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Let R=(—o0,00), R"=[0, o) and let N denote the set of nonnegative
integers. For the sequence {u,}: N - R and for the function u: R* - R, we
define

Au,=u,, —u, for neN
and
Au(t)=u(t +1)—u(t) for teR™.

Recently, Redheffer and Walter [3] established a comparison theorem for
difference inequalities which is similar to that of the first-order differential
inequalities. The purpose of this Note is to give some comparison theorems
for difference inequalities which are different from the result of Redheffer
and Walter [3]. For related results we refer to [1,2,4, 5].

As in the classical definition a real-valued function f{(¢, u) defined on
R* x R is called increasing in u if

usv implies f(t, u) < f(¢, v)

for te R*. If —f(¢, u) is increasing in u, then f is called decreasing in wu.

THEOREM 1. For the two sequences {v,}, {w,}: N> R, if

(A) f(t, u) is increasing in u and

Av,— f(n,v,) < Aw, — f(n, w,,) for all ne N, (1)
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or
(B) f(t, u) is decreasing in u and
AU,,—f(n,U,,+1)<AW,,—f(n, Wn+l) for allnENa (2)
then vy < w, implies v, <w, for all ne N.

Proof. We consider the case (A). If the assertion were untrue, then
there would exist a positive integer m such that

vV, <W,,
but
Vg1 > Wap 1o
Thus
Av,, > Aw,,
and
flm, v,) <f(m, w,,).

Hence

Avm _f(m’ Um)>Awm —f(m$ wm)

which is a contradiction. This contradiction proves the case (A).
A similar argument can be used to prove the case (B). Thus the proof is
complete. |

Remark. The case (A) of Theorem 1 is a discrete analogue for first-
order differential inequalities, for example, see [1].
The following is a continuous analogue of Theorem 1.

THEOREM 2. Let f: RY¥ xR—-Randv,w: R > R If
(A) f(¢t, u) is increasing in u and

Av(t) —f(t, o(8)) < Aw(t) —f(t, w(t))  for te R, (3)

or

(B) f(t, u) is decreasing in u and
Av(t)—f(t,v(t + 1)) <Aw(t) —f(t, w(t+ 1))  for teR™, (4)

then v(t) < w(t) for te [0, 1) implies v(¢)<w(t)  forteR™.
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Next, we treat with a comparison theorem for difference inequalities
which is similar to that of the integral inequalities due to Walter [4]. As
usual, we define > ;'  u(s)=0.

THEOREM 3. Let F: Nx N x R — R satisfy

u<v implies F(t, s, u) < F(t, s, v)
Sor all (t,s)e NxN. If for three sequences {v,},{w,}, {g,}: N> R the
Sfollowing two inequalities hold.

n—1

n-—-1
vnggnﬂl- Z F("l, s, Us)’ 1'vnzgn*— Z F(n’ S, w’s)’ (5)
s=0 s=0

where the equality holds in at most one place for each n, then

v,<w for all ne N.

n n

Proof. For n=0, it follows from (5) that
VoK &g
and
Wo 2 8o,
where the equality holds in at most one place; thus
Vo < Wy.

If the conclusion were false, then there would exist a positive integer m
such that v,,=w,, and v, <w, for s=0, 1,.., m — 1. By the increasing of F,

F(m, s,v,)< F(m, s, w,) for s=0,1,.,m—1.

This and (5) imply

m—1 m—1
UnS<8m+ . Flm,s,0)<g,+ Y Flm s w,)<w,,

s=0 s=0

where there is strictly inequality in at least one place; hence

U, < W

m m:

This contradiction proves our theorem.
It follows from Theorem 3 that we have the following
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COROLLARY 4. Let F, v, and w, be defined as in Theorem 3 for ne N. If

n—1 n—.1 )
v,— Y Fln,s,v)<w,— Y F(n,s,w)  forneN,
s=0

s=0
then v, <w, for all ne N.
Finally, we consider the case that “<” is replaced by “<” in Corollary 4.
THEOREM 5. Let F, v,, w,, and g, be defined as in Theorem 3. Suppose

the difference equation

n—1

w,=g,+ Z F(l’l, 35 ws)

y=0
has a unique solution w,(g,) for each g, and

max |h(s)~g,[ >0 implies [w,(hi(n)) = w,(g,)| >0 (6)

0<s<n

where hy: N> R for k=1,2,... If

n—1

n- 1
v, — Z F(n,s, U.\')gwn_ Z F(n,S, w_\*) fOVnEN,

s=0 §s=0

then v, <w, for all ne N.

Proof. Let

n—1
gn=Ww,— F(n’ 5, w.\')’
0

and for any ¢> 0, let wi be the solution of

n—1
g, te=w,— > F(n, s, w,).

s=0
Thus

n-1 n—1
v,— 3y, Fln,s,0,)<g,<g,te=wi— ) Fln s w)
s=0 s=0

From Corollary 4, we have

v, < W for ne N.

n
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It follows from (6) that
£—-0 implies wt —> wl=w,.

Thus v, <w, for all ne N.
The continuous analogue of Theorem 5 is due to Kato [2, p. 122].
As an application of Theorem 5, let F(n, s, u) = L(n, s)u and

n-—1
w,=H,+ Y L(n siw,, (7)
s=0

then we can estimate the solution of (7) under suitable assumptions on L
and H,. Hence we derive the Gronwall inequality of discrete type from
Theorem 5. For this technique we refer to [5].
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