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a b s t r a c t

Multipliers are operators that combine (frame-like) analysis, a multiplication with a
fixed sequence, called the symbol, and synthesis. They are very interesting mathematical
objects that also have a lot of applications for example in acoustical signal processing.
It is known that bounded symbols and Bessel sequences guarantee unconditional
convergence. In this paper we investigate necessary and equivalent conditions for
the unconditional convergence of multipliers. In particular, we show that, under mild
conditions, unconditionally convergent multipliers can be transformed by shifting weights
between symbol and sequence, into multipliers with symbol (1) and Bessel sequences
(called multipliers in canonical form).

© 2012 Elsevier Inc.

1. Introduction

In Hilbert spaces, multipliers are operators that have the form

Mm,Φ,Ψ f =

∞
n=1

mn ⟨f , ψn⟩φn, (1)

whereΦ = (φn)
∞

n=1 and Ψ = (ψn)
∞

n=1 are sequences in a Hilbert space H and m = (mn)
∞

n=1 is a scalar sequence, called the
symbol. These are operators which generalize Gabor multipliers [1]. MultipliersMm,Φ,Ψ , whereΦ and Ψ are general Bessel
sequences andm is a bounded scalar sequence, were first considered in [2]. Further investigation on multipliers for general
sequences can be found in [3–5]. When Φ and Ψ are Bessel sequences (resp. frames) for H , then Mm,Φ,Ψ is called a Bessel
(resp. frame) multiplier.

Multipliers are interesting from a mathematical point of view. They have been investigated for Gabor frames [6–8], for
fusion frames [9], for generalized frames [10], for p-frames in Banach spaces [11] and continuous frames [12]. The concept
of multipliers is naturally related to weighted frames [13,3] as well as to matrix representation of operators [14]. The
latter is, in particular, important for the numerical solution of operator equations, see e.g. [15,16]. Other applications of
multipliers are also possible, in particular in acoustics. Time-invariant filters, i.e. Fourier multipliers [17], are often used for
audio applications. Framemultipliers, as a particular way to implement time-variant filters, are applied in psychoacoustical
modeling [18,19], computational auditory scene analysis [20], denoising [21], sound synthesis [22] or soundmorphing [23].
For some applications, an approximation of matrices or operators by multipliers is interesting [24,25].
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For Bessel sequences and bounded symbols multipliers are always well-defined on all of H , unconditionally convergent,
and bounded [2]. Multipliers can be unconditionally convergent on all of H for non-Bessel sequences and non-bounded
symbols, plenty of examples can be found in [5]. Multipliers which are well defined on all of H are always bounded (see
Lemma 2.3), but the unconditional convergence is not always guaranteed, see the multiplierM(1),Φ,Ψ in Example 2.2. In this
paper we focus on the unconditional convergence of multipliers. In particular, we consider the question if the assumption of
unconditional convergence is a real generalization of the setting chosen in [2], i.e. Bessel sequences and bounded symbols.
One could think that by keeping only the unconditional convergence, a bigger class of operators can be utilized, with still
convenient properties. But we will show that under mild assumptions this is not true. We even conjecture that this is never
true.

Clearly, the roles of the sequences and the symbols in Eq. (1) are not independent, some weights can be shifted between
those objects. We want to solve the following questions: Can we determine a ‘canonical form’ of an unconditionally
convergent multiplier by shifting weights? In particular, as it is known, that a multiplier involving a bounded symbol and
Bessel sequences is unconditionally convergent, canwe reach such a construction by shiftingweights for anyunconditionally
convergent multiplier? Can we connect the invertibility of multipliers to the frame property? Here we give partial answers
and formulate a conjecture for the open question.

In Section 1.1we formulate the questions as amotivation for this paper in full details. In Section 2,we specify the notation
and state the needed results for the main part of the paper. In Section 3, the unconditional convergence of multipliers is
considered; sufficient and equivalent conditions are determined. In Section 4we give partial answers of the questions posed
in Section 1.1. We state a conjecture that every unconditionally convergent multiplier can be written as a Bessel multiplier
with symbol (1) by shifting weights (such a multiplier will be called a multiplier in canonical form). We determine several
classes of multipliers, where the Conjecture is true. Furthermore, we investigate if, by such a shifting, we can also reduce
unconditionally and invertible multipliers to a certain, ‘canonical’ form. We determine several classes of multipliers which
can be reduced to frame multipliers with symbol (1).

