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We interpret noncrossing partitions of type B and type D in terms
of noncrossing partitions of type A. As an application, we get type-
preserving bijections between noncrossing and nonnesting parti-
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in the recent work of Fink and Giraldo. We also define Catalan
tableaux of type B and type D , and find bijections between them
and noncrossing partitions of type B and type D respectively.
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1. Introduction

A partition of a set U is a collection of mutually disjoint nonempty subsets of U , called blocks,
whose union is equal to U . Let Π(n) denote the set of partitions of [n] = {1,2, . . . ,n}. For π ∈ Π(n),
an edge of π is a pair (i, j) of integers i and j with i < j such that i and j are in the same block
of π and this does not contain any integer between them.

A partition π ∈ Π(n) is called noncrossing (resp. nonnesting) if π does not have two edges (a,b)

and (c,d) satisfying a < c < b < d (resp. a < c < d < b). We denote by NC(n) (resp. NN(n)) the set of
noncrossing (resp. nonnesting) partitions of [n].

Recently, noncrossing and nonnesting partitions have received great attention and have been
generalized in many different ways both combinatorially and algebraically; we refer the reader to
excellent expositions [1,19] and the references therein. Bessis [4], Brady and Watt [6] defined the set
NC(W ) of noncrossing partitions for each finite reflection group W where NC(An−1) is the same as
NC(n). Postnikov defined the set NN(W ) of nonnesting partitions for each crystallographic reflection
group W where NN(An−1) is the same as NN(n); see [17, Remark 2].
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For each classical reflection group W , we have a combinatorial model for NC(W ): the set NCB(n) of
noncrossing partitions of type Bn defined by Reiner [17] and the set NCD(n) of noncrossing partitions
of type Dn defined by Athanasiadis and Reiner [3]. Both NCB(n) and NCD(n) are subsets of the set
ΠB(n) of partitions of type Bn introduced by Reiner [17]. We also have combinatorial models for
NN(W ) introduced by Athanasiadis [2], which we will denote by NNB(n), NNC (n) and NND(n). All of
these are again subsets of ΠB(n).

The main purpose of this paper is to give new interpretations for NCB(n), NCD(n), NNB(n), NNC (n)

and NND(n). To do this, we first interpret π ∈ ΠB(n) as a triple (σ , X, Y ), where σ ∈ Π(n), X is a
set of blocks of σ and Y is a maximal matching on X . As a consequence, we obtain the following
formula for the cardinality of ΠB(n):

#ΠB(n) =
n∑

k=1

S(n,k)tk+1,

where S(n,k) is the Stirling number of the second kind and tn is the number of involutions on [n].

Definition 1.1. For a partition σ ∈ Π(n), a block B of σ is called nonnested (resp. nonaligned) if there
is no edge (i, j) of σ with i < min(B) � max(B) < j (resp. max(B) < i). We denote by NNBK(σ )

(resp. NABK(σ )) the set of nonnested (resp. nonaligned) blocks of σ . We define

NCNN(n) = {
(σ , X): σ ∈ NC(n), X ⊂ NNBK(σ )

}
,

NCNA(n) = {
(σ , X): σ ∈ NC(n), X ⊂ NABK(σ )

}
,

NNNA(n) = {
(σ , X): σ ∈ NN(n), X ⊂ NABK(σ )

}
.

We denote by NCNN
{0,±1}(n) (resp. NCNA

{0,±1}(n) and NNNA
{0,±1}(n)) the set of triples (σ , X, ε), where (σ , X)

is in NCNN(n) (resp. NCNA(n) and NNNA(n)) and ε ∈ {−1,0,1} with the additional condition that if
X = ∅ then ε = 0.

By using our interpretation for ΠB(n), we obtain a bijection between NCB(n) (resp. NNB(n),
NNC (n)) and NCNN(n) (resp. NNNA(n), NNNA(n)). Similarly we get a bijection between NCD(n)

(resp. NND(n)) and NCNN
{0,±1}(n − 1) (resp. NNNA

{0,±1}(n − 1)). Since NCNN(n) and NCNN
{0,±1}(n − 1) con-

cern only type A noncrossing partitions, our interpretations have the advantage of understanding
NCB(n) and NCD(n) as easily as NC(n).

To make a connection between noncrossing and nonnesting partitions in our interpretations we
find an involution on NC(n) which interchanges the nonnested blocks and the nonaligned blocks.
Thus, as a byproduct, we get that the nonnested blocks and the nonaligned blocks have a joint sym-
metric distribution on NC(n), in other words,∑

π∈NC(n)

xnn(π) yna(π) =
∑

π∈NC(n)

xna(π) ynn(π),

where nn(π) (resp. na(π)) denotes the number of nonnested (resp. nonaligned) blocks of π .
Combining our bijections together with the bijection between NC(n) and NN(n) due to Athanasiadis

[2], we obtain type-preserving bijections, i.e. bijections preserving block sizes, between noncrossing
and nonnesting partitions of classical types. Our type-preserving bijections are different from those of
Fink and Giraldo [11].

We provide another interpretation for NCB(n) and NCD(n): a bijection between NCB(n) and the set
B(n) of pairs (σ , x) where σ ∈ NC(n) and x is either ∅, an edge of σ or a block of σ , and a bijection
between NCD(n) and the set D(n) of pairs (σ , x) where σ ∈ NC(n − 1) and x is either ∅, an edge
of σ , a block of σ or an integer in [±(n − 1)]. In fact, B(n) and D(n) are essentially the same as
NC(n) × [n + 1] and NC(n − 1) × [3n − 2] respectively. Using these interpretations, we give another
proof of the formula for the number of noncrossing partitions of type Bn and type Dn with given
block sizes.
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It is well known that NC(n) is in bijection with the set of Dyck paths, i.e. lattice paths from
(0,0) to (n,n) which do not go below the line y = x. Using NCNA(n) and NCNA

{0,±1}(n − 1) we find
a bijection between NCB(n) and the set LP(n) of lattice paths from (0,0) to (n,n) and a bijection
between NCD(n) and the set LP(n) of lattice paths in LP(n) which do not touch (n − 1,n − 1) and
(n,n − 1) simultaneously.

Permutation tableaux were first introduced by Postnikov [16] in the study of the totally non-
negative Grassmannian. Catalan tableaux are special permutation tableaux. Permutation tableaux and
Catalan tableaux are respectively in bijection with permutations and noncrossing partitions; see
[7,9,15,20]. Lam and Williams [14] defined permutation tableaux of type Bn . In this paper we de-
fine Catalan tableaux of type Bn and Dn which are special permutation tableaux of type Bn . Then we
find bijections between them and NCB(n) and NCD(n).

The rest of this paper is organized as follows. In Section 2 we recall the definitions of noncross-
ing and nonnesting partitions of finite reflection groups and the combinatorial models for them for
classical reflection groups. In Section 3 we define a map from ΠB(n) to the set of certain triples. In
Section 4 we give new interpretations for NCB(n), NCD(n), NNB(n), NNC (n) and NND(n). In Section 5
we find type-preserving bijections between noncrossing and nonnested partitions of classical types.
In Section 6 we find a bijection between NCB(n) (resp. NCD(n)) and B(n) (resp. D(n)). In Section 7
we find a bijection between NCB(n) (resp. NCD(n)) and LP(n) (resp. LP(n)). In Section 8 we define the
sets CTB(n) and CTD(n) of Catalan tableaux of type Bn and type Dn , and find bijections between them
and NCB(n) and NCD(n) respectively.

2. Preliminaries

In this section we recall the definitions noncrossing and nonnesting partitions of finite reflection
groups and the combinatorial models NCB(n), NCD(n), NNB(n), NNC (n) and NND(n).

2.1. General definitions for noncrossing and nonnesting partitions

For a finite Coxeter system (W , S) with the set T = {wsw−1: s ∈ S, w ∈ W } of reflections, the
absolute length �T (w) of an element w ∈ W is defined to be the smallest integer i such that w can
be written as a product of i reflections. The absolute order on W is defined as follows: u �T w if
and only if �T (w) = �T (u) + �T (u−1 w). Then the noncrossing partition poset NC(W ) is defined to be
the interval {w ∈ W : 1 �T w �T c}, where c is a Coxeter element. It turns out that NC(W ) does not
depend on the particular choice of c up to isomorphism.

Nonnesting partitions are defined for crystallographic reflection groups. Suppose W is a crystal-
lographic reflection group and Φ+ is a positive root system of W . The root poset (Φ+,�) has the
partial order α � β if and only if β − α can be written as a linear combination of the positive roots
with nonnegative integer coefficients. A nonnesting partition of W is an antichain in the root poset
(Φ+,�). We denote by NN(W ) the set of nonnesting partitions of W .

