order to reflect pro
relationships, we would like to add another coordinate computed by a 1-D graph drawing algo
A nice example of this appears in [2]. There, a link structure (like the WWW) is visualized by assoc
one axis with a ranking of the nodes (some measure for node-prominency) and the other axis is co
by 1-D graph drawing (using the eigenprojection method described in Section 3.1). See Fig. 2.

Linear arrangement. So far, we have described situations were the 1-D graph drawing is used t
struct a multidimensional drawing. However, in some cases, additional axes are not necessary
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Fig. 2. Authority and PageRank visualization of the “java” query result, taken (with permission) from [2]. Each web-p
given two numerical values that measure its importance (Authority and PageRank). These values determine thex-coordinates
of the drawing. They-coordinates, which reflect the similarity between the web-pages, are computed by a graph d
algorithm.

simply need an algorithm for ordering the vertices of a graph. Such an ordering usually optimizes
several related cost functions; see, e.g., [7]. In particular, the problem is calledlinear arrangement, in the
case that the ordering minimizes the sum of edge lengths. In the graph drawing context, such a
arises in code and data layout applications [1], and in laying out software diagrams [26].

Fig. 3 shows how such a linear arrangement can be used to visualize a (weighted) adjacency
The figure shows the relations between odor patterns measured by an electronic nose using a
weighted graph; see [5]. As seen in part (a) of the figure, the “raw” adjacency matrix does not sh
structure. However, the same matrix, shown in part (b) after permuting its rows and columns acco
a linear arrangement of the graph, reveals much of the structure of the data. Ordering problems a
rally formulated as discrete optimization problems, where the coordinates are permutation of{1, . . . , n}.
However, such formulations lead to NP-hard problems that are difficult to solve. One way to elim
part of this difficulty is to allow the nodes to take on non-integer coordinates. The resulting cont
problems can be efficiently solved, and their solution is used as an approximation of the optimal d
ordering, by taking a sorted ordering of the nodes’ coordinates; see [16,20]. In this way, the con
formulations given in this paper can be used for discrete linear arrangement problems too.

Organization of the paper. A nice drawing of a graph is, in general, an ill defined notion and diffe
aesthetical considerations are relevant under different situations. We provide four different meth
1-D graph drawing. These methods address different aesthetic criteria and also differ in their co
tional complexity. Before describing the methods, we prepare the background by defining some e
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Fig. 3. Using linear arrangement for matrix visualization. (a) A similarity matrix of odor patterns as measured by an el
nose; more similar patterns get higher (= brighter) similarity values. (b) The same similarity matrix after re-ordering rows
columns by a linear arrangement algorithm; the emerged homogeneous regions correspond to clusters of similar patt

mathematical notions in Section 2. Then, we discuss three algorithms that are based on exact o
tion of a convenient mathematical nature. All these algorithms can be smoothly generalized for
with 1-D layouts using the “uncorrelation principle” as described in Section 3. While these algo
are usually very fast, they are not the traditional way for drawing graphs; to wit, they are not men
in the two main surveys of graph drawing [8,18]. More heuristic approaches will often produce
results. Consequently, in Section 4 we explain how to harness the well-known method of Kama
Kawai [17] to 1-D graph drawing. Here the necessary algorithmic adaptations are more involve
hence we provide a longer description of the drawing process.1 Whereas this last approach cannot
exact optimization like the first three methods, its heuristic optimization will produce nicer results
wide family of graphs. Results and comparisons between the methods are described towards th
Sections 3 and 4.

2. Basic notions

We begin with some basic notions from linear algebra. LetA be ann × n real matrix. It is called
symmetricif for all 1 � i, j � n: Aij = Aji . A pair λ ∈ C andv ∈ C

n that satisfy the equation

Av = λv

is called aneigenpair, where the scalarλ is aneigenvalueandv is aneigenvector.
If all eigenvalues associated with a matrix are real positive, the matrix is calledpositive definite. When

all eigenvalues are real non-negative, the matrix is calledpositive semi-definite. A positive definite matrix
A is very convenient when solving the equationAx = b, since we can use fast and robust direct solv
like Cholesky factorization or known iterative solvers like Conjugate Gradient and Gauss Seidel.
algorithms are implemented in various linear algebra packages and described in [13].

The null spaceof a matrixA is the vector space containing all vectorsx ∈ R
n for which Ax = 0.

Consequently, solutions of the equationAx = b are invariant under addition of vectors belonging to
null space.

1 Section 4 is mostly taken from [22].
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We denote the normalized value ofx by x̂ = x/‖x‖. Henceforth, we will extensively use theele-
mentary orthogonal projectorI − x̂x̂T, which is a symmetricn × n matrix. This matrix possesses t
important property of being an orthogonalization operator: for any vectory ∈ R

n, the result of orthogo
nalizingy againstx is (I − x̂x̂T)y, so:(I − x̂x̂T)y ⊥ x.

Throughout the paper, we assume that we are given ann-node connected weighted graphG(V,E),
with V = {1, . . . , n} and the weight of the edge{i, j } is wij � 0. A key entity that describes relation
between nodes is theLaplacian, which is ann × n symmetric positive semi-definite matrix denot
by L, where

Lij =



−wij {i, j } ∈ E

0 {i, j } /∈ E, i �= j

deg(i) i = j

i, j = 1, . . . , n.

Here, deg(i)
def= ∑

j : {i,j}∈E wij . It is easy to check that 1n
def= (1, . . . ,1)T ∈ R

n is an eigenvector ofL with
associated eigenvalue 0. When the graph is connected, all other eigenvalues are strictly positive

The Laplacian plays a key role in spectral graph theory, and some of its interesting proper
mentioned in [27]. For the purposes of this work the usefulness of the Laplacian stems from the f
the quadratic form associated with it is just the sum of weighted squared edge lengths. We formu
for a 1-D layout:

Lemma 1. LetL be ann × n Laplacian, and letx ∈ R
n. Then

xTLx =
∑

{i,j}∈E

wij (xi − xj )
2.