1.1. Motivation

In connection to the questions about the re-weighting of symbol and sequence we introduce the following notation: for
sequences ν = (νn),Θ = (θn),Ξ = (ξn), we will write Mm,Φ,Ψ

∇
=Mν,Ξ ,Θ if there exist scalar sequences (cn) and (dn) so

that ξn = cnφn, θn = dnψn, andmn = νncndn for every n ∈ N.
WhenΦ and Ψ are Bessel sequences for H , and m ∈ ℓ∞, then Mm,Φ,Ψ is unconditionally convergent on H [2].
This is only a sufficient condition. For example, the multiplier M

(n),( 1n en),(
1
n en)

(where (en) denotes an orthonormal basis
for a Hilbert space H) is unconditionally convergent on H and m = (n) ∉ ℓ∞. But note that M

(n),( 1n en),(
1
n en)

can be written
asM

(1),(en),( 1n en)
. Many examples of unconditionally convergent multipliersMm,Φ,Ψ withm ∉ ℓ∞ or non-Bessel sequenceΦ

can be found in [5]. All these multipliers can be transformed into the formM(1),Bessel,Bessel by shifting weights.
On the other hand, the multiplier M(1),Φ,Ψ in Example 2.2 is well-defined on H , but not unconditionally convergent on

H . The sequence m = (1) cannot be written in the way (cndn) so that both (cnφn) and (dnψn) are Bessel sequences for H .
The above observations lead to the following question:

[QUC] If Mm,Φ,Ψ is unconditionally convergent on H , do scalar sequences (cn) and (dn) exist so that Mm,Φ,Ψ
∇
=

M(1),(cnφn),(dnψn), where (cnφn) and (dnψn) are Bessel sequences for H?

The above question is clearly equivalent to the following one:Does unconditional convergence of Mm,Φ,Ψ onH imply that there

exist sequences (mn) ∈ ℓ∞, (cn) and (dn) so that Mm,Φ,Ψ
∇
=M(mn),(cnφn),(dnψn) with (cnφn) and (dnψn) being Bessel sequences for

H?
We can we give a partial answer to QUC:

Proposition 1.1. For Mm,Φ,Ψ define the following conditions:

P1 : (|mn| · ∥φn∥ · ∥ψn∥) is norm-bounded below and Mm,Φ,Ψ is unconditionally convergent.

P2 : ∃ (cn) and (dn) so that Mm,Φ,Ψ
∇
=M(1),(cnφn),(dnψn), where (cnφn) and (dnψn) are ∥ · ∥-semi-normalized and Bessel for H .

P3 : ∃ (cn) and (dn) so that Mm,Φ,Ψ
∇
=M(1),(cnφn),(dnψn), where (cnφn) and (dnψn) are Bessel for H .

For these conditions we have P1 ⇔ P2 ⇒ P3 and P3 ; P1.

So, under the condition that (|mn|·∥φn∥·∥ψn∥) is norm-boundedbelow, the question [QUC] can be answered affirmatively.
Furthermore, ifΦ = Ψ we can also answer positively the question, see Proposition 4.2.

Testing an enormous number of examples of unconditionally convergent multipliers lead us to believe in the following
conjecture:

Conjecture 1. Mm,Φ,Ψ is unconditionally convergent if and only if P3 is fulfilled.
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In short, this means that the answer to question [QUC] would always be ‘Yes’. Such ‘canonical forms’ are important to
compare multipliers and to describe their properties, for example their invertibility.

By Stoeva and Balazs [4] we know that the invertibility of multipliers is connected to the frame condition of the involved
sequences. So in this case we can ask:

[QInv1] If Mm,Φ,Ψ is unconditionally convergent and invertible, do sequences (cn) and (dn) exist so that Mm,Φ,Ψ
∇
=

M(1),(cnφn),(dnψn), where (cnφn) and (dnψn) are frames for H?

