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Abstract

The sets of solutions to the Lorenz equations that exist backward in time and are bounded

at an exponential rate determined by the eigenvalues of the linear part of the equation are

examined. The set associated with the middle eigenvalue is shown to project surjectively onto a

plane, thereby providing a lower estimate for its dimension. Specific bounds are also found for

a cone containing this set.
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0. Introduction

Among the more surprising properties of the 2-D periodic Navier–Stokes
equations (NSE) is the existence of rich invariant sets formed by trajectories with
given exponential growth backward in time [CFKM]. For a dissipative evolutionary
equation the mere existence of solutions for all negative time off the global attractor
A is significant. This is especially true for a partial differential equation such as the
NSE. To be specific, each solution with backward exponential growth has an
eigenvalue of the Stokes operator (i.e. the linear part of the NSE) as its exponential
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rate. Moreover, the set ML of solutions that exist for all time, and have exponential
growth rate not exceeding L; projects onto the linear space spanned by all
eigenvectors of the Stokes operator corresponding to eigenvalues pL: Though
reminiscent of local invariant manifolds for steady states (or for higher dimensional
objects), these sets may not be manifolds.

The Lorenz system has been the subject of many other investigations. It was
derived as a three-mode truncation of partial differential equations modeling the
Bénard heat convection problem [Sa]. Historically speaking, Lorenz, with his famous
numerical experiments [L], breathed life into Poincare’s notion of chaos just as high
speed computers were becoming a common research tool in the 1960s. As a
testimony to the challenge this simply stated system poses, only recently has its
chaotic behavior been established, with a computer-assisted proof at that [MM]. It
continues to provide a convenient testing ground for many numerical and analytical
tools in dynamical systems, including the computation [Si,DV], and estimation
[E,EFT] of Lyapunov exponents, the computation of invariant manifolds [JJK,KO],
and exploration of global bifurcations [GS]. More complete reviews of work on the
Lorenz system can be found in [GH,S].

The Lorenz system can also serve as a low-dimensional paradigm for the 2-D
Navier–Stokes equations. In [FJKT] we study several global properties of the Lorenz
system which are analogous to those of the NSE. In particular, we introduced and
examined three invariant sets for the Lorenz system M1; Mb; Ms (see (1.2)) also
defined in terms of the eigenvalues 1, b; s of the linear part of the system (when
written in a form similar to the NSE (see (2.1)). While it is easy to see that Ms ¼ R3;
the nature of M1 and Mb is not transparent. In particular, the results in [FJKT] do
not say anything about the dimensions of Ms\Mb and Mb: In this paper, by adapting
to the Lorenz system the methods in [CFKM], we establish that Mb has Hausdorff
dimension X2 and is contained in the exterior of a cone, i.e. the two sides of the cone
are in Ms\Mb: Moreover, in perfect analogy with one central result in [CFKM], Mb

projects onto the xy-plane (see Section 5).
The main ingredients in the treatment of sets of bounded backward growth rates

for PDEs are a pair of orthogonality relations of the form ðBðu; vÞ; vÞ ¼ 0; and
ðBðu; uÞ;AuÞ ¼ 0; where A and B are respectively, the linear and bilinear operators in
the equation. While the first of these relations holds in the case of the Lorenz
equations using the Euclidean scalar product, the second requires the deployment of
an auxiliary linear operator A0: This adds a wrinkle to the story as the only choices
possible for A0 have only two distinct eigenvalues. The effect is that while there are
conceivably three backward growth rates, the approach here distinguishes between
only two of them. A priori the two extremal cases Mb ¼ M1 and M1 ¼ A are not yet
ruled out. Like many features of this deceptive system, the full consequence of AaA0

remains to be determined.
There are several motivations for the study of the backward behavior of

dissipative evolutionary equations ( for which the Lorenz system is an intriguing
example). Most of the research on these equations is dedicated to the study of their
forward time behavior, especially their global attractors [H,T]. However, in certain
approaches [FT,FJ,FJK,FJL] to the localization of global attractors those invariant
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sets formed by solutions with slow backward in time exponential growth interfere
with the detection of the attractor. Using the methods developed in those papers it is
difficult to differentiate between the points on those slow growth sets which are near
the attractor and points on the attractor itself. Second, in the study of the global in
time solutions of dissipative equations these invariant sets are the