For classical types, we will use the following root posets:

Φ+(An−1) = {ei − e j : 1 � i < j � n},
Φ+(Bn) = {ei ± e j: 1 � i < j � n} ∪ {ei : 1 � i � n},
Φ+(Cn) = {ei ± e j : 1 � i < j � n} ∪ {2ei : 1 � i � n},
Φ+(Dn) = {ei ± e j: 1 � i < j � n}.

2.2. Combinatorial models

We use the definitions in [11]. For type Dn , our definitions are stated in a slightly different way
from those in [11], but one can easily check that they are equivalent.

For a partition π of a finite set U and a total order a1 ≺ a2 ≺ · · · ≺ an of U , the standard repre-
sentation of π with respect to the order a1 ≺ a2 ≺ · · · ≺ an is the drawing obtained as follows. Arrange
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Fig. 1. The standard representation of {{1,3,8}, {2}, {4,5,6}, {7}, {9,10}} with respect to the order 4 ≺ 3 ≺ 8 ≺ 1 ≺ 5 ≺ 2 ≺ 6 ≺
7 ≺ 10 ≺ 9.

Fig. 2. A noncrossing partition of type A9.

Fig. 3. A nonnesting partition of type A9.

a1,a2, . . . ,an in a horizontal line. Draw an arc between ai and a j for each pair (i, j) with i < j such
that ai,a j ∈ B for a block B of π which does not contain at with i < t < j. See Fig. 1.

We say that π is noncrossing (resp. nonnesting) with respect to the order a1 ≺ a2 ≺ · · · ≺ an if π sat-
isfies the following condition: if ai,ak ∈ B and a j,a� ∈ B ′ (resp. ai,a� ∈ B and a j,ak ∈ B ′) for some
blocks B and B ′ of π and for some integers i < j < k < �, then we have B = B ′ . In other words, π is
noncrossing (resp. nonnesting) with respect to the order a1 ≺ a2 ≺ · · · ≺ an if and only if the standard
representation of π with respect to this order does not have two arcs which cross each other (resp.
two arcs one of which nests the other). For example, the partition in Fig. 1 is noncrossing but not
nonnesting with respect to the order written there.

A noncrossing partition (resp. nonnesting partition) is a partition of [n] which is noncrossing
(resp. nonnesting) with respect to the order 1 ≺ 2 ≺ · · · ≺ n. See Figs. 2 and 3 for an example. We
denote by NC(n) (resp. NN(n)) the set of noncrossing (resp. nonnesting) partitions of type An−1.

There is a natural bijection between NC(An−1) and NC(n). If we take c = (1,2, . . . ,n) for the
Coxeter element, each element in NC(An−1) can be written as a product of disjoint cycles of
form (a1,a2, . . . ,ak) where a1 < a2 < · · · < ak . Then the bijection is simply changing each cycle
(a1,a2, . . . ,ak) to the block {a1,a2, . . . ,ak}. One can check that we alway get a noncrossing parti-
tion. For example, (1,4,10)(2,3)(5,6,7,9)(8) ∈ NC(A9) corresponds to the noncrossing partition in
Fig. 2. In fact, this bijection is a poset isomorphism if we order NC(n) by refinement. Thus we have
NC(An−1) ∼= NC(n).

Similarly, there is a natural bijection between NN(An−1) and NN(n). For an antichain π of
Φ+(An−1), we construct the corresponding nonnesting partition by making the edge (i, j) for each
element ei − e j ∈ π . For example, the nonnesting partition in Fig. 3 corresponds to

{e1 − e3, e2 − e4, e4 − e6, e6 − e9, e5 − e7, e7 − e10} ∈ NN(A9).

Thus we have NN(n) ∼= NN(An−1).
In order to define combinatorial models for noncrossing and nonnesting partitions of other classical

types, we need type B partitions introduced by Reiner [17]. There is a natural way to identify π ∈
Π(n) with an intersection of a collection of the following reflecting hyperplanes of type An−1:

{xi − x j = 0: 1 � i < j � n}.
For example, {{1,3,4}, {2,6}, {5}} corresponds to{

(x1, . . . , x6) ∈ R6: x1 = x3 = x4, x2 = x6
}
.

With this observation Reiner [17] defined a partition of type Bn to be an intersection of a collection
of the following reflecting hyperplanes of type Bn:

{xi = 0: 1 � i � n} ∪ {xi ± x j = 0: 1 � i < j � n}.
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Note that we can also consider such an intersection as a partition of

[±n] = {1,2, . . . ,n,−1,−2, . . . ,−n}.
For example, the intersection{

(x1, . . . , x8) ∈ R8: x1 = −x3 = x6, x5 = x8, x2 = x4 = 0
}

corresponds to{±{1,−3,6}, {2,4,−2,−4},±{5,8},±{7}},
which means{{1,−3,6}, {−1,3,−6}, {2,4,−2,−4}, {5,8}, {−5,−8}, {7}, {−7}}.
Equivalently, we define a partition of type Bn as follows.

A partition of type Bn is a partition π of [±n] such that if B is a block of π then −B = {−x: x ∈ B}
is also a block of π , and there is at most one block, called a zero block, which satisfies B = −B . We
denote by ΠB(n) the set of partitions of type Bn .

Now we are ready to define combinatorial models for noncrossing and nonnesting partitions of
other classical types.

A noncrossing partition of type Bn is a partition π ∈ ΠB(n) which is noncrossing with respect to
the order 1 ≺ 2 ≺ · · · ≺ n ≺ −1 ≺ −2 ≺ · · · ≺ −n. See Fig. 4 for an example. A noncrossing partition of
type Dn is a partition π ∈ ΠB(n) such that

1. if π has a zero block B , then {n,−n} � B ,
2. π ′ ∈ NCB(n − 1), where π ′ is the partition obtained from π by taking the union of the blocks

containing n or −n and removing n and −n.

See Fig. 5 for an example. We denote by NCB(n) (resp. NCD(n)) the set of noncrossing partitions
of type Bn (resp. type Dn). Like type A, we have NCB(n) ∼= NC(Bn) and NCD(n) ∼= NC(Dn). We note
that NCB(n) and NCD(n) can also be defined using circular representation, see [3,12,17]. However, the
standard representation is more suitable for our purpose.

A nonnesting partition of type Bn is a partition π ∈ ΠB(n) such that π0 is nonnesting with respect
to the order 1 ≺ · · · ≺ n ≺ 0 ≺ −n ≺ · · · ≺ −1, where π0 is the partition of [±n] ∪ {0} obtained from π
by adding 0 to the zero block if π has a zero block, and by adding the singleton {0} otherwise. See
Fig. 6 for an example. A nonnesting partition of type Cn is a partition π ∈ ΠB(n) which is nonnesting
with respect to the order 1 ≺ · · · ≺ n ≺ −n ≺ · · · ≺ −1. See Fig. 7 for an example. A nonnesting partition
of type Dn is a partition π ∈ ΠB(n) such that

1. if π has a zero block B , then {n,−n} � B ,
2. π ′ ∈ NNB(n − 1), where π ′ is the partition obtained from π by taking the union of the blocks

containing n or −n and removing n and −n.

See Fig. 8 for an example. We denote by NNB(n) (resp. NNC (n) and NND(n)) the set of nonnesting
partitions of type Bn (resp. type Cn and type Dn). Then we have NNB(n) ∼= NN(Bn), NNC (n) ∼= NN(Cn)

and NND(n) ∼= NN(Dn).

3. Partitions of classical types

For π ∈ ΠB(n) and a block B of π , let B+ (resp. B−) denote the set of positive (resp. negative)
integers in B . Note that (−B)+ = −(B−). We define α(π),β(π) and γ (π) as follows:

• α(π) is the partition in Π(n) such that A ∈ α(π) if and only if A = B+ for some B ∈ π ,
• β(π) is the set of blocks A ∈ α(π) such that π has a block containing A and at least one negative

integer,
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• γ (π) is the matching on β(π) such that {A1, A2} ∈ γ (π) if and only if A1 	= A2 and A1 ∪ (−A2)

is a block of π .

Example 3.1. If π = {±{1,−3,6}, {2,4,−2,−4},±{5,8},±{7}}, we have α(π) = {{1,6}, {2,4}, {3},
{5,8}, {7}}, β(π) = {{1,6}, {2,4}, {3}} and γ (π) is the matching on β(π) with the only one matching
pair {{1,6}, {3}}.