We determine classes of multipliers for which [QInv1] has affirmative answer, see Section 4.
Note that if the answer of Question [QUC] is ‘Yes’, then the answer of [QInv1] is also ‘Yes’, see Section 4. In particular this

means that if Conjecture 1 is true, every invertible and unconditionally convergentmultiplier can bewritten asM(1),frame,frame.

2. Notation and preliminaries

Throughout the paper H denotes a Hilbert space and (en)∞n=1 denotes an orthonormal basis of H . The notion operator is
used for linear mappings. The range of an operator G is denoted by R(G). The identity operator on H is denoted by IH . The
operator G : H → H is called invertible if there exists a bounded operator G−1

: H → H such that GG−1
= G−1G = IH .

Throughout the paper, we work with a fixed infinite, but countable index set J , and, without loss of generality, N is used as
an index set, also implicitly.

The notation Φ (resp. Ψ ) is used to denote the sequence (φn) (resp. (ψn)) with elements from H ; m denotes a complex
scalar sequence (mn),m = (mn) andmΦ = (mnφn). Recall thatm is called semi-normalized if there exist constants a, b such
that 0 < a ≤ |mn| ≤ b < ∞, ∀n.

If infn ∥mn∥ > 0 (resp. infn ∥φn∥ > 0), the sequence m (resp. Φ) will be called norm-bounded below, in short NBB. If
(∥φn∥) is semi-normalized, thenΦ is called ∥ · ∥-semi-normalized.
Bessel sequences, frames, Riesz bases

Recall that Φ is called a Bessel sequence (in short, Bessel) for H with bound BΦ if BΦ < ∞ and


|⟨h, φn⟩|
2

≤ BΦ∥h∥2

for every h ∈ H . A Bessel sequence Φ with bound BΦ is called a frame for H with bounds AΦ, BΦ , if AΦ ∈ (0,∞) and
AΦ∥h∥2

≤


|⟨h, φn⟩|
2 for every h ∈ H . The sequenceΦ is called a Riesz basis for H with bounds AΦ, BΦ , ifΦ is complete

in H , 0 < AΦ < BΦ < ∞, and AΦ


|cn|2 ≤ ∥


cnφn∥
2

≤ BΦ


|cn|2, ∀(cn) ∈ ℓ2. Every Riesz basis for H with bounds
A, B is a frame forH with bounds A, B. For standard references for frame theory and related topics see [26–28]. Note that we
stick here to the Hilbert space setting, but similar definitions for frames are also possible in Banach spaces (see, e.g., [29]).
Unconditional convergence

A series

φn converges unconditionally if, by definition,


φσ(n) converges in H for every permutation σ(n) of N. We

will use the following known results about unconditional convergence:

Proposition 2.1. For a sequenceΦ , the following statements hold.

(i) [28,30] If

φn converges unconditionally, then


∥φn∥

2 < ∞.
(ii) [28,30,31] The following conditions are equivalent.

•


n φn converges unconditionally.
• Every subseries


k φnk converges.

• Every subseries


k φnk converges weakly.
•


n λnφn converges for every bounded sequence of scalars (λn).

(iii) [28] If Φ is a Riesz basis for H , then


cnφn converges unconditionally if and only if


cnφn converges.
(iv) If Φ is a NBB Bessel sequence for H , then


cnφn converges unconditionally if and only if (cn) ∈ ℓ2.

If Φ is a NBB frame for H , the conclusion of Proposition 2.1(iv) is proved in [28, Theorem 8.36]. The proof in [28] uses
only validity of the upper frame condition, so the property is shown for Bessel sequences.

Concerning Proposition 2.1(iv), note that if the condition ‘‘norm-bounded below’’ is omitted, then the conclusion does
not hold in general, because


cnφn might converge unconditionally for some (cn) ∉ ℓ∞, see [28, Example 8.35].