The proof of the lemma is straightforward, and it can be extended to multidimensional layouts
We now recall some basic statistical notions. Themeanof a vectorx ∈ R

n, denoted bȳx, is defined as
1
n

∑n
i=1 xi . Thevarianceof x, denoted by Var(x), is defined as1

n

∑n
i=1(xi − x̄)2. Thecovariancebetween

two vectorsx, y ∈ R
n is defined as Cov(x, y) = 1

n

∑n
i=1(xi − x̄)(yi − ȳ). The correlation coefficient

betweenx andy is defined as

Cov(x, y)√
Var(x)Var(y)

.

This measures the colinearity between the two vectors. If the correlation coefficient is 0,x andy are
uncorrelated. If x andy are independent, then they are uncorrelated (but the inverse does not nece
hold).

As explained earlier, 1-D drawing algorithms are often used in the context of multidimensional
ings. Henceforth, for simplicity, assume we have to compute they-coordinates, while (possibly) bein
given precomputedx-coordinates. Thus, the layout is characterized by two vectorsx, y ∈ R

n, with thex-
coordinates beingx1, . . . , xn, and they-coordinatesy1, . . . , yn. Other cases, where we have more than
precomputed axis or where we want to produce several dimensions, can be addressed by smal
in our techniques. Moreover, we assume, without loss of generality, that thex- andy-coordinates are
centered, so their means are 0. In symbols,

∑n
i=1 xi = ∑n

i=1 yi = 0. This can be achieved by a simp
translation, and it will simplify notation.
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3. Algorithms based on the uncorrelation principle

In principle, we could have used a classical force-directed algorithm for computing the 1-D l
However, when trying to modify the customary two-dimensional optimization algorithm for use i
one-dimensional case, convergence was rarely achieved. Traditionally, node-by-node optimizatio
formed, by moving each node to a point that decreases the cost function. Common methods for
Gradient-Descent and localized Newton–Raphson. However, these methods tend to get stuck in
minima when used for 1-D drawing [4,30]. Interestingly, 2-D drawing is much easier for such me
Probably, the reason is that there is less space for maneuver in one dimension when seeking a
out, which prevents convergence to an optimum. Furthermore, in several works even higher-dime
layout (e.g., 3-D) is used to avoid local minima, see, e.g., [3,12,30].

Another possible approach could be to use algorithms for computing (approximated) minimu
ear arrangements (MinLA). These set the coordinates to be a permutation of{1, . . . , n} in a way that
minimizes the sum of edge lengths. However, a major disadvantage of MinLA is that it cannot co
precomputed coordinates. Note that a careless computation that ignores such precomputed co
can be very problematic. Such a computation might yieldy-coordinates that are very similar to thex-
coordinates, resulting in a drawing whose intrinsic dimensionality would really be 1, meaning th
axis would be wasted; for example consider the layouts of Nos3 and Plat362 in Fig. 6 that will b
cussed later.

In the rest of this section, we describe three different methods that fit the 1-D layout task: eig
jection, PCA and CMDS. A common characteristic of these methods, which makes them suita
1-D optimization, is that they compute the layoutaxis-by-axis, instead of thenode-by-nodeoptimization
mechanism of force-directed methods. Furthermore, when these methods are used to produc
tidimensional layout, the different axes are uncorrelated. This suggests an effective way to ge
the methods so that they can deal with the precomputed coordinates: we simply requireno correlation
between the precomputedx-coordinates and they-coordinates, so that the latter ones will provide
with as much new information as possible. Technically, since we have assumedx andy to be centered
the no-correlation requirement can be formulated simply asyT · x = 0, which states thatx andy are
orthogonal.

We now describe the three methods. For each method we survey its mathematical foundati
then explain how to generalize it to handle the predefinedx-coordinates. We conclude this section w
experiments and comparisons showing the merits of the various methods.

3.1. Eigenprojection

The eigenprojection, which is rooted in the 1970’s work of Hall [14], computes the layout of a
using low eigenvectors of its Laplacian. Some important advantages of this approach are its a
compute optimal layouts (according to specific requirements) and a very short computation time [
we will see, this method is a natural choice for 1-D layouts, and has already been used for such
[1,2,4,16]. However, previous work did not consider the relation with the given coordinates, whi
handle by the uncorrelation requirement. We begin with a brief derivation of the method in a wa
shows its tight relationship with force-directed graph drawing.



122 Y. Koren, D. Harel / Computational Geometry 32 (2005) 115–138

le scat-
inator).
drawn

ince the
pically

ies. The
hts are

us, for

e

or of

l 1-D
tion re-

e

an
t

The optimal 1-D layouty ∈ R
n is defined as the solution of:

min
y

∑
{i,j}∈E wij (yi − yj )

2∑
i<j (yi − yj )2

. (1)

The energy to be minimized strives to make edge lengths short (to minimize the numerator) whi
tering the nodes in the drawing area, thus preventing their overcrowding (to maximize the denom
This way, we adopt a classical strategy to graph drawing by which adjacent nodes should be
closely, while, generally, nodes should not be drawn too close to each other; see, e.g., [9,11]. S
sum is weighted by edge-weights, “heavy” edges have a stronger impact and hence will be ty
shorter. Consequently, when using eigenprojection edge weights should reflect pairwise similarit
most common case dealt with in the literature is drawing unweighted graphs where all edge weig
set to 1.