Assume that a block A ∈ β(π) is not matched in γ (π). If B is the block of π with A = B+ , we have
B+ ∩ (−(B−)) 	= ∅ because otherwise A would be matched with another block A′ = (−B)+ = −(B−).
Thus we have an integer i both in B+ and −(B−), which implies i,−i ∈ B . Therefore B is a zero block
of π , which is unique. This argument shows that γ (π) is a maximal matching on β(π). In other
words, if |β(π)| is even, then γ (π) is a complete matching on β(π); and if |β(π)| is odd, then there
is a unique unmatched block A ∈ β(π) in γ (π), and in this case, π has the zero block A ∪ (−A).

It is easy to see that π can be reconstructed from (α(π),β(π),γ (π)). Thus we get the following
proposition.

Proposition 3.1. The map π �→ (α(π),β(π),γ (π)) is a bijection between ΠB(n) and the set of triples
(σ , X, Y ), where σ ∈ Π(n), X is a set of blocks of σ and Y is a maximal matching on X.

Now we define α0(π) = α(π)∪ {{0}}, which is a partition of [n] ∪ {0}, and γ0(π) to be the match-
ing on the blocks of α0(π) defined as follows. If γ (π) is a complete matching, then the matching
pairs of γ (π) and γ0(π) are the same. If there is an unmatched block A in γ (π), which is necessar-
ily unique, then the matching pairs of γ0(π) are those in γ (π) and {{0}, A}. Note that γ0(π) is not
necessarily a maximal matching.

Example 3.2. If π is the partition in Example 3.1, we have

α0(π) = {{0}, {1,6}, {2,4}, {3}, {5,8}, {7}},
and γ0(π) is the matching on α0(π) with the two matching pairs {{1,6}, {3}} and {{0}, {2,4}}.

Since γ0(π) determines β(π) and γ (π), we get the following.

Proposition 3.2. The map π �→ (α(π),γ0(π)) is a bijection between ΠB(n) and the set of pairs (σ , X) where
σ ∈ Π(n) and X is a matching on the blocks of the partition σ ∪ {{0}}.

If α(π) has k blocks, then α0(π) has k + 1 blocks. Let A1, A2, . . . , Ak+1 be the blocks of α0(π)

with max(A1) < max(A2) < · · · < max(Ak+1). By identifying the block Ai with the integer i, we can
consider γ0(π) as a matching on [k+1] or an involution on [k+1]. Thus we get the following formula
for the cardinality of ΠB(n).

Corollary 3.3. The cardinality of ΠB(n) is equal to

n∑
k=1

S(n,k)tk+1,

where S(n,k) is the Stirling number of the second kind and tn is the number of involutions on [n].

Note that the formula in Corollary 3.3 is a type B analog of #Π(n) = ∑n
k=1 S(n,k).

4. Interpretations for noncrossing and nonnesting partitions

The following terminologies will be used for the rest of this paper.
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Fig. 4. The standard representation of an element in NCB (10) with respect to the order 1 ≺ 2 ≺ · · · ≺ 10 ≺ −1 ≺ −2 ≺ · · · ≺ −10.

An integer partition λ = (λ1, λ2, . . . , λ�) is a weakly decreasing sequence of positive integers. Each
λi is called part of λ and � is called length of λ. We define |λ| to be the sum λ1 + λ2 + · · · + λ� of all
parts of λ. We will also consider λ as the multiset {1m1 ,2m2 , . . .}, where mi is the number of parts
equal to i in λ.

For two multisets A and B , let A � B denote the multiset union of A and B .
For a subset S of [n] and a partition π of S , the type type(π) of π is the integer partition λ =

{1m1 ,2m2 , . . .} such that mi is equal to the number of blocks of size i in π . The type type(π) of a
partition π ∈ ΠB(n) is the integer partition λ = {1m1 ,2m2 , . . .} such that mi is equal to the number of
unordered pairs (B,−B) of nonzero blocks of size i in π .

Recall the sets NCNN(n), NCNA(n), NNNA(n), NCNN
{0,±1}(n), NCNA

{0,±1}(n) and NNNA
{0,±1}(n) in Defini-

tion 1.1.

Notation. From now on, if we write {A1, A2, . . . , Ak}< , it is automatically assumed that Ai ’s are sorted
in increasing order by their largest elements, that is, max(A1) < max(A2) < · · · < max(Ak).

For a set X = {A1, A2, . . . , A2k}< of even number of blocks, we define pairing(X) to be the follow-
ing multiset:

pairing(X) = {|A1 ∪ A2k|, |A2 ∪ A2k−1|, . . . , |Ak ∪ Ak+1|
}
.

4.1. Noncrossing partitions

Let π ∈ NCB(n) and consider the map π �→ (α(π),β(π),γ (π)) in the previous section. Since π
is noncrossing with respect to the order 1 ≺ 2 ≺ · · · ≺ n ≺ −1 ≺ −2 ≺ · · · ≺ −n, one can easily see
that α(π) ∈ NC(n), all the blocks in β(π) are nonnested, and the matching γ (π) is uniquely deter-
mined by β(π). For instance, if β(π) = {A1, A2, . . . , Ak}< , then γ (π) is the matching consisting of
{Ai, Ak+1−i} for all 1 � i � k/2�.

For π ∈ NCB(n), we define φNC
B (π) = (α(π),β(π)). In other words, φNC

B (π) is the pair (σ , X)

where σ is the partition obtained from π by removing all the negative integers and X is the set of
blocks of σ which are properly contained in some blocks of π . Note that we have φNC

B (π) ∈ NCNN(n).

Example 4.1. If π ∈ NCB(10) is the partition in Fig. 4, we have φNC
B (π) = (σ , X), where

σ = {{1,4,5}, {2,3}, {6}, {7,9}, {8}, {10}}
and X = {{1,4,5}, {7,9}, {10}}.

From the construction, one can easily prove the following proposition.

Proposition 4.1. The map φNC
B : NCB(n) → NCNN(n) is a bijection. Moreover, if φNC

B (π) = (σ , X) and X =
{A1, A2, . . . , Ak}< , then

type(π) = type(σ \ X) � T ,

where

T =
{

pairing(X), if k is even,

pairing
(

X \ {A(k+1)/2}
)
, if k is odd.
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Fig. 5. The standard representation of an element in NCD (10) with respect to the order 1 ≺ 2 ≺ · · · ≺ 10 ≺ −10 ≺ −1 ≺ −2 ≺
· · · ≺ −9. Note that the locations of 10 and −10 are not important.

Now we consider π ∈ NCD(n). Let π ′ be the partition obtained from π by taking the union of the
blocks containing n or −n and removing n and −n. Note that π is uniquely determined by π ′ and the
block of π containing n. We define φNC

D (π) = (σ , X, ε), where σ , X and ε are obtained as follows.

1. If π has the blocks ±{n} or π has a zero block, then (σ , X) = φNC
B (π ′) and ε = 0.

2. Otherwise, the block of π containing n can be written as

{a1,a2, . . . ,ar,−b1,−b2, . . . ,−bs,n}
for some integers r, s, a1, . . . ,ar , b1, . . . ,bs with r, s � 0, r + s � 1, 1 � a1 < · · · < ar < n and
1 � b1 < · · · < bs < n. Let ε = 1 if s = 0, or r, s > 0 and ar < bs; and ε = −1 otherwise. Let σ be
the partition of [n − 1] such that A ∈ σ if and only if A = B+ \ {n} for some B ∈ π with B+ 	= ∅.
Let X be the set of blocks of σ which are properly contained in some blocks of π .

Note that φNC
D (π) ∈ NCNN

{0,±1}(n − 1).

Example 4.2. Let π = {±{1,2,−8},±{−3,−5,6,7,10},±{4},±{9}} as shown in Fig. 5. Then φNC
D (π) =

(σ , X, ε) where σ = {{1,2}, {3,5}, {4}, {6,7}, {8}, {9}}, X = {{1,2}, {3,5}, {6,7}, {8}} and ε = −1.

Proposition 4.2. The map φNC
D : NCD(n) → NCNN

{0,±1}(n − 1) is a bijection. Moreover, if φNC
D (π) = (σ , X, ε)

and X = {A1, A2, . . . , Ak}< , then type(π) = type(σ \ X) � T , where

T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pairing(X) � {1}, if ε = 0 and k = 2t,

pairing
(

X \ {At+1}
)
, if ε = 0 and k = 2t + 1,

pairing
(

X \ {At, At+1}
)
�

{|At | + |At+1| + 1
}
, if ε 	= 0 and k = 2t,

pairing
(

X \ {At+1}
)
�

{|At+1| + 1
}
, if ε 	= 0 and k = 2t + 1.