Multipliers
For anyΦ , Ψ and anym (called weight or symbol), the operatorMm,Φ,Ψ , given by

Mm,Φ,Ψ f =


mn⟨f , ψn⟩φn, f ∈ H,

is called a multiplier [2]. The multiplier Mm,Φ,Ψ is called unconditionally convergent if


mn⟨f , ψn⟩φn converges
unconditionally for every f ∈ H .

Depending on m,Φ , and Ψ , the multiplier Mm,Φ,Ψ might not be well defined (i.e. might not converge for some f ∈ H),
it might be well defined on all of H but not unconditionally convergent, or it might be unconditionally convergent. First
observe thatMm,Φ,Ψ being well defined on all of H is not equivalent toMm,Ψ ,Φ being well defined on all of H :

Example 2.2. Let Φ = (e1, e1,−e1, e2, e1,−e1, e3, e1,−e1, . . .) and Ψ = (e1, e1, e1, e2, e2, e2, e3, e3, e3, . . .). Then
M(1),Φ,Ψ = IH and M(1),Ψ ,Φ is not well-defined.
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The following statements about well definedness can be easily proved:

Lemma 2.3. For anyΦ,Ψ and m, the following holds.

(i) Let Mm,Φ,Ψ be well defined on all of H . Then Mm,Φ,Ψ is bounded and Mm,Ψ ,Φ equals M∗
m,Φ,Ψ in a weak sense.

(ii) If Mm,Φ,Ψ and Mm,Ψ ,Φ are well defined on all of H , then Mm,Ψ ,Φ = M∗
m,Φ,Ψ .

3. Necessary and equivalent conditions for the unconditional convergence of multipliers

As one can see in Example 2.2, well-definedness ofMm,Φ,Ψ is not equivalent to well-definedness ofMm,Ψ ,Φ . If the notion
of well-definedness is replaced by the stronger notion of unconditional convergence, then equivalences hold as follows:

Lemma 3.1. For any m,Φ , and Ψ , the following statements are equivalent.

(i) Mm,Φ,Ψ is unconditionally convergent.
(ii) Mm,Ψ ,Φ is unconditionally convergent.
(iii) Mm,Ψ ,Φ is unconditionally convergent.
(iv) M(|mn|),Ψ ,Φ is unconditionally convergent.

Proof. (i) ⇔ (ii): Let Mm,Φ,Ψ be unconditionally convergent. By Proposition 2.1(ii), every subseries


k mnk⟨f , ψnk⟩φnk
converges for every f ∈ H , which implies that every subseries


k mnk⟨g, φnk⟩ψnk converges weakly for every g ∈ H .

Now Proposition 2.1(ii) implies that


n mn⟨g, φn⟩ψn converges unconditionally for every g ∈ H .
(iii) ⇔ (iv): Fix f ∈ H and assume thatMm,Ψ ,Φ f is unconditionally convergent. Then every subseries


k mnk⟨f , φnk⟩ψnk

converges unconditionally. Consider the sequence (λn) given by λn =
|mn|
mn

if mn ≠ 0 and λn = 0 if mn = 0. Applying
Proposition 2.1(ii) with the bounded sequences (λnk)k, it follows that every subseries


k |mnk |⟨f , φnk⟩ψnk converges. Now

apply again Proposition 2.1(ii).
The converse follows analogously.
(ii) ⇔ (iv) follows from (iii) ⇔ (iv). �

There exist multipliers which are well defined on all of H but not unconditionally convergent, seeM(1),Φ,Ψ in Example 2.2.
For Bessel sequences and bounded symbols the multiplier is always unconditionally convergent [2]. Note that this is only
a sufficient condition. Multipliers can be unconditionally convergent even in cases when m ∉ ℓ∞ or at least one of the
sequences is not Bessel. For example, considerM

(n2),( 1n en),(
1
n en)

= IH andM
(1),( 1n en),(nen)

= IH . The following statement gives
necessary conditions for unconditional convergence.

Proposition 3.2. Let Mm,Φ,Ψ be unconditionally convergent.