It is easy to see that the energy to be minimized is invariant under translation of the data. Th
convenience, we eliminate this degree of freedom by requiring thaty be centered; that is,yT1n = 0.
Consequently, we can simplify (1) by replacing

∑
i<j (yi − yj )

2 with the proportionalyTy. Moreover,
using Lemma 1, we can write

∑
{i,j}∈E wij (yi −yj )

2 as the quadratic formyTLy. We can now reformulat
our minimization problem in the equivalent form:

min
y

yTLy

yTy
in the subspace:

yT1n = 0.

(2)

By substitutingx̂ = 0 in Proposition 3.1 below, we find that the optimal 1-D layout is the eigenvect
L with the smallest positive eigenvalue.

This way, the eigenprojection method provides us with an efficient way to calculate optima
layouts. We still have to show how the eigenprojection can be extended to deal with the uncorrela
quirement: that is a case where we already have a coordinate vectorx, and we require thaty is orthogonal
to x. Now, the optimal layout will be the solution of:

min
y

yTLy

yTy
in the subspace:

yT1n = 0, yTx = 0.

(3)

Fortunately, the optimal layout is still a solution of a related eigen-equation:

Proposition 3.1. The solution of(3) is the eigenvector of(I − x̂x̂T)L(I − x̂x̂T) with the smallest positiv
eigenvalue.

Proof. Without loss of generality, we can assume thatyTy = 1, because changing the scale still gives
optimal solution: it can be easily checked that if fory0 we getyT

0 Ly0/y
T
0 y0 = λ, then we will also ge

yTLy/yTy = λ for eachy = c · y0 (c �= 0). Thus, the new form of the optimization problem will be:

min
y

yTLy in the subspace:

yT1n = 0, yTx = 0

given: yTy = 1.

(4)
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The matrix(I − x̂x̂T)L(I − x̂x̂T) is symmetric, so it hasn orthogonal eigenvectors spanningR
n. We

will use the conventionλ1 � λ2 � · · · � λn for the eigenvalues of(I − x̂x̂T)L(I − x̂x̂T), and denote the
corresponding real orthonormal eigenvectors byu1, u2, . . . , un. Clearly, (I − x̂x̂T)L(I − x̂x̂T) · x = 0.
Utilizing the fact thatxT1n = 0 and that 1n is the only zero eigenvector ofL, we obtainλ1 = λ2 = 0,
u1 = x̂, u2 = (1/‖1n‖) · 1n, andλ3 > 0.

We can now decompose everyy ∈ R
n as a linear combination, wherey = ∑n

i=1 αiui . Moreover, since
the solution is constrained to be orthogonal tou1 andu2, we can restrict ourselves to linear combinatio
of the formy = ∑n

i=3 αiui .
Use the constraintyTy = 1 to obtain

∑n
i=3 α2

i = 1 (a generalization of the Pythagorean law). Simila
yT(I − x̂x̂T)L(I − x̂x̂T)y = ∑n

i=3 α2
i λi . Note that sinceyTx̂ = x̂Ty = 0, we get:

yT(I − x̂x̂T)L(I − x̂x̂T)y = yTLy − yTx̂x̂TL(I − x̂x̂T)y − yTLx̂x̂Ty = yTLy.

So the target value is

yTLy = yT(I − x̂x̂T)L(I − x̂x̂T)y =
n∑

i=3

α2
i λi �

n∑
i=3

α2
i λ3 = λ3.

Thus, for anyy that satisfies the constraints, we getyTLy � λ3. SinceuT
3Lu3 = uT

3(I − x̂x̂T)L(I −
x̂x̂T)u3 = λ3, we can deduce that the minimizer isu3, the lowest positive eigenvector.�

Interestingly, posing the problem as in (3) and solving it as in Proposition 3.1, constitutes a s
generalization of the eigenprojection method: whenx is the lowest positive eigenvector ofL, then
the solutiony will be the second lowest positive eigenvector ofL. This coincides with the way th
eigenprojection computes 2-D layouts; see [14]. However, we allow the more general case of a
x-coordinates.

As to computational complexity, the space usage of the algorithm is O(|E|) when using a spars
representation of the Laplacian. The computation can be carried out using iterative algorithm
as the Power-Iteration that can be easily implemented or the considered faster Lanczos met
is implemented in public libraries such ARPACK [25]; see, e.g., [13]. The time complexity of a s
iteration is O(|E|). The number of iterations (and hence the actual running time) depends on the st
of the graph, or more precisely on the separation between relevant eigenvalues. For many gra
possible to initialize the process with a smart placement that results in a significant reduction
number of iterations and makes it possible to deal with millions of nodes in a reasonable amount
see [19,23] where concrete running times are also given.

When using sparse solvers caution is needed, since an explicit calculation of(I − x̂x̂T)L(I − x̂x̂T)

would destroy the sparsity ofL rendering all iterative algorithms impractical. To get around this,
utilize the fact that the iterative algorithms for computing eigenvectors use the matrix as an opera
they access it only via multiplication with a vector. This settles the issue, since carrying out the p
(I − x̂x̂T)L(I − x̂x̂T) · v is equivalent to orthogonalizingv againstx, multiplying the result with the
sparse matrixL, and then again orthogonalizing the result againstx.

3.2. Principal component analysis

In the previous section we described a method that addresses data modeled by pairwise sim
Now we turn to the visualization of multivariate data, where each node has multidimensional coor
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(or, attributes). The most popular technique for visualizing such data is principal component a
(PCA). PCA computes a projection of multidimensional data that optimally preserves their varian
[10]. The fact that PCA uses the data coordinates apparently renders it useless for most graph
applications. However, in [15] we show that it is possible to generate artificialk-dimensional coordinate
of the nodes that preserve some of the graph structure, thus making it possible to use PCA.