Proof. We will find the inverse map of φNC
D . Let (σ , X, ε) ∈ NCNA

{0,±1}(n − 1) and π ′ = (φNC
B )−1(σ , X) ∈

NCB(n − 1).
If ε = 0, then π ∈ NCD(n) is the partition obtained from π ′ by adding n and −n to the zero block

if π ′ has a zero block; and by adding the two singletons ±{n} otherwise.
Now assume ε 	= 0. If k = 2t , then π ′ has the blocks ±(At ∪ (−At+1)). Then π is the partition

obtained from π ′ by replacing ±(At ∪ (−At+1)) with ±(ε(At ∪ (−At+1)) ∪ {n}). Here for a set B , the
notation εB means the set {ε · x: x ∈ B}. If k = 2t + 1, then π ′ has the blocks ±At+1. Then π is the
partition obtained from π ′ by replacing ±At+1 with ±(ε(At+1) ∪ {n}).

One can easily check that this is the inverse map of φNC
D . The ‘moreover’ statement is obvious from

the construction of the inverse map. �
4.2. Nonnesting partitions

As we did for noncrossing partitions, we can find interpretations for nonnesting partitions of clas-
sical types.

Consider the map π �→ (α(π),β(π),γ (π)) for π ∈ NNB(n). It is easy to see that α(π) ∈ NN(n),
all the blocks in β(π) are nonaligned and γ (π) is determined from β(π) as follows. Let β(π) =
{A1, A2, . . . , A2k}< if β(π) has even number of blocks; and β(π) = {A0, A1, A2, . . . , A2k}< otherwise.
Then γ (π) is the matching consisting of {Ai, A2k+1−i} for i ∈ [k].
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Fig. 6. The standard representation of π0 for a π ∈ NNB (10) with respect to the order 1 ≺ 2 ≺ · · · ≺ 10 ≺ 0 ≺ −10 ≺ −9 ≺
· · · ≺ −1.

Fig. 7. The standard representation of an element in NNC (10) with respect to the order 1 ≺ 2 ≺ · · · ≺ 10 ≺ −10 ≺ −9 ≺ · · · ≺ −1.

For π ∈ NNB(n), we define φNN
B (π) = (α(π),β(π)). In other words, φNN

B (π) is the pair (σ , X)

where σ is the partition obtained from π by removing all the negative integers and X is the set of
blocks of σ which are properly contained in some blocks of π . Note that we have φNN

B (π) ∈ NNNA(n).

Example 4.3. Let π = {{1,3,7,−7,−3,−1},±{2,4},±{5,9,−10,−6},±{8}} ∈ NNB(10) as shown in
Fig. 6. Then φNN

B (π) = (σ , X) where σ = {{1,3,7}, {2,4}, {5,9}, {6,10}, {8}} and X = {{1,3,7},
{5,9}, {6,10}}.

From the construction, one can easily prove the following proposition.

Proposition 4.3. The map φNN
B : NNB(n) → NNNA(n) is a bijection. Moreover, if φNN

B (π) = (σ , X) and X =
{A1, A2, . . . , Ak}< , then

type(π) = type(σ \ X) � T ,

where

T =
{

pairing(X), if k is even,

pairing
(

X \ {A1}
)
, if k is odd.

Similarly, we define φNN
C (π) = (α(π),β(π)) for π ∈ NNC (n). Then we have φNN

C (π) ∈ NNNA(n).
Note that if π ∈ NNC (n) and β(π) = {A1, A2, . . . , Ak}< , then γ (π) is the matching consisting of
{Ai, Ak+1−i} for all i = 1,2, . . . , k/2�.

Example 4.4. Let π = {±{1,3,7,−10,−6},±{2,4}, {5,9,−9,−5},±{8}} ∈ NNC (10) as shown in Fig. 7.
Then φNN

C (π) = (σ , X) where σ = {{1,3,7}, {2,4}, {5,9}, {6,10}, {8}} and X = {{1,3,7}, {5,9},
{6,10}}.

Then we get the following proposition in the same way.

Proposition 4.4. The map φNN
C : NNC (n) → NNNA(n) is a bijection. Moreover, if φNN

C (π) = (σ , X) and X =
{A1, A2, . . . , Ak}< , then

type(π) = type(σ \ X) � T ,

where

T =
{

pairing(X), if k is even,

pairing
(

X \ {A(k+1)/2}
)
, if k is odd.

Now we consider nonnesting partitions of type Dn . Let π ∈ NND(n) and let π ′ be the partition
obtained from π by unioning the blocks containing n or −n and removing n and −n. Then φNN

D (π)
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Fig. 8. The standard representation of an element in NND (10) with respect to the order 1 ≺ 2 ≺ · · · ≺ 10 ≺ −10 ≺ −9 ≺ · · · ≺ −1.
Note that the locations of 10 and −10 are not important.

is defined in the same way as φNC
D (π). That is, we define φNN

D (π) = (σ , X, ε), where σ and X are
constructed as follows.

1. If π has the blocks ±{n} or π has a zero block, then (σ , X) = φNN
B (π ′) and ε = 0.

2. Otherwise, the block of π containing n can be written as

{a1,a2, . . . ,ar,−b1,−b2, . . . ,−bs,n}
for some integers r, s, a1, . . . ,ar , b1, . . . ,bs with r, s � 0, r + s � 1, 1 � a1 < · · · < ar < n and
1 � b1 < · · · < bs < n. Let ε = 1 if s = 0 or r, s > 0 and ar < bs; and ε = −1 otherwise. Let σ be
the partition of [n − 1] such that A ∈ σ if and only if A = B+ \ {n} for some B ∈ π with B+ 	= ∅.
Let X be the set of blocks of σ which are properly contained in some blocks of π .

Note that φNN
D (π) ∈ NNNA

{0,±1}(n − 1).

Example 4.5. Let π = {±{1,4,7,−3,−6,10},±{2},±{5,9,−8}} ∈ NND(10) as shown in Fig. 8. Then
φNN

D (π) = (σ , X, ε) where σ = {{1,4,7}, {2}, {3,6}, {5,9}, {8}}, X = {{3,6}, {1,4,7}, {8}, {5,9}} and
ε = −1.

Proposition 4.5. The map φNN
D : NND(n) → NNNA

{0,±1}(n − 1) is a bijection. Moreover, if φNN
D (π) = (σ , X, ε)

and X = {A1, A2, . . . , Ak}< , then type(π) = type(σ \ X) � T , where

T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pairing(X) � {1}, if ε = 0 and k is even,

pairing
(

X \ {A1}
)
, if ε = 0 and k is odd,

pairing
(

X \ {A1, A2}
)
�

{|A1| + |A2| + 1
}
, if ε 	= 0 and k is even,

pairing
(

X \ {A1}
)
�

{|A1| + 1
}
, if ε 	= 0 and k is odd.

Proof. The proof is similar to that of Proposition 4.2, hence we omit it. �
5. Type-preserving bijections

In the previous section we have interpreted noncrossing and nonnesting partitions of types Bn , Cn

and Dn in terms of noncrossing and nonnesting partitions of type An−1 or An−2. In this section we
find type-preserving bijections between noncrossing and nonnesting partitions of types Bn , Cn and
Dn using the following theorem as one of the building blocks.

Theorem 5.1. (See [2, Theorem 3.1].) Suppose {A1, A2, . . . , Ak}< is the set of blocks of σ ∈ NC(n). Then there is
a unique element σ ′ ∈ NN(n) such that {A′

1, A′
2, . . . , A′

k}< is the set of blocks of σ ′ with max(Ai) = max(A′
i)

and |Ai | = |A′
i| for all i ∈ [k].

The above theorem follows from the observation that any partition in NC(n) or NN(n) is completely
determined by the largest elements and the sizes of the blocks. For example, the largest elements
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(circled vertices) and the sizes (integers above vertices) of the blocks of the partition in Fig. 2 are
represented below.

One can check that there are a unique noncrossing partition and a unique nonnesting partition
whose largest elements and sizes of the blocks can represented as above. For instance, if it is a
noncrossing partition, then 7 must be connected to 9 or 10, where it cannot be connected to 10
because the arc (7,10) and the arc (i,9) for some i < 7 will create a crossing. Thus 7 is connected
to 9. In this way we can uniquely determine all arcs from the right. It is similar for a nonnesting
partition. The unique nonnesting partition for the above diagram is the partition in Fig. 3.

For σ ∈ NC(n), let ρ(σ ) be the unique element σ ′ ∈ NN(n) in Theorem 5.1. For instance, if σ is
the partition in Fig. 2, then ρ(σ ) is the one in Fig. 3. It is clear from Theorem 5.1 that the map
ρ : NC(n) → NN(n) is a type-preserving bijection, which also preserves the largest elements of the
blocks. We can naturally extend the map ρ to a map from NCNA(n) to NNNA(n). In order to do this,
we need the following lemma.