(i) Then (mn · ∥φn∥ · ψn) and (mn · ∥ψn∥ · φn) are Bessel for H .
(ii) If Φ (Ψ , mΦ , mΨ , respectively) is NBB, then mΨ (mΦ , Ψ ,Φ , respectively) is a Bessel sequence for H .
(iii) If bothΦ and Ψ are NBB, then m ∈ ℓ∞.
(iv) If Φ , Ψ and m are NBB, then m is semi-normalized and bothΦ and Ψ are Bessel sequences for H .

Proof. (i) It follows from Proposition 2.1(i) that (⟨f ,mn · ∥φn∥ ·ψn⟩) ∈ ℓ2 for every f ∈ H . This implies that (mn · ∥φn∥ ·ψn)
is Bessel for H . Now use Lemma 3.1 and apply what is already proved toMm,Ψ ,Φ .

(ii)–(iii) follow easily from (i); (iv) follows from (ii)–(iii). �

Remark 3.3. 1. Concerning Proposition 3.2(ii): if Φ is not NBB, then mΨ does not need to be a Bessel sequence for H , see
[5, 4.1.12(i)].

2. Concerning Proposition 3.2(iii): if at least one of Φ and Ψ is not NBB, then m does not need to be in ℓ∞, see [5,
Example 4.1.4(ii)].

Above we have seen sufficient or necessary conditions for the unconditional convergence of multipliers. Proposition 3.4 and
Corollary 3.6 give conditions which are necessary and sufficient under certain assumptions.

Proposition 3.4. For a multiplier Mm,Φ,Ψ , the following statements hold.

(i) Let Φ be a NBB Bessel sequence for H . Then
Mm,Φ,Ψ is unconditionally convergent ⇔ mΨ is Bessel for H .

(ii) Let Φ be a Riesz basis for H . Then
Mm,Φ,Ψ is well defined on H ⇔ Mm,Φ,Ψ is unconditionally convergent ⇔ mΨ is Bessel for H ⇔ Mm,Ψ ,Φ is well defined

on H ⇔ Mm,Ψ ,Φ is unconditionally convergent.
(iii) Let Φ be a Riesz basis for H and Ψ be NBB. Then

Mm,Φ,Ψ (or Mm,Ψ ,Φ ) is well defined on H ⇒ m ∈ ℓ∞. The converse does not hold in general.
(iv) If Φ and Ψ are Riesz bases for H , then Mm,Φ,Ψ is well defined on H if and only if m ∈ ℓ∞.
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If it is moreover assumed that m is NBB (resp. semi-normalized), then each of the equivalent assertions in (i) and (ii) implies (resp.
is equivalent to) Ψ being Bessel for H .

Proof. (i) By Proposition 2.1(iv), Mm,Φ,Ψ is unconditionally convergent if and only if (⟨f ,mnψn⟩) ∈ ℓ2, ∀f ∈ H , if and only
ifmΨ is Bessel for H .

(ii) The first equivalence follows from Proposition 2.1(iii). The second equivalence follows from (i), because Riesz bases
are NBB Bessel sequences.

For the third equivalence, consider Mm,Ψ ,Φ f =


⟨f , φn⟩mnψn, f ∈ H . The sequence mΨ is Bessel for H if and only if
cnmnψn converges for every (cn) ∈ ℓ2 if and only if


⟨f , φn⟩mnψn converges for every f ∈ H , becauseΦ is a Riesz basis

for H .
To complete the last equivalence, use Lemma 3.1.
(iii) Assume that Mm,Φ,Ψ is well defined, or equivalently, by (ii), that Mm,Ψ ,Φ is well defined. Let aΨ > 0 denote a lower

bound for (∥ψn∥). By (ii), mΨ is Bessel for H . Then aΨ |mn| ≤ ∥mnψn∥ ≤
√
BmΨ , which implies that m belongs to ℓ∞. For

the converse, consider the multiplierM
( 1n ),(en),(n

2en)
, which is not well defined.