Let us denote the nodes’ coordinates (either produced artificially or given by an external source
n × k coordinate matrix calledX , so thek coordinates of nodei constitute theith row ofX . We assume
each of the columns ofX is centered, something that can be achieved by translating the data. In o
compute a 1-D projection, PCA computes a unit vectord ∈ R

k, which is the direction of the projection
The vectord is the top eigenvector of thecovariance matrix1

n
X TX . The projection itself isXd , and, as

mentioned, it is the best 1-D projection in terms of variance preservation.
When givenx-coordinates, we will be interested only in the component of the projection that

thogonal to thex-coordinates. This component is exactly(I − x̂x̂T) · (Xd), and we want to maximize it
variance. However,

(I − x̂x̂T) · (Xd) = (
(I − x̂x̂T) ·X )

d,

so our problem is reduced to finding the most variance-preserving projection of the coordinate(I −
x̂x̂T) ·X . The optimal solution is obtained by performing PCA on(I − x̂x̂T) ·X , which is equivalent to
orthogonalizing each ofX columns againstx and then performing PCA on the resulting matrix.

Again, this is a smooth generalization of PCA that enables it to deal with predefinedx-coordinates
The reason is that ifx was also computed by PCA, then one would obtain the regular 2-D PCA proje
One of the advantages of the PCA approach is its excellent time and space complexity: space co
is linear and time complexity is O(k2n) for the PCA itself together with an additional O(k|E|) time that
is needed to construct the “artificial” coordinates; see [15].

3.3. Classical multidimensional scaling

Multidimensional scaling (MDS) is a general term for techniques that generate coordinates of
from information about pairwise distances. Here we are interested in a technique called classic
(CMDS) [10], which produces (multidimensional) coordinates that preserve the given pairwise dis
perfectly; i.e., the pairwise Euclidean distances in the generated space are equal to the given d
The graph drawing application of CMDS was suggested long ago, in [24]. The distance betweeni
andj is defined asdij , the graph-theoretical distance between the nodes. Therefore, CMDS can b
to find a Euclidean embedding of the graph that preserves the graph-theoretical distance. Anyw
derivation is not limited to the graph-theoretical distance, and can be applied to other distances lik
extracted from attributes associated with the nodes.

We now provide a short technical description of the method. Given points in Euclidean spac
possible to construct a matrixX of centered coordinates if we know the pairwise distances amon
points. The way to do this is to construct then × n inner product matrixB = XX T, which can be
computed using the cosine law, as follows:

Bij = −1

2

(
d2

ij − 1

n

n∑
d2

ik − 1

n

n∑
d2

kj + 1

n2

n∑
d2

lk

)
. (5)
k=1 k=1 k=1, l=1
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Note thatB is invariant under orthogonal transformations ofX . That is, given some orthogonal matr
Q (i.e.,QQT = I ), we can replaceX with XQ, without changing the inner-product matrix:

XQ(XQ)T = XQQTX = XX T = B.

Therefore,B determines the coordinates up to orthogonal transformation. This is reasonable, sin
a transformation does not alter pairwise distances. There is always an orthogonal transforma
makes the axes orthogonal (i.e., the singular value decomposition), which allows us to restrict ou
to a coordinate matrix with orthogonal columns. Such a matrix can be obtained by factoringB using
the eigenvalue decompositionB = U∆UT (U is orthogonal and∆ is diagonal), which makes it possib
to define the coordinates of the points asX = U∆1/2. This way, the columns ofX are centered an
are mutually orthogonal. In practice, we do not need all the coordinates but only a low-dimen
projection of the points, and here only a 1-D embedding is needed. Thus, as in PCA, we see
D projection ofX having the maximal variance. Since the columns ofX are uncorrelated, we simp
take the column with the maximal variance, which is equivalent to the column ofU with the highest
corresponding eigenvalue. Therefore, we are interested in the top eigenvectoru1 and the correspondin
eigenvalue,λ1, of B. After computing this eigenpair, we can define the embedding of the data as

√
λ1u1.

Additional coordinates can be obtained using the subsequent eigenpairs.
It appears that CMDS is closely related to PCA. In fact, CMDS is a way of performing PCA wi

explicitly defining the coordinate matrix. Thus, if the pairwise distances are Euclidean distances
on the coordinate matrix, the results of CMDS are identical to PCA. Consequently, in our case, w
want the embedding to be orthogonal tox, we can use the same technique we used in PCA.

Once again, we would like to perform PCA on(I − x̂x̂T)X , and of course we do not have this mat
explicitly. However, it is possible to compute the inner-product matrix(I − x̂x̂T)XX T(I − x̂x̂T), since this
matrix is simply(I − x̂x̂T)B(I − x̂x̂T). Using the same reasoning as above, the first principal compo
of (I − x̂x̂T)X can be found by computing the top eigenpair of(I − x̂x̂T)B(I − x̂x̂T).

However, there is one theoretical flaw in applying CMDS to graph-drawing. Computing a coor
matrixX that preserves pairwise distances is not always possible, and will fail when the graph-the
metric is notEuclidean. Technically, there might be some negative eigenvalues to the matrixB, prevent-
ing the square-root operation from being carried out. However, in practice this is not a serious pr
since we are not interested in recovering the full multidimensional coordinates, but only the few l
ones.

When the givenx-coordinates are also the result of CMDS, our method produces the say-
coordinates as CMDS. Therefore, we have a smooth generalization of CMDS that allows it to de
predefined coordinates.

One note on complexity. When performing this CMDS, we have to store the matrixB, which requires
O(n2) space complexity, much worse than in the eigenprojection or PCA cases.