Lemma 5.2. Suppose {A1, . . . , Ak}< and {A′
1, A′

2, . . . , A′
k}< are the sets of blocks of σ ∈ NC(n) and ρ(σ ) ∈

NN(n) respectively. Then Ai is a nonaligned block of σ if and only if A′
i is a nonaligned block of ρ(σ ).

Proof. By definition, Ai is aligned if and only if there is an integer t such that max(Ai) < t and
t 	= max(A j) for all j ∈ [k]. Thus Ak−i is nonaligned if and only if max(Ak−i) = n − i. Since max(Ai) =
max(A′

i) for all i ∈ [k], we are done. �
Now we define a map ρ : NCNA(n) → NNNA(n). For (σ , X) ∈ NCNA(n), suppose that {A1, A2,

. . . , Ak}< is the set of blocks of σ and X = {Ai1 , Ai2 , . . . , Air }< . Suppose also that {A′
1, A′

2, . . . , A′
k}<

is the set of blocks of σ ′ = ρ(σ ) and X ′ = {A′
i1
, A′

i2
, . . . , A′

ir
}< . Then we define ρ(σ , X) =

(σ ′, X ′). In other words, if we identify a block A with its largest element a = max(A), then
ρ(σ , (a1,a1, . . . ,ak)) = (ρ(σ ), (a1,a1, . . . ,ak)). For example, if σ is the partition in Fig. 2 and X =
{{8}, {1,4,10}} then ρ(σ , X) = (σ ′, X ′), where σ ′ is the partition in Fig. 3 and X ′ = {{8}, {5,7,10}}.
Note that the largest elements of the blocks in X are exactly those in X ′ .

By Lemma 5.2, we have ρ(σ , X) ∈ NNNA(n). Thus we get the following proposition.

Proposition 5.3. The map ρ : NCNA(n) → NNNA(n) is a bijection such that if ρ(σ , X) = (σ ′, X ′) and X =
{A1, A2, . . . , Ak}< , then type(σ ) = type(σ ′) and X ′ = {A′

1, A′
2, . . . , A′

k}< with max(Ai) = max(A′
i) and

|Ai | = |A′
i | for all i ∈ [k].

5.1. Interchanging nonnested blocks and nonaligned blocks

In this subsection we will construct an involution on NC(n) which interchanges nonnested blocks
and nonaligned blocks. In order to do this we need several definitions.

For π ∈ NC(n) and S = {a1,a2, . . . ,ak} with 1 � a1 < a2 < · · · < ak � n, we define π ∩ S to be the
partition of [k] obtained from π by removing all the integers not in S and replacing ai with i for each
i ∈ [k].

For two partitions σ ∈ NC(n) and τ ∈ NC(m), we define σ � τ to be the partition in NC(n + m)

obtained from σ by adding all the blocks of τ whose elements are increased by n. Ignoring the
labels, the standard representation of σ � τ looks as follows:

σ � τ =
If π ∈ NC(n) cannot be expressed as π = σ � τ for some σ ∈ NC(r) and τ ∈ NC(s) with r, s � 1,

then we say that π is connected. Since π ∈ NC(n) is a noncrossing partition, π is connected if and
only if 1 and n are in the same block.
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For a connected partition σ ∈ NC(n) and any partition τ ∈ NC(m), we define σ ∗ τ to be the
partition in NC(n + m + 1) obtained from σ � τ by adding n + m + 1 to the block containing n. Thus
the standard representation of σ � τ looks as follows (here a half-circle means a connected partition
and a round-rectangle means any partition):

σ ∗ τ =
For example,

We also consider σ ∗τ when one (or both) of σ and τ is the empty partition ∅: ∅∗∅ is the unique
partition {{1}} in Π(1), ∅ ∗ τ is τ ∪ {{m + 1}} and σ ∗ ∅ is the partition obtained from σ by adding
n + 1 to the block containing n.

For π ∈ NC(n), we define two maps decomp1(π) and decomp2(π) as follows. If {n} is not a block
of π , then we can uniquely decompose π as π = σ � (τ ∗ υ), see the diagram below.

π =
In this case, we define decomp1(π) = decomp2(π) = (σ , τ ,υ). If {n} is a block of π , then we define
decomp1(π) = (π ∩ [n − 1],∅,∅) and decomp2(π) = (∅,∅,π ∩ [n − 1]). Note that if decomp1(π) =
(σ , τ ,υ) or decomp2(π) = (σ , τ ,υ), we always have π = σ � (τ ∗ υ). Moreover, if decomp1(π) =
(σ , τ ,υ) and τ = ∅, then υ = ∅, whereas, if decomp2(π) = (σ , τ ,υ) and τ = ∅, then σ = ∅.

Now we are ready to define a map ξ : NC(n) → NC(n). First, we assume that {n} is not a block of
π ∈ NC(n). Suppose also that π has r nonnested blocks and s nonaligned blocks.

For i ∈ [r], let decomp1(πi) = (πi+1, σi, σ
′
i ), where π1 = π . Since π has r nonnested blocks, we

have πi 	= ∅ for i ∈ [r] and πr+1 = ∅. Thus

π = π1 = π2 � (
σ1 ∗ σ ′

1

)
= π3 � (

σ2 ∗ σ ′
2

) � (
σ1 ∗ σ ′

1

)
...

= (
σr ∗ σ ′

r

) � (
σr−1 ∗ σ ′

r−1

) � · · · � (
σ1 ∗ σ ′

1

)
.

Pictorially, the above decomposition of π can be represented as follows.

π =
Note that σ1 	= ∅, and for 2 � i � r, if σi = ∅, the σ ′

i = ∅. If {N1, N2, . . . , Nr}< is the set of all
nonnested blocks of π , then |Ni| − 1 is equal to the size of the block of σr+1−i containing the largest
integer if σr+1−i 	= ∅; and 0 if σr+1−i = ∅.

Similarly, for i ∈ [s], let decomp2(υi) = (τ ′
i , τi,υi+1), where υ1 = π . Since π has s nonaligned

blocks, we have υi 	= ∅ for i ∈ [s] and υs+1 = ∅. Thus

π = υ1 = τ ′
1 � (τ1 ∗ υ2)

= τ ′
1 � (

τ1 ∗ (
τ ′

2 � (τ2 ∗ υ3)
))

...

= τ ′
1 � (

τ1 ∗ (
τ ′

2 � (
τ2 ∗ (

τ ′
3 � · · · (τ ′

s � (τs ∗ ∅)
) · · ·)))).
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Fig. 9. Illustration of the map ξ . We have σ1 = τ1.

Fig. 10. An example of the map ξ . In the upper diagram, σ1 = τ1 is colored green, σi ’s are colored blue, τi ’s are colored red
for i � 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Pictorially, the above decomposition of π can be represented as follows.

π =
Note that τ1 	= ∅, and for 2 � i � s, if τi = ∅, the τ ′

i = ∅. If {A1, A2, . . . , As}< is the set of all nonaligned
blocks of π , then |Ai| − 1 is equal to the size of the block of τs+1−i containing the largest integer if
τs+1−i 	= ∅; and 0 if τs+1−i = ∅.

Since {n} is not a block of π , we have decomp1(π) = decomp2(π), thus π2 = τ ′
1, σ1 = τ1 and

σ ′
1 = υ2. Thus we get the following:

π = (
σr ∗ σ ′

r

) � · · · � (
σ2 ∗ σ ′

2

) � (
τ1 ∗ (

τ ′
2 � (

τ2 ∗ (
τ ′

3 � · · · (τ ′
s � (τs ∗ ∅)

) · · ·)))).
Then we define

ξ(π) = (
τs ∗ τ ′

s

) � · · · � (
τ2 ∗ τ ′

2

) � (
σ1 ∗ (

σ ′
2 � (

σ2 ∗ (
σ ′

3 � · · · (σ ′
r � (σr ∗ ∅)

) · · ·)))).
See Fig 9.

Now let π be any element in NC(n). If k is the largest integer such that k � n and {k} is not
a block of π , we define ξ(π) to be the partition obtained from ξ(π ∩ [k]) by adding the blocks
{k + 1}, {k + 2}, . . . , {n}. See Fig. 10.

For π ∈ NC(n), let nn(π) (resp. na(π)) denote the number of nonnested (resp. nonaligned) blocks
of π . From the construction of ξ , it is easy to see that the following theorem holds.
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Theorem 5.4. The map ξ is a type-preserving involution on NC(n) satisfying nn(ξ(π)) = na(π) and
na(ξ(π)) = nn(π). Moreover, if {N1, N2, . . . , Nr}< , {N ′

1, N ′
2, . . . , N ′

s}< , {A1, A2, . . . , As}< and {A′
1, A′

2,

. . . , A′
r}< are the set of nonnested blocks of π and ξ(π) and the set of nonaligned blocks of π and ξ(π)

respectively, then |Ni | = |A′
i| and |A j | = |N ′

j | for all i ∈ [r] and j ∈ [s].