(iv) One of the directions is clear, the other one follows from (iii). �

Remark 3.5. 1. Concerning Proposition 3.4(i): IfΦ is Bessel forH , which is non-NBB, then the conclusion of Proposition 3.4(i)
might fail. Consider Φ = ( 12 e1, e2,

1
22
e1, e3, 1

23
e1, e4, . . .), which is Bessel for H , and Ψ = (e1, e2, e1, e3, e1, e4, . . .), which

is non-Bessel forH . ThenM(1),Φ,Ψ = M(1),Ψ ,Φ = IH with unconditional convergence onH . However,mΨ = Ψ is not Bessel
for H .

2. Concerning Proposition 3.4(iii): If Φ is a Riesz basis for H and Ψ is non-NBB, then well-definedness of Mm,Φ,Ψ does
not require m ∈ ℓ∞. Consider for example the multiplierM

(n),(en),( 1n en)
.

By Proposition 3.2(i), a necessary condition for the unconditional convergence ofMm,Φ,Ψ is the sequences (mn ·∥φn∥·ψn) and
(mn · ∥ψn∥ · φn) being Bessel for H . It is not difficult to see that this condition is furthermore sufficient under an additional
assumption:

Corollary 3.6. Let (|mn| · ∥φn∥ · ∥ψn∥) be NBB. Then the following conditions are equivalent:
(i) Mm,Φ,Ψ is unconditionally convergent.
(ii) (mn · ∥φn∥ · ψn) and (mn · ∥ψn∥ · φn) are Bessel for H .
(iii) (mn · ∥φn∥ · ψn) and (

φn
∥φn∥

) are Bessel for H .

Remark 3.7. The NBB-property of (|mn| · ∥φn∥ · ∥ψn∥) is not a necessary condition for the unconditional convergence
of Mm,Φ,Ψ . If (|mn| · ∥φn∥ · ∥ψn∥) is non-NBB, then unconditional convergence of a multiplier is possible (for example,
consider M

( 1n ),(en),(en)
) and non-unconditional convergence of a multiplier is also possible (for example, consider Φ and Ψ

from Example 2.2 and m = (1, 1, 1, 1, 1
2 ,

1
2 , 1, 1, 1, 1,

1
4 ,

1
4 , . . .), then Mm,Φ,Ψ = IH and Mm,Φ,Ψ is not unconditionally

convergent).

Invertibility and unconditional convergence of multipliers
As one can see in Example 2.2, ifMm,Φ,Ψ is invertible, thenMm,Ψ ,Φ (resp.Mm,Ψ ,Φ ) does not need to be neither invertible

nor well-defined. But with additional assumptions we can show the following:

Proposition 3.8. For anyΦ,Ψ and m, the following holds.
(i) Let Mm,Φ,Ψ be invertible and let Mm,Ψ ,Φ be well defined. Then Mm,Ψ ,Φ is invertible and M−1

m,Ψ ,Φ = (M−1
m,Φ,Ψ )

∗.
(ii) Mm,Φ,Ψ is unconditionally convergent and invertible ⇔ Mm,Ψ ,Φ is unconditionally convergent and invertible.

Proof. (i) follows from Lemma 2.3(ii).
(ii) follows from Lemmas 2.3 and 3.1(ii). �

As a consequence, the following result about dual sequences holds:

Corollary 3.9. For anyΦ and Ψ , the following statements hold.
(i) If


⟨f , ψn⟩φn = f for every f ∈ H and


⟨f , φn⟩ψn converges for every f ∈ H , then


⟨f , φn⟩ψn = f for every f ∈ H .

(ii)


⟨f , ψn⟩φn = f with unconditional convergence for every f ∈ H if and only if


⟨f , φn⟩ψn = f with unconditional
convergence for every f ∈ H .

Note that Corollary 3.9(ii) generalizes [27, Lemma 5.6.2], which states that if Φ and Ψ are Bessel sequences, then
⟨f , ψn⟩φn = f ,∀f ∈ H , if and only if


⟨f , φn⟩ψn = f ,∀f ∈ H . In Corollary 3.9(ii) the sequences Φ and Ψ do not

need to be Bessel sequences for H- for examples with one Bessel and one non-Bessel sequence see [5, Examples 4.2.6(i),
4.2.10], for examples with two non-Bessel sequences see [5, Examples 4.1.9(i), 4.1.14(i)].