3.4. Experiments and comparison

So far, we have generalized three graph drawing algorithms using the unified paradigm of com
the layout axis-by-axis, while maintaining non-correlation with the precomputed coordinates. Th
algorithms represent two different attitudes to the definition of a nice layout. The eigenprojection d
the nice layout as the minimizer of an energy that calls for placing similar (adjacent) nodes clos
the other hand, the CMDS/PCA approach is based on preserving multidimensional coordinate
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Table 1
Comparison of the three methods for 1-D graph drawing

Method Representation Principle Space complexity Time complexi

Eigenprojection pairwise similarities energy minimization linear iterative, linear
time per iteration

CMDS pairwise distances variance preservation of
multidimensional coords.

quadratic iterative, quadratic
time per iteration

PCA coordinates variance preservation
of (artificial)
multidimensional coords.

linear non-iterative,
linear

distinction induces different outputs for the different approaches, being sometimes in favor of the
projection and other times in favor of CMDS. Whereas, eigenprojection and CMDS produce g
optimal layouts (according to different criteria), the PCA-based graph drawing relies on artificially
erated coordinates. Since PCA and CMDS are both based on the same variance-preservation
the naturalness of CMDS makes it a better choice than PCA in terms of output quality.

Regarding computational complexity, the situation is different. The PCA-based approach does
volve an optimization process and hence is the only one that guarantees linear time and space co
On the other hand, CMDS is less efficient and impractical for large graphs containing more than
thousand nodes. We summarize the characteristics of the methods in Table 1.

We have used the three methods for computing thex-axis in the digraph drawing algorithm of [4
To get a flavor of the results we provide here the layouts of three digraphs using the three algo
(Details regarding all graphs given throughout this paper are provided in Table 2.) The Nos3 g
drawn differently by the three algorithms, with the PCA result failing to show the symmetries o
graph. The Nos6 graph is arguably drawn best by CMDS, which shows the most rigid layout with c
90◦ angles for most of the meeting points of edges. However, eigenprojection and PCA produce sm
results that have a certain spherical appeal. In addition, the eigenprojection result shows very den
at the boundaries, which is a general characteristic of this method. In the layout of the Plat362 gr
also prefer the CMDS result, which scatters the nodes more uniformly.

Clearly, CMDS is not always superior. In fact when we worked with visualization of clustered
the eigenprojection frequently yielded better results. For example, consider the odor dataset, wh
tains 262 elements corresponding to measurements over 30 volatile odorous chemicals. We a
a hierarchical clustering of the dataset, represented by a dendrogram containing 261 (nested)
We know that 30 of these clusters are really meaningful; see more explanations in [21]. We com
2-D layout of the database. Thex-coordinates were computed so as to adhere to the dendrogram
ture. They-coordinates were computed in order to convey additional properties of the data and to
picking the interesting clusters out of the dendrogram. We have computed they-axis twice, once using
eigenprojection and once using CMDS. The result is given in Fig. 5, where each of the given 30 c
gets a different (hand-prepared) color. Note that the embedding algorithm worked with a dend
containing 261 clusters, and was not informed that 30 of these clusters are the “natural” ones. N
less, in the eigenprojection result we can see that many of these 30 clusters were clearly distingu
the embedding, being well separated from the other clusters. Still, the CMDS result is of lower q
it shows many interesting properties of the data, but separation between clusters is less clear.



Y. Koren, D. Harel / Computational Geometry 32 (2005) 115–138 127

used to
nd PCA

of
Fig. 4. Demonstration of drawings produced by our algorithm. The different columns are distinguished by the method
produce thex-coordinates. The eigenprojection was used in the left column, CMDS was used in the middle column, a
was used in the right column. Results are shown for the digraphs Nos3 (|V | = 960,|E| = 7442), Nos6 (|V | = 675,|E| = 1290)
and Plat362 (|V | = 362,|E| = 2712), all based on matrices from [32]. They-coordinates are identical for the three versions
each digraph.
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Fig. 5. Odors dataset containing 262 measurements by electronic nose over 30 different chemicals, suggesting a par
the data into 30 clusters. Results are color-coded according to the partitioning. (For interpretation of the references i
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Drawing the graphs of Fig. 4 using eigenprojection for thex-axis, but without imposing uncorrelation of the axes. N
in the Nos3 and Plat362 graphs the axes are significantly correlated, wasting much of the drawing area.

We conclude this section by illustrating the usefulness of the no-correlation requirement. In
we draw again the three digraphs of Fig. 4, but now we do not impose uncorrelation between th
hence when computing thex-coordinates we ignored they-coordinates. We give the results only of t
eigenprojection algorithm, but CMDS and PCA will show very similar behavior. It can be seen c
that now the drawings of Nos3 and Plat362 are far less informative, as the two axes are strongly co
wasting much of the drawing area. Regarding the Nos6, the result is still good, very similar to the
Fig. 4. In this case, thex- andy-coordinates end up uncorrelated even without imposing it explicitly
course, in general we cannot expect such “lucky” cases and should enforce the uncorrelation.
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Fig. 7. Drawings of a depth 5 full binary tree by: (a) eigenprojection, (b) CMDS, (c) PCA.

4. One-dimensional stress minimization2

The three methods discussed in the previous section are characterized by relying on a global o
tion that guarantees convergence to optimal solution. However, there is a price to pay for this conve
In general, these methods are inferior to traditional force-directed methods in terms of drawin
ity. For example, in many of the experiments we conducted, we noticed that the drawings obta
these methods are often over-smooth, and hence they cannot faithfully describe abrupt chang
graph structure. More specifically, the methods cannot deal with trees or with graphs containing
connected components. We provide two layouts demonstrating the shortcomings of the metho
illustration we show 2-D layouts (both axes are computed using the same method), but we n
1-D layouts share similar deficiencies. Fig. 7 shows drawings of a full binary tree of depth 5 on
the methods completely fail. Another graph, shown in Fig. 8, is Plsk1919, which (as we shall
Fig. 9) comprises 3 natural components, for which all methods are only able to show the centra
component.