The following corollary is an immediate consequence of Theorem 5.4.

Corollary 5.5. We have∑
π∈NC(n)

xnn(π) yna(π) =
∑

π∈NC(n)

xna(π) ynn(π).

In fact, we can find a formula for the following generating function:

F (x, y, z) =
∑
n�0

( ∑
π∈NC(n)

xnn(π) yna(π)

)
zn.

Let NC′(n) denote the set of connected partitions in NC(n). We define

C(z) =
∑
n�0

# NC(n)zn = 1 − √
1 − 4z

2z
, B(z) =

∑
n�1

# NC′(n)zn,

A(x, z) =
∑
n�0

( ∑
π∈NC(n)

xnn(π)

)
zn =

∑
n�0

( ∑
π∈NC(n)

xna(π)

)
zn.

It is not difficult to see that

C(z) = 1

1 − B(z)
, A(x, z) = 1

1 − xB(z)
.

Using the decomposition π = σ � (τ ∗ υ) � μ, where μ is a partition consisting of singletons and τ
is a connected partition, one can also show that

F (x, y, z) = 1

1 − xyz

(
1 + xyz A(x, z)A(y, z)B(z)

)
.

Solving the above equations, we get the following generating function.

Proposition 5.6. We have

F (x, y, z) = 1

1 − xyz

(
1 + xyzC(C − 1)

((1 − x)C + x)((1 − y)C + y)

)
,

where C = 1−√
1−4z

2z , the generating function for the Catalan numbers 1
n+1

(2n
n

)
.

We can naturally extend ξ to the map ξ : NCNN(n) → NCNA(n) defined as follows. Let (σ , X) ∈
NCNN(n) and σ ′ = ξ(σ ). Suppose {A1, A2, . . . , Ak}< is the set of all nonnested blocks of σ and
{A′

1, A′
2, . . . , A′

k}< is the set of all nonaligned blocks of σ ′ . Then we can write X = {Ai1 , Ai2 , . . . , Air }< .
We define ξ(σ , X) = (σ ′, X ′), where X ′ = {A′

i1
, A′

i2
, . . . , A′

ir
}< . By Theorem 5.4, we get the following

corollary.

Corollary 5.7. The map ξ : NCNN(n) → NCNA(n) is a bijection. Moreover, if ξ(σ , X) = (σ ′, X ′), X =
{A1, . . . , Ar}< and X ′ = {A′

1, . . . , A′
s}< , then type(σ ) = type(σ ′), r = s and |Ai| = |A′

i| for all i ∈ [r].
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5.2. Rearranging nonnested blocks

Let (σ , X) ∈ NCNN(n). Suppose {A1, A2, . . . , A�}< is the set of all nonnested blocks of σ , X =
{Ai1 , Ai2 , . . . , Aik }< , and σ j = σ ∩ [min(A j),max(A j)]. Then we have σ = σ1 � σ2 � · · · � σ� . For a
permutation p = p1 p2 · · · pk of [k], the rearrangement of (σ , X) according to p is defined to be the pair
(σ ′, X ′) of σ ′ = σa1 �σa2 � · · · �σa�

and X = {A′
i1
, A′

i2
, . . . , A′

ik
}, where a j = j if j 	∈ {i1, i2, . . . , ik}; and

a j = ipt if j = it , and {A′
1, A′

2, . . . , A′
�}< is the set of all nonnested blocks of σ ′ .

For (σ , X) ∈ NCNN(n) with |X | = k, we define ιB(σ , X) to be the rearrangement of (σ , X) according
to

p =
{

1 2 · · ·k, if k = 2t,

(t + 1)1 2 · · · t(t + 2)(t + 3) · · · (2t + 1), if k = 2t + 1.

For (σ , X, ε) ∈ NCNN
{0,±1}(n) with |X | = k, we define ιD(σ , X, ε) to be (σ ′, X ′, ε), where (σ ′, X ′) is

the rearrangement of (σ , X) according to

p =
⎧⎨
⎩

1 2 · · ·k, if k = 2t and ε = 0,

t(t + 1)1 2 · · · (t − 1)(t + 2)(t + 3) · · · (2t), if k = 2t and ε 	= 0,

(t + 1)1 2 · · · t(t + 2)(t + 3) · · · (2t + 1), if k = 2t + 1.

Clearly, ιB : NCNN(n) → NCNN(n) and ιD : NCNN
{0,±1}(n) → NCNN

{0,±1}(n) are type-preserving bijections.
By the properties of the bijections we have defined so far, we get the following theorem.

Theorem 5.8. The composed maps (φNN
B )−1 ◦ ρ ◦ ξ ◦ ιB ◦ φNC

B , (φNN
C )−1 ◦ ρ ◦ ξ ◦ φNC

B and (φNN
D )−1 ◦ ρ ◦ ξ ◦

ιD ◦ φNC
D are type-preserving bijections between noncrossing partitions and nonnesting partitions of type Bn,

Cn and Dn respectively; see Figs. 14 and 15.

Remark 5.9. Our type-preserving bijections are different from those of Fink and Giraldo [11] because
our bijections do not preserve certain statistics preserved by their bijections. In fact, they showed that
their bijections are the unique ones preserving those statistics. There are other bijections between
noncrossing and nonnesting partitions of classical types due to Rubey and Stump [18] for type B and
Conflitti and Mamede [8] for type D . However their bijections preserve not the types but ‘openers’
and ‘closers’.

6. Another interpretation for noncrossing partitions of type B and type D

We denote by B(n) the set of pairs (σ , x), where σ ∈ NC(n) and x is either ∅, an edge or a block
of σ . Note that if a partition σ of [n] has i edges, then there are n− i blocks in σ . For each σ ∈ NC(n),
we have n +1 choices for x with (σ , x) ∈ B(n). Hence, B(n) is essentially the same as NC(n)×[n +1].

We define a map ϕB : NCNN(n) → B(n) as follows. For (σ , X) ∈ NCNN(n) with X = {A1, A2,

. . . , Ak}< , ϕB(σ , X) is defined to be (σ ′, x), where σ ′ is the partition obtained from σ by union-
ing Ai and Ak+1−i for i = 1,2, . . . , k/2�, and

x =
⎧⎨
⎩

∅, if k = 0,(
max(At),min(At+1)

)
, if k 	= 0 and k = 2t,

At+1, if k = 2t + 1.

Example 6.1. If σ = {{1,2}, {3}, {4,7}, {5,6}, {8,9,10}, {11}} and X = {{1,2}, {3}, {4,7}, {8,9,10},
{11}}, then ϕB(σ , X) = (σ ′, x), where σ ′ = {{1,2,11}, {3,8,9,10}, {4,7}, {5,6}} and x is the block
{4,7}.

Theorem 6.1. The map ψB = ϕB ◦φNC
B is a bijection between NCB(n) and B(n). Moreover, if ψB(π) = (σ , x),

then type(π) = type(σ ) if x is not a block; and type(π) = type(σ \ {x}) if x is a block.
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Proof. Since φNC
B : NCB(n) → NCNN(n) is a bijection, it is sufficient to show that ϕB : NCNN(n) → B(n)

is a bijection. Let us find the inverse map of ϕB .
Let (σ , x) ∈ B(n). Then we construct σ ′ and X as follows.
If x = ∅, then σ ′ = σ and X = ∅.
If x is an edge (a,b), then let E be the set of edges (i, j) of σ with i � a < b � j. Then σ ′ is the

partition obtained from σ by removing the edges in E , and X is the set of blocks of σ ′ which contain
an endpoint of an edge in E . Here the endpoints of an edge (i, j) are the integers i and j.

If x is a block B , then let E be the set of edges (i, j) of σ with i < min(B) � max(B) < j. Then σ ′
is the partition obtained from σ by removing the edges in E , and X is the set of blocks of σ ′ which
are equal to B or contain an endpoint of an edge in E .

It is easy to see that the map (σ , x) �→ (σ ′, X) is the inverse of ϕB . The ‘moreover’ statement is
clear from the construction of φNC

B and ϕB . �
Since B(n) is the same as NC(n) × [n + 1], Theorem 6.1 gives a bijective proof of # NCB(n) = (2n

n

)
.