Remark 3.10. While Lemma 3.1 gives equivalence of unconditional convergence on H ofMm,Φ,Ψ andM(|mn|),Φ,Ψ , note that
Mm,Φ,Ψ being unconditionally convergent and invertible is not equivalent to M(|mn|),Φ,Ψ being unconditionally convergent
and invertible. Consider for example the sequencesΦ = Ψ = (e1, e1, e2, e2, e3, e3, . . .) andm = (1,−1, 1,−1, 1,−1, . . .).
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4. The interplay of sequences and symbols

We have now all necessary tools for proving the results in this section.

Proof of Proposition 1.1. P1 ⇒ P2: By P1 we have that φn ≠ 0 and ψn ≠ 0, ∀n ∈ N. By Proposition 3.2(i), the sequence
(mn · ∥φn∥ ·ψn) is Bessel for H . Furthermore, (mn · ∥φn∥ ·ψn) is ∥ · ∥-semi-normalized. By Corollary 3.6, ( φn

∥φn∥
) is Bessel for

H . WriteMm,Φ,Ψ = M
(1),( φn

∥φn∥
),(mn·∥φn∥·ψn)

.

The implications P2 ⇒ P1 and P2 ⇒ P3 are clear.
For the implication P3 ; P1, note that P3 implies the unconditional convergence, but the NBB-property does not

necessarily hold, consider for example the multiplierM
(1),( 1n en),(en)

. �

This means the question QUC is answered positively when (|mn| · ∥φn∥ · ∥ψn∥) is norm-bounded below. In particular, this is
true for Gabor and wavelet systems and semi-normalized symbols:

Corollary 4.1. If Φ and Ψ are Gabor (or wavelet) systems, m is NBB, and Mm,Φ,Ψ is unconditionally convergent, then P3 holds.

Formore information on Gabor andwavelet systemswe refer to [32,33]. We determine onemore class of multipliers, where
the answer of QUC is affirmative:

Proposition 4.2. Let
√
mn denote one (any one) of the two complex square roots of mn, n ∈ N. The multiplier Mm,Φ,Φ is

unconditionally convergent if and only if (
√
mnφn) is a Bessel sequences for H .

Proof. Let Mm,Φ,Φ be unconditionally convergent. For every f ∈ H , Lemma 3.1 implies that M(|mn|),Φ,Φ f converges
unconditionally, which implies that


∞

n=1 |mn| |⟨f , φn⟩|
2

= ⟨M(|mn|),Φ,Φ f , f ⟩ < ∞. Assume that (
√
mnφn) is not Bessel

for H . Then there exists f ∈ H so that (⟨f ,
√
mnφn⟩) ∉ ℓ2 which contradicts to


∞

n=1 |mn| |⟨f , φn⟩|
2 < ∞. This completes

one of the implications.
The converse implication is clear. �

Hence, for an unconditionally convergent multiplierMm,Φ,Φ , condition P3 holds.
The interplay concerning invertibility

By Stoeva and Balazs [4] we know that the invertibility of multipliers is connected to a frame condition (under some
assumptions). Furthermore, we consider the following example:

Example 4.3. ThemultiplierMm,Φ,Ψ = M
(n),(nen),( 1

n2
en)

is unconditionally convergent and equal to the Identity operator. The

symbolm = (n) ∉ ℓ∞ and the sequencesΦ and Ψ are not frames, butM
(n),(nen),( 1

n2
en)

∇
=M(1),(en),(en) = M(1),frame,frame.

On the other hand, observe the following:

Example 4.4. The multiplier Mm,Φ,Ψ = M
(n),( 1n en),(

1
n en)

is unconditionally convergent but not invertible. The sequence

(mn) = (n) cannot be written in the way (cndn) so that (cnφn) and (dnψn) are frames (even, lower frame sequences). Indeed,
assume that there exists a sequence (cn) so that (cnφn) and ( n

cn
ψn) satisfy the lower frame condition with bounds A1 and

A2, respectively. Then

A1∥f ∥2
≤

  cn
n

2 |⟨f , en⟩|2 and A2∥f ∥2
≤

  1cn
2 |⟨f , en⟩|2 ,∀f ∈ H . (2)

By (2) applied with f = ej, j ∈ N, it follows that A1j2 ≤| cj |2 ≤
1
A2
, j ∈ N, which is a contradiction.