In this section, we show how the familiar method of Kamada and Kawai [17], which minimize
function known asthe stress energy,3 can be used for 1-D graph drawing. In optimizing the stress en
we rely on its well studied aesthetical properties. Consequently, optimization of this energy pr
more aesthetic results than the methods described in Section 3. To appreciate this, we show
the drawings of the two graphs that were shown in Figs. 7–8, but which now utilize our algorith
stress minimization. Clearly, the results are aesthetically superior. However, note that in terms of
time, the new algorithm cannot compete with the ultra-fast eigenprojection or PCA. Moreover, the
energy is non-convex, and therefore finding its global minimizer is not guaranteed.

4.1. One-dimensional optimization process

Stress energyis a traditional measure of drawing quality, based on the heuristic that a nice dr
relates to good isometry: it calls for placing the nodes so that the resulting pairwise Euclidean di
will approach the corresponding target (graph-theoretical) distances. The concrete form of the en

E(y)
def=

∑
i<j

kij

(|yi − yj | − dij

)2
. (6)

2 This section is mostly taken from [22].
3 Indeed, the stress energy was originally used for multidimensional scaling, where its name originated; see, e.g., [6
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iginal
lations.
Fig. 8. Drawings of the Plsk1919 graph by: (a) eigenprojection, (b) CMDS, (c) PCA.

Fig. 9. Drawing by stress minimization of (a) depth 5 full binary tree, (b) the Plsk1919 graph.

Here, the target distancedij is typically the graph-theoretical distance between nodesi andj . The nor-
malization constantkij equalsd−α

ij , where 0� α � 2. Kamada and Kawai [17] pickedα = 2, whereas
Cohen [6] also consideredα = 0 andα = 1. Moreover, Cohen suggested alternative target dista
by settingdij to the linear-network distance. Throughout this paper, we worked only with the or
choices of Kamada and Kawai; however, other choices can be directly incorporated into our formu

Given two 1-D layouts,y, ỹ ∈ R
n, we define the following family of auxiliary functions:

δ
ỹ

ij (y) =
{

yi − yj ỹi � ỹj

yj − yi ỹi < ỹj

1� i < j � n. (7)

Next, we define the following energy function of the layouty:

Eỹ(y)
def=

∑
i<j

kij

(
δ

ỹ

ij (y) − dij

)2
. (8)

It is important to understand the relations betweenEỹ(y) and the stress energy,E(y).

Lemma 2. For everyy, ỹ ∈ R
n, E(y) � Eỹ(y).
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Proof. Let us pick some pairi < j , and analyze the corresponding terms ofE(y) andEỹ(y). Observe
that |δỹ

ij (y)| = |yi − yj |. In addition, it is always the case thatkij , dij � 0. Therefore,kij (δ
ỹ

ij (y) − dij )
2 �

kij (|yi − yj | − dij )
2. The lemma follows. �

Lemma 3. For everyy ∈ R
n, E(y) = Ey(y).

Proof. Simply observe thatδy

ij (y) = |yi − yj |. �
By the last two lemmas we conclude:

Corollary 1. For everyy, ỹ ∈ R
n, Ey(y) � Eỹ(y).

The usefulness of the energyEỹ(y) stems from the fact that it can be minimized optimally. To rea
this we need some additional notations. First, we define a relatedn × n Laplacian matrixL, where

Lij =
{−kij i �= j∑

j �=i kij i = j
i, j = 1, . . . , n. (9)

Note that the Laplacian depends only on the graph, regardless of its layoutỹ. We also use the vecto
bỹ ∈ R

n, where:

b
ỹ

i =
∑

j �=i: ỹj �ỹi

kij dij −
∑

j �=i: ỹj >ỹi

kij dij , i = 1, . . . , n. (10)

Now, using some elementary algebra, it can be shown that:

Eỹ(y) = yTLy − 2yTbỹ + C,

whereC is a constant that is independent ofy. Since the Laplacian is known to be positive semi-defin
we conclude by differentiation:

Lemma 4. The minimizer ofEỹ(y) is the solution of the system of equations: Ly = bỹ .

As mentioned in Section 2, for a connected underlying graph, the matrixL has a single zero eigenvalu
that is associated with the eigenvector 1n. Hence, the null-space ofL is spanned by 1n. Since addition
of 1n is equivalent to translation, the minimizery is unique up to translation. To reduce this degree
freedom, we can assume that the first node is located at the origin (soy1 = 0).

All these observations suggest the following process for minimizing the stress energy:

Function 1-D_stress_minimization (G(V,E), y ∈ R
n)

Compute the LaplacianL
do

ỹ ← y

Computebỹ

Computey for whichLy = bỹ

while (y �= ỹ)
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We show that each iteration of this process (except for the last one) must decrease the st
ergy:E(y) < E(ỹ). This stems from the above lemmas: by Lemma 3,E(ỹ) = Eỹ(ỹ), and by Lemma 4
Eỹ(y) < Eỹ(ỹ) (sinceỹ �= y, the energy must strictly decrease). Now, by Corollary 1,Ey(y) � Eỹ(y).
Taken together, we obtain:

E(y) = Ey(y) � Eỹ(y) < Eỹ(ỹ) = E(ỹ).

Of course, the energy is bounded below by zero, so the process must converge. Unlike node-
local optimization methods, the new optimization process does not suffer from working in a sin
mension. Later, we introduce some encouraging experimental results. Refer also to Appendix A
we explain a rather significant advantage of our method over the node-by-node approach of Kam
Kawai. However, note that like other optimization methods, we can only guarantee convergence to
minimum.

Technical notes. As stated above, to make the minimizer unique, we remove the translation deg
freedom by assuming thaty1 = 0. Therefore, we can remove the first row and column ofL, as well as the
first component ofbỹ , and solve an(n−1)× (n−1) system of equations. The resulting(n−1)× (n−1)

matrix is positive definite. This is very convenient, since methods like Conjugate Gradient, Gauss
and Cholesky factorization are guaranteed to work [13].

