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Let R = ( - co, co ), R + = [0, cc ) and let N denote the set of nonnegative 
integers. For the sequence {u,}: N + R and for the function U: R + + R, we 
define 

Au, = u, + , - u, for HEN 

and 

Au(t) = u(t + 1) -u(t) for tER+. 

Recently, Redheffer and Walter [3] established a comparison theorem for 
difference inequalities which is similar to that of the first-order differential 
inequalities. The purpose of this Note is to give some comparison theorems 
for difference inequalities which are different from the result of Redheffer 
and Walter [3]. For related results we refer to [ 1, 2,4, 51. 

As in the classical definition a real-valued function f(t, u) defined on 
R + x R is called increasing in u if 

UdV impliesf( t, U) <f( t, u) 

for t E R+. If -f(t, U) is increasing in U, then f‘ is called decreasing in u. 

THEOREM 1. For the two sequences {II,,}, {w,}: N + R, if 

(A) f(t, u) is increasing in u and 

Au, -An, u,) G Aw, -f(n, w,) for all n E N, (1) 
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or 
(B ) f( t, U) is decreasing in u and 

Av,-f(n,u,+,)~Aw,-f(n,w,+,) foraNnEN, (2) 

then II,, < w0 implies v, < w, for all n E N. 

ProofI We consider the case (A). If the assertion were untrue, then 
there would exist a positive integer m such that 

but 

Thus 

V m+l’W,+l. 

Av, > Aw, 

and 

Hence 

Au, -fh 0,) > Aw, -fh WA 

which is a contradiction. This contradiction proves the case (A). 
A similar argument can be used to prove the case (B). Thus the proof is 

complete. 1 

Remark. The case (A) of Theorem 1 is a discrete analogue for Iirst- 
order differential inequalities, for example, see [ 11. 

The following is a continuous analogue of Theorem 1. 

THEOREM 2. Letf: R+xR--+Randv,w:R++R.If 

(A) f(t, u) is increasing in u and 

Au(t)-f(t, v(t))<Aw(t)-f(t, w(t)) for tE R.+, (3) 

or 
(B) f (t, u) is decreasing in u and 

Au(t)-f(t, v(t-t l))<Aw(t)-f(t, w(t+ 1)) for tE R+, 

then u(t)< w(t)for tE [O, 1) implies u(t)<w(t) for tE R+. 

(4) 

409,113,‘2-II 
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Next, we treat with a comparison theorem for difference inequalities 
which is similar to that of the integral inequalities due to Walter [4]. As 
usual, we define C,Y=10 U(S) = 0. 

THEOREM 3. Let F: N x N x R -+ R satisjj 

u d v implies F( t, S, u) 6 F( t, s, v) 

for all (t, s) E N x N. If for three sequences {II,},{ w,,}, (g,}: N + R the 
following two inequalities hold: 

n-l 
u, dg, + 1 F(n, s, v,), w, 3 g, + nx’ F(n, s, w,), (5) 

Y=O ,=O 

where the equality holds in at most one place for each n, then 

vll<wn for all n E N. 

Proof. For n = 0, it follows from (5) that 

vo6go 

and 

“obgo, 

where the equality holds in at most one place; thus 

v. < wo. 

If the conclusion were false, then there would exist a positive integer m 
such that v, = w, and v, < w,~ for s = 0, l,..., m - 1. By the increasing of F, 

F(m, s, u,) d Fh s, w,) for s = 0, l,..., m - 1 

This and (5) imply 

m-1 m--l 
0, dg, + c F(m, s, us) bg, + 1 F(m, s, w,) d w,, 

F=O ,=O 

where there is strictly inequality in at least one place; hence 

v,<w,. 

This contradiction proves our theorem. 
It follows from Theorem 3 that we have the following 
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COROLLARY 4. Let F, v,, and w, be defined as in Theorem 3 for n E N. If 

n-l n-l 
v, - 1 F(n, s, v,) -=c w, - 1 F(n, s, w,) for n E N, 

s=O s = 0 

then v, < w, for all n E N. 

Finally, we consider the case that “ < ” is replaced by “ 6 ” in Corollary 4. 

THEOREM 5. Let F, v,, w,, and g, be defined as in Theorem 3. Suppose 
the difference equation 

has a unique solution w,( g,) for each g, and 

max Ihk(s) -g,J + 0 implies Iw,(hdn)) - w,k,)l -0 (6) O<s<n I 

where hk: N 4 R.for k = 1, 2 ,.... [f 

n- I 

v, - 1 F(n, s, v,~) 6 w, - “x1 F(n, s, MI,) for nE N, 
r=O ., = 0 

then v, < w, for all n E N. 

Proojl Let 

n-1 
g, = W, - .s;o F(n, 3, w, 1, 

and for any E > 0, let w;~ be the solution of 

g, + E = w, - c F(n, s, w,). 

Thus 

n- I n-l 

v,- 1 F(n,s,v,)~g,<g,+&=w~- C F(n,s,w;) 
s = 0 s=O 

From Corollary 4, we have 

v, < w; for n E N. 
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It follows from (6) that 

CY+O implies M.: + Wt = M’,t. 

Thus u, d W, for all n E N. 
The continuous analogue of Theorem 5 is due to Kato [2, p. 1221. 
As an application of Theorem 5, let F(n, S, U) = L(n, S)U and 

(7) 

then we can estimate the solution of (7) under suitable assumptions on L 
and H,. Hence we derive the Gronwall inequality of discrete type from 
Theorem 5. For this technique we refer to [S]. 
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