Examples 4.3 and 4.4 lead naturally to the question [QInv1], which is equivalent to

[QInv∞] If Mm,Φ,Ψ is unconditionally convergent and invertible, do sequences (mn) ∈ ℓ∞, (cn) and (dn) exist so that

Mm,Φ,Ψ
∇
=M(mn),(cnφn),(dnψn) where (cnφn) and (dnψn) are frames for H?

If Mm,Φ,Ψ is invertible, but not unconditionally convergent (see M(1),Φ,Ψ in Example 2.2), then Mm,Φ,Ψ
∇
=

M(mn)∈ℓ∞,Bessel,Bessel is clearly not possible.
Ňote that if Conjecture 1 is true, then the answer of [QInv1] is always affirmative, as it is connected to [QUC]. This is because,

by [4], if the multiplier Mm,Φ,Ψ is invertible, m ∈ ℓ∞, and Φ and Ψ are Bessel for H , then Φ and Ψ must be frames for H .
Using this connection we can determine certain classes, as in the unconditional case, where we give an affirmative answer
of [QInv1]:

Corollary 4.5. Let Mm,Φ,Ψ be invertible. Define P1 as in Proposition 1.1 and
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P2 : ∃ (cn) and (dn) so that Mm,Φ,Ψ
∇
=M(1),(cnφn),(dnψn), where (cnφn) and (dnψn) are ∥ · ∥-semi-normalized and frames for H .P3 : ∃ (cn) and (dn) so that Mm,Φ,Ψ
∇
=M(1),(cnφn),(dnψn), where (cnφn) and (dnψn) are frames for H .

Then the following relations hold: P1 ⇔ P2 ⇒ P3 and P3 ; P1.

Proof. For the last implication P3 ; P1, consider the multiplier M(1),Φ,Φ , where Φ = ( 1
√
2
e1, e2, 1

√

22
e1, e3, 1

√

23
e1, e4,

1
√

24
e1, e5, . . .).
The rest follows from Proposition 1.1. �

Corollary 4.6. If Φ and Ψ are Gabor (or wavelet) systems, m is NBB, and Mm,Φ,Ψ is unconditionally convergent and invertible,
then P3 holds.

Corollary 4.7. Let Mm,Φ,Ψ be unconditionally convergent and invertible. If Ψ = Φ , then (
√
mnφn) is a frame for H (where

√
mn

denotes one (any one) of the two complex square roots of mn, n ∈ N) and thus, P3 holds.

Additionally we can show:

Proposition 4.8. Let Mm,Φ,Ψ be unconditionally convergent and invertible. If Φ is minimal, then P2 and P3 hold.

Proof. Let Φ be minimal. By the invertibility of Mm,Φ,Ψ , it follows that Φ is complete in H . Denote by (φb
n) the

unique biorthogonal sequence to Φ . Since every f ∈ H can be written in the way f = Mm,Φ,ΨM−1
m,Φ,Ψ f =

∞

n=1⟨f , (M
−1
m,Φ,Ψ )

∗(mnψn)⟩φn, it follows that ⟨f , φb
n⟩ = ⟨f , (M−1)∗(mnψn)⟩ for every f ∈ H and every n ∈ N. Then

φb
n = (M−1

m,Φ,Ψ )
∗(mnψn), ∀n ∈ N. Therefore,

1 = |⟨φn, φ
b
n⟩| ≤ ∥φn∥ · |mn| · ∥ψn∥ · ∥M−1

m,Φ,Ψ ∥, ∀n ∈ N.

Hence, (|mn| · ∥φn∥ · ∥ψn∥) is NBB. Now the unconditional convergence ofMm,Φ,Ψ and Corollary 4.5 complete the proof. �
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