4.2. Working with a sparse Laplacian

A significant drawback of stress optimization is that its space complexity is�(n2), since we have to
store all pairwise distances. This, of course, slows down running time, and even more importa
prevents us from dealing with large graphs containing more than around 10,000 nodes.

However, it appears that many graphs that can be drawn nicely possess much redundancy in
wise distances. We utilize this redundancy by neglecting most pairwise distances. Specifically, w
the setS of the “interesting” node pairs, so the stress energy is defined as:∑

{i,j}∈S
kij

(|yi − yj | − dij

)2
.

Accordingly, we can use a sparse Laplacian, whose nonzero entries correspond to the pairs inS :

Lij =



−kij {i, j } ∈ S∑
j : {i,j}∈S kij i = j

0 otherwise

i, j = 1, . . . , n.

Similarly, the vectorbỹ is defined as:

b
ỹ

i =
∑
j :

{i,j}∈S,ỹj �ỹi

kij dij −
∑
j :

{i,j}∈S,ỹj >ỹi

kij dij , i = 1, . . . , n.

Strategies regarding the choice of pairs inS and more details on the sparse method are given in [22

4.3. Working in the presence of predefined coordinates

The main application of 1-D graph drawing is where one axis of the drawing is given in advan
Section 3 we suggested treating this issue by requiring the new axis to be uncorrelated with th
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one. Using our method to optimize the stress, we can directly handle such a requirement. It can b
that stress minimization ofy, accompanied by the constraint of uncorrelation withx, can be achieved b
solving, in each iteration, the system:

(I − x̂x̂T)L(I − x̂x̂T)y = (I − x̂x̂T)bỹ,

wherex̂ = x/‖x‖.
However, for stress minimization, we recommend another very effective way of taking care of th

defined axis. The stress minimization strategy strives to achieve the target distances in the drawin
fraction of the target distances is already achieved in the predefined axis,x. Hence, when computing
new axis we would like the achieve theresidual target distancesinstead of the original ones. The ne
residual target distances are defined as:

dx
ij =

{√
d2

ij − (xi − xj )2 dij > |xi − xj |
0 otherwise

i, j = 1, . . . , n. (11)

Note that there is no reason to alter the normalization weightskij .
However, there is still one problem remaining: the target distances set the scale of the layout

fore, it is possible that the predefined axis,x, has an entirely different scale (e.g., it may be very sm
so our computation of residual target distances makes no sense. To overcome this problem, we rx

in order to bring it to the scale of the target distances (alternatively, we could re-scale the target d
in order to bring them to the scale ofx). More specifically, we want to compute a constantc > 0 that
minimizes the stress energy of the scaledc · x. To find the exact value ofc, we differentiate:

∂

∂c
E(c · x) = 0.

The solution is:

c =
∑

{i,j}∈S kijdij |xi − xj |∑
{i,j}∈S kij (xi − xj )2

. (12)

To summarize, when an axisx is given in advance, we replace it withc · x to bring it into the scale
of the target distances. The constantc is computed by (12). Then, we take into account the dista
already captured byx, by computing the residual target distances,dx

ij , as in (11). The additional axisy is
computed in order to minimize the stress function

∑
{i,j}∈S kij (|yi − yj | − dx

ij )
2.

4.4. Experimental results

Application to drawing digraphs. We have tested the capabilities of our algorithm by using it to c
pute thex-axis in the digraph drawing algorithm of [4]. As expected, our experiments show that in
cases using stress minimization improves the quality of the layouts compared to the results of t
methods described in Section 3. In Fig. 10 we show the stress-minimization-based layouts of the d
that appear in Fig. 4 using other methods. In all the layouts, the superiority of stress minimization
ident, especially in showing sharp changes in the graph structure. One of the most important adv
of stress-minimization is its ability to deal with tree or tree-like graphs. This is unlike the three me
of Section 3, which completely fail with trees. We demonstrate the advantage of stress minimiza
drawing a rooted tree in Fig. 11.
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Fig. 10. Layouts of the digraphs: Nos3, Nos6 and Plat362. Thex coordinates are computed by stress minimization and ty

coordinates are the minimizer of the hierarchy energy.

Fig. 11. Layout of a depth 5, full, rooted binary tree. In all layouts they coordinates are the same minimizer of the hie
chy energy. However, thex coordinates were computed by three different methods: stress minimization, eigenprojecti
classical-MDS.

4.4.1. Speed of computation for selected graphs
Smart initialization. We recommend initializing our algorithm with a smart (rather than random) p
ment of the nodes. Such an initialization could result from faster methods like eigenprojection o
This way the probability of avoiding poor local minima is improved. Also, running time is significa
decreased as the number of iterations is reduced.

We initialized the algorithm by first running a few iterations of the method described in [23], w
accelerates the stress minimization by constraining the layout to lie in a unique small subspac
significantly reduced the number of iterations, and allowed us to run the sparse version of the al
with good results for all the given graphs.

To give an impression of actual performance, Table 2 shows the number of iterations and r
time for several graphs. For each graph we have computed a 1-D layout, and stopped the iterative
when the layout stabilized. Our experience shows that the number of required iterations grows wit
size but also strongly depends on the graph’s structure and the initial position. The overall runnin
which includes the smart initialization, was measured on a Pentium IV 2GHz PC with 256MB RA
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Table 2
Number of iterations and running time (in seconds) for various graphs

Graph name |V | |E| Number of
iterations

Time
(sec.)