Remark 6.1. For π ∈ NCB(n), let Abs(π) be the partition in NC(n) such that B is a block of Abs(π)

if and only if B = {|i|: i ∈ B ′} for some B ′ ∈ π . Biane et al. [5, Theorem in Section 14] proved that
the map π �→ Abs(π) is an (n + 1)-to-1 map from NCB(n) to NC(n), thus proved # NCB(n) = (2n

n

)
bijectively. In fact, they proved that NCB(n) is in bijection with the set of pairs (σ , x) where σ ∈ NC(n)

and x is a block of either σ or the Kreweras complement Kr(σ ). The Kreweras complement has the
property that the sum of the number of blocks of σ and the number of blocks of Kr(σ ) is equal to
n + 1. It is easy to check that if ϕB ◦ φNC

B (π) = (σ , x), then σ = Abs(π).

We denote by D(n) the set of pairs (σ , x) such that σ ∈ NC(n − 1) and x is either ∅, an edge of σ ,
a block of σ or an integer in [±(n − 1)]. We can also easily see that D(n) is essentially the same as
NC(n − 1) × [3n − 2].

We define a map ϕD : NCNN
{0,±1}(n − 1) → D(n) as follows. Let (σ , X, ε) ∈ NCNN

{0,±1}(n − 1) and X =
{A1, A2, . . . , Ak}< . Then ϕD(σ , X, ε) is defined to be (σ ′, x), where σ ′ is the partition obtained from
σ by unioning Ai and Ak+1−i for i = 1,2, . . . , k/2�, and

x =

⎧⎪⎪⎨
⎪⎪⎩

∅, if ε = 0 and k = 0,(
max(At),min(At+1)

)
, if ε = 0, k = 2t 	= 0,

At+1, if ε = 0 and k = 2t + 1,

ε · max(A(k+1)/2�) if ε 	= 0.

Theorem 6.2. The map ψD = ϕD ◦φNC
D is a bijection between NCD(n) and D(n). Moreover, if ψD(π) = (σ , x),

then

type(π) =

⎧⎪⎪⎨
⎪⎪⎩

type(σ ) � {1}, if x = ∅ or x is an edge,

type
(
σ \ {x}), if x is a block,

type
(
σ \ {B}) �

{|B| + 1
}
, if x ∈ [±(n − 1)

]
and B is the block

of σ containing |x|.

Proof. The proof is similar to that of Theorem 6.1, hence we omit it. �
Since D(n) is the same as NC(n − 1) × [3n − 2], Theorem 6.2 gives a bijective proof of # NCD(n) =

3n−2
n

(2(n−1)
n−1

)
.

For an integer partition λ = {1m1 ,2m2 , . . .}, let mλ = m1!m2! · · · .
Kreweras proved the following formula for the number of π ∈ NC(n) with given block sizes.
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Theorem 6.3. (See [13].) Let λ be an integer partition with |λ| = n and length �. Then the number of π ∈ NC(n)

with type(π) = λ is equal to

n!
mλ(n − � + 1)! .

As an application of Theorems 6.1 and 6.2, we can give another proof of the following type B and
type D analogs of Theorem 6.3.

Theorem 6.4. (See [2].) Let λ be an integer partition with |λ| � n and length �. Then the number of π ∈ NCB(n)

with type(π) = λ is equal to

n!
mλ(n − �)! .

Proof. Let |λ| = n − k and ψB(π) = (σ , x) ∈ B(n).
If k = 0, then π does not have a zero block and x is not a block. Since σ has � blocks and n − �

edges, there are (n − � + 1) · n!
mλ(n−�+1)! = n!

mλ(n−�)! choices of (σ , x) ∈ B(n).
If k 	= 0, then π has a zero block of size 2k. Thus x is a block of size k in σ . Let λ = {1m1 ,2m2 , . . .}

and λ′ = type(σ ). Note that λ′ = λ � {k} and mλ′ = mλ · (mk+1)!
mk ! = mλ(mk + 1). Thus, there are n!

mλ′ (n−�)!
choices for σ ∈ NC(n) and for each σ there are (mk + 1) choices for x. Thus we get the desired
formula. �
Theorem 6.5. (See [3].) Let λ = {1m1 ,2m2 , . . .} be an integer partition with |λ| � n and length �. Then the
number of π ∈ NCD(n) with type(π) = λ is equal to⎧⎪⎨

⎪⎩
(n − 1)!

mλ(n − � − 1)! , if |λ| � n − 2,

(
m1 + 2(n − �)

) (n − 1)!
mλ(n − �)! , if |λ| = n.

Note that if type(π) = λ for π ∈ NCD(n), then |λ| cannot be n − 1.

Proof of Theorem 6.5. Let |λ| = n − k and ψD(π) = (σ , x).
If k � 2, then x is a block of size k and we can use the same argument in the proof of Theorem 6.4.
Assume k = 0. Then x is either ∅, an edge of σ or an integer in [±(n − 1)].
If x = ∅, then type(σ ) = λ \ {1} = {1m1−1,2m2 , . . .}.
If x is an edge, then the type of σ is λ \ {1}. Since σ has � − 1 blocks, there are n − � choices of x.
Let λ′ = λ \ {1}. Then there are (n−1)!

mλ′ ((n−1)−(�−1)+1)! choices of σ and n − � + 1 choices of x. Thus

there are

(n − 1)!
mλ′(n − �)! = m1 · (n − 1)!

mλ(n − �)! (1)

possibilities when x is either ∅ or an edge.
Now assume that x is an integer in [±(n − 1)]. If |x| is contained in a block of size i, then the

corresponding block in σ is of size i + 1. Thus

type(σ ) = λ(i) = {
1m1 , . . . , (i − 1)mi−1 , imi+1, (i + 1)mi+1−1, (i + 2)mi+2 , . . .

}
.

Note that mλ(i) = mλ · 1+mi
mi+1

. Thus there are (n−1)!
m

λ(i) (n−1−�+1)! choices of σ . For each σ , there are 1 + mi

choices for the block containing x, and 2i choices for x. Thus in this case the number of possible
(σ , x)’s is equal to∑

i�1

2i(1 + m1)
(n − 1)!

mλ(i) (n − �)! = 2(n − 1)!
mλ(n − �)!

∑
i�1

(1 + mi) · i · mi+1

1 + mi
. (2)
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Fig. 11. A lattice path is obtained from a Dyck path by reflecting several subpaths.

Since∑
i�1

i · mi+1 =
∑
i�0

i · mi+1 =
∑
i�0

(i + 1)mi+1 −
∑
i�0

mi+1

=
∑
i�1

i · mi −
∑
i�1

mi = n − �,

(2) is equal to (n − �) · 2(n−1)!
mλ(n−�)! . The sum of (1) and (2) gives the desired formula. �

7. Lattice paths

Let LP(n) denote the set of lattice paths from (0,0) to (n,n) consisting of up step (0,1) and east
step (1,0). A Dyck path of length 2n is a lattice path in LP(n) which never goes below the line y = x.

It is well known that NC(n) is in bijection with the set of Dyck path of length 2n: the Dyck path
corresponding to σ ∈ NC(n) is determined as follows. The (2i − 1)th step and the (2i)th step are,
respectively, (0,1) and (0,1) if i is the minimum of a non-singleton block of σ ; (1,0) and (1,0) if i
is the maximum of a non-singleton block of σ ; (0,1) and (1,0) if {i} is a block of σ ; (1,0) and (0,1)

otherwise.
Now let us find a bijection between NCB(n) and LP(n). Since NCB(n) is in bijection with NCNN(n),

we will use NCNN(n) instead of NCB(n).
Let (σ , X) ∈ NCNN(n). Suppose P is the Dyck path corresponding to σ . Consider a block B ∈ X

with min(B) = i and max(B) = j. Since B is nonnested, the (2i − 1)th step starts at (i − 1, i − 1) and
the (2 j)th step ends at ( j, j). Then we reflect the subpath of P consisting of the rth steps for all
r ∈ [2i − 1,2 j] across the line y = x. Let g(σ , X) be the lattice path obtained by this reflection for
each B ∈ X .

Example 7.1. Let σ = {{1,4,5}, {2,3}, {6}, {7,9}, {8}, {10}} and X = {{1,4,5}, {6}, {10}}. Then (σ , X) ∈
NCNN(10). The lattice path g(σ , X) is obtained from the Dyck path corresponding to σ by reflecting
the subpaths corresponding to the nonnested blocks in X . See Fig. 11.

It is easy to see that the map g is a bijection.

Proposition 7.1. The map g : NCNN(n) → LP(n) is a bijection.

Thus we get # NCB(n) = # NCNN(n) = (2n
n

)
. Note that we did not use the number of Dyck paths.

Since # NCB(n) = #B(n) = (n + 1) · # NC(n), we get another combinatorial proof of the fact that the
number of Dyck paths of length 2n is equal to the Catalan number 1

n+1

(2n
n

)
.
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Remark 7.1. Reiner [17, Proposition 17] also found a bijection between NCB(n) and LP(n) which is
different from ours. Ferrari [10, Proposition 2.5] considered the set ÑC(n) of ‘component-bicolored’
noncrossing partitions of [n] and found a bijection between this set and LP(n). In fact, ÑC(n) is essen-
tially the same as NCNN(n) and our bijection g is identical with Ferrari’s bijection.