Torus 64× 16 1024 2048 11 0.19
4970 [31] 4970 7400 19 1.7
Shuttle (Data) [33] 2851 15093 64 2.71
Crack [33] 10240 30380 41 9.64
Fidap006 [32] 1651 23914 49 1.65
Nos3 [32] 960 7442 20 0.36
Nos5 [32] 468 2352 18 0.13
Nos6 [32] 675 1290 10 0.1
Nos7 [32] 729 1944 15 0.13
Plat362 [32] 362 2712 9 0.08
Plat1919 [32] 1919 15240 17 0.62
Plsk1919 [32] 1919 4831 8 0.34

5. Discussion

We have explored one-dimensional graph drawing algorithms and have studied their special
and applications. One important application of these is in graph drawing by axis separation, whe
axis is computed separately, so as to address specific aesthetical considerations. Since node-by-
optimization in one dimension is a poor strategy for force-directed models, traditional graph d
algorithms are not suitable for the 1-D drawing task, while less traditional algorithms are. We gene
three such algorithms using the unified paradigm of computing the layout axis-by-axis, while main
non-correlation with the precomputed coordinates.

As an alternative, we then introduced a novel process based on minimizing the so-called st
ergy that strives to place nodes in accordance with target distances. Such a strategy was first in
into graph drawing by Kamada and Kawai [17]. However, they use a localized 2-dimensional Ne
Raphson process, that tends to get stuck in poor local minima when used for computing 1-D layo
devised a rather global optimization process that replaces this usual local node-by-node optim
Significantly, the algorithm is suitable for computing a one-dimensional layout. We prove in Appen
that our process is equivalent to a fulln-dimensional Newton–Raphson process, which clearly exp
its advantage over [17].

None of the four methods developed in this paper possesses a definite advantage over the oth
ods. It turns out that some methods excel when dealing with large graphs, where computational e
becomes a critical issue. On the other hand some other methods are preferable for certain kinds o
as they produce more readable layouts. In fact, the stress-based approach that usually produces
thetical results is also the less stable one as it involves a heuristic optimization process. There
usually is the case with graph drawing algorithms, we believe that all four methods should be c
ered as candidates when a 1-D graph layout is needed. The actual choice of a method might
on comparing concrete layouts, on previous domain-specific experience and on computationa
tions.
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Appendix A. An alternative viewpoint to the stress minimization process

In this appendix we provide a new explanation of the stress minimization algorithm descri
Section 4.1, which allows a direct comparison with the process suggested by Kamada and Kawa

Given a 2-D stress energyE(x, y) (x, y ∈ R
n) we could optimize it using the Newton–Raphs

process as follows. Define thegradient∇E(x, y) ∈ R
2n as the vector of partial derivatives, i.e.,

∇E(x̃, ỹ) =




∂E
∂x1

(x̃, ỹ)

...
∂E
∂xn

(x̃, ỹ)

∂E
∂y1

(x̃, ỹ)

...
∂E
∂yn

(x̃, ỹ)




.

Also, define the 2n × 2n Hessian matrixH(x,y), which is the matrix of partial second derivatives, i.e

H(x,y) =



∂2E

∂x2
1
(x̃, ỹ) . . . ∂2E

∂x1xn
(x̃, ỹ) ∂2E

∂x1y1
(x̃, ỹ) . . . ∂2E

∂x1yn
(x̃, ỹ)

...
. . .

...
...

. . .
...

∂2E
∂y1x1

(x̃, ỹ) . . . ∂2E
∂y1xn

(x̃, ỹ) ∂2E

∂y2
1
(x̃, ỹ) . . . ∂2E

∂y1yn
(x̃, ỹ)


 .

The exact formulas for all these partial derivatives can be found in [17]. A single iteration of the Ne
Raphson process changes the current layoutx̃, ỹ into a “better” layoutx, y by solving the 2n×2n system
of equations

H(x̃, ỹ) ·
((

x

y

)
−

(
x̃

ỹ

))
= −∇E(x̃, ỹ).

However, working with such a full Newton–Raphson process is impractical in our case, since it re
a costly recomputation of the Hessian matrix in each iteration. Moreover, the Hessian might be s
or ill-conditioned which may cause additional numerical difficulties. Consequently, Kamada and
have opted for a localized 2-D Newton–Raphson process. In this process all nodes except somi
are fixed, so only two variables remain:xi andyi . The new coordinates of nodei are computed by solvin
a tiny system of equations involving the corresponding 2× 2 Hessian.

Now, let us consider the 1-D case in which the layout is defined byx ∈ R
n. We use the definition o

E(x) in (6), and by a simple derivation we conclude that(∇E(x̃)
)
i
= 2

∑
j �=i

kij (xi − xj ) − 2bx̃
i ,

wherebx̃ is defined in (10).
Moreover, regardless of the value ofx̃, the Hessian is nothing but 2L, whereL is the Laplacian define

in (9). Consequently, a single iteration of Newton–Raphson optimization is based on solving the
system

Lx = Lx̃ − 1∇E(x̃).

2
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Let us consider theith row of this system

(Lx)i = (Lx̃)i −
∑
j �=i

kij (xi − xj ) + bx̃
i .

We can simplify this equation by observing that(Lx̃)i = ∑
j �=i kij (xi −xj ). Consequently we get that th

ith equation is

(Lx)i = bx̃
i .

Thus, in each iteration we are solving the systemLx = bx̃ . This is exactly what happens in our functi
1-D_ stress_minimization. Therefore our process is equivalent to performing fulln-dimensional Newton–
Raphson optimization, while Kamada and Kawai perform only a 2-D localized Newton–Raphso
mization. Naturally, this explains why our process converges better than the one of Kamada and
when working in 1-D.

Note that the two shortcomings of the Newton–Raphson method that prevent its use for 2-D l
do not exist in the 1-D case. First, we do not have to recompute the Hessian in each iteration
is constant and independent of the current layout. Second, the Hessian matrix is positive defin
certainly not singular) after removing the translation degree of freedom as explained in the te
notes in Section 4.1. Consequently, solving the system of equations is very convenient from a nu
viewpoint.
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