We can also find a bijection between NCD(n) and a subset of LP(n). To do this, we need another
interpretation for NCD(n).

We denote by NCNN(n) the set of elements (σ , X) ∈ NCNN(n) such that if X has a block A contain-
ing n, then |A| � 2.

For (σ , X, ε) ∈ NCNN
{0,±1}(n − 1) with X = {A1, A2, . . . , Ak}< , we define κ(σ , X, ε) to be the pair

(σ ′, X ′), where σ ′ and X ′ are defined as follows:

• If ε = 0, then let σ ′ be the partition obtained from σ by adding the singleton {n} and let X ′ = X .
• If ε = 1, then let σ ′ be the partition obtained from σ by adding n to the block Ak and let X ′ = X .
• If ε = −1, then let σ ′ be the partition obtained from σ by adding n to the block Ak and let

X ′ = X \ {Ak}.

One can easily check that this is a bijection.

Proposition 7.2. The map κ : NCNN
{0,±1}(n − 1) → NCNN(n) is a bijection.

Let LP(n) denote the set of lattice paths in LP(n) which do not touch (n − 1,n − 1) and (n,n − 1)

simultaneously. Note that the cardinality of LP(n) is equal to
(2n

n

) − (2n−2
n−1

)
. It is easy to see that

g(σ , X) ∈ LP(n) for each (σ , X) ∈ NCNN(n), and the map g : NCNN(n) → LP(n) is a bijection.

Proposition 7.3. The map g : NCNN(n) → LP(n) is a bijection.

Thus we get a combinatorial proof of # NCD(n) = #NCNN(n) = (2n
n

) − (2n−2
n−1

)
.

8. Catalan tableaux of classical types

A Ferrers diagram is a left-justified arrangement of square cells with possibly empty rows and
columns. The length of a Ferrers diagram is the sum of the number of rows and the number of
columns. If a Ferrers diagram is of length n, then we label the steps in the border of the Ferrers
diagram with 1,2, . . . ,n from north-west to south-east. We label a row (resp. column) with i if the
row (resp. column) contains the south (resp. east) step labeled with i. The (i, j)-entry is the cell in
the row labeled with i and in the column labeled with j. See Fig. 12.

For a Ferrers diagram F , a permutation tableau of shape F is a 0,1-filling of the cells in F satisfying
the following conditions:

1. each column has at least one 1,
2. there is no 0 which has a 1 above it in the same column and a 1 to the left of it in the same

row.

The length of a permutation tableau is defined to be the length of its shape. A Catalan tableau is
a permutation tableau which has exactly one 1 in each column. Let CT(n) denote the set of Catalan
tableaux of length n. There is a simple bijection between CT(n) and NC(n) due to Burstein [7, Theo-
rem 3.1]. His bijection can be described in the following way which is similar to that in the proof of
Proposition 6 in [9].

Let σ ∈ NC(n). We first make the Ferrers diagram F as follows. The ith step of the border of F
is south if i is the smallest integer in the block containing i; and west otherwise. We fill the (i, j)-
entry with 1 if and only if i and j are in the same block whose smallest integer is i. One can easily
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Fig. 12. A Ferrers diagram with labeled rows and columns.

Fig. 13. The Catalan tableau f (π, X) of type B10 for π = {{1,2}, {3}, {4,7,9}, {5,6}, {8}, {10}} and X = {{1,2}, {4,7,9}}.

check that this is a bijection. For more information of Catalan tableaux and permutation tableaux,
see [20,21].

Lam and Williams [14] defined permutation tableaux of type Bn . See [15] for the ‘alternative
tableaux’ version. The definition of permutation tableaux of type Bn in [14] can be written as fol-
lows.

Let F be a Ferrers diagram with k columns including empty columns. The shifted Ferrers diagram F
of F is the diagram obtained from F by adding k rows of size 1,2, . . . ,k above it in increasing order.
The rightmost cell of an added row is called diagonal. We label the added rows as follows. If the
diagonal of an added row is in the column labeled with i, then the row is labeled with −i. For
example, see Fig. 13; at this moment, ignore the 0’s and 1’s.

A permutation tableau of type Bn is a 0,1-filling of the cells in the shifted Ferrers diagram F for a
Ferrers diagram F of length n satisfying the following conditions:

1. each column has at least one 1,
2. there is no 0 which has a 1 above it in the same column and a 1 to the left of it in the same

row,
3. if a 0 is in a diagonal, then it does not have a 1 to the left of it in the same row.

A Catalan tableau of type Bn is a permutation tableau of type Bn such that each column has exactly
one 1. A Catalan tableau of type Dn is a Catalan tableau of type Bn with the following additional con-
dition: if the last row is not empty, then the left most column does not have 1 in the topmost
cell. Let CTB(n) and CTD(n) denote the set of Catalan tableaux of type Bn and type Dn respec-
tively.

Now we will find a bijection between NCNN(n) and CTB(n).
Let (σ , X) ∈ NCNN(n). Suppose F is the Ferrers diagram of length n such that the ith step of the

border of F is south if i is the smallest integer in a block of σ which is not in X ; and west otherwise.
Let T be the 0,1-filling of the shifted Ferrers diagram F obtained as follows. For each i which is the
smallest integer in a block in X , fill the (−i, i)-entry with 1. For each pair (i, j) of distinct integers
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Fig. 14. Bijections from NCB (n).

such that i and j are in the same block B and i = min(B), fill the (−i, j)-entry with 1 if B is in X ;
and fill the (i, j)-entry with 1 otherwise. Fill the remaining entries with 0’s. We define f (σ , X) to
be T . For example, see Fig. 13.

Theorem 8.1. The map f is a bijection between NCNN(n) and CTB(n).

Proof. First, we will show that T = f (σ , X) ∈ CTB(n). By the construction, each column of T contains
exactly one 1, and the row of T labeled with −i has a 1 if and only if the diagonal entry in the row is
filled with 1. To prove T ∈ CTB(n), it only remains to show that there is no 0 which has a 1 above it
in the same column and a 1 to the left of it in the same row. Since each column has only one 1, this
condition is equivalent to the following: there is no quadruple (i, j, i′, j′) with i < i′ , j < j′ and |i′| < j
such that both the (i, j)-entry and the (i′, j′)-entry are filled with 1, where i and i′ can be negative.
Note that we also have |i| � j and |i′| � j′ because there are the (i, j)-entry and the (i′, j′)-entry.

Suppose that we have such a quadruple (i, j, i′, j′). Then we have either |i| < |i′| < j < j′ or |i′| <

|i| � j < j′ . Let B and B ′ be the blocks of σ with |i|, j ∈ B and |i′|, j′ ∈ B ′ . If |i| < |i′| < j < j′ , then
we must have B = B ′ since σ ∈ NC(n). Then |i| = min(B) = min(B ′) = |i′|, which is a contradiction.
If |i′| < |i| � j < j′ , then i < 0. Thus B is in X , which implies that B is nonnested. However this is a
contradiction because |i′| < |i| � j < j′ and σ ∈ NC(n), B cannot be nonnested.

Now we define the inverse map of f . Let T ∈ CTB(n). Define σ to be the partition of [n] such that
i and j are in the same block B with min(B) = i if and only if i < j and either the (i, j)-entry or the
(−i, j)-entry of T is filled with 1. Define X to be the set of blocks B of σ such that the row of T
labeled with − min(B) contains a 1. It is easy to see that the map T �→ (σ , X) is the inverse of f . �
Remark 8.1. Burstein’s bijection between CT(n) and NC(n) in [7] is a restriction of the ‘zigzag’ map for
permutation tableaux in [20]. We will not go into the details but our map f can also be expressed as
a restriction of a type B analog of the ‘zigzag’ map.

If we restrict f to NCNN(n), we get the following theorem.

Theorem 8.2. The map f : NCNN(n) → CTD(n) is a bijection.

9. Concluding remarks

Figs. 14 and 15 illustrate the objects and the bijections between them in this paper. We have two
interpretations NCNN(n) and B(n) for NCB(n). Since both of them are closely related to NC(n), they
may be useful to prove type B analogs of interesting properties of NC(n). In the author’s sequel paper
[12], the interpretation B(n) is used to study the poset structure of NCB(n) and NCD(n).
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Fig. 15. Bijections from NCD (n).

Since we have a bijection between NCB(n) and B(n) = NC(n) × [n + 1], one can ask the following
question.

Question 9.1. Is there a natural bijection between NNB(n) and NN(n) × [n + 1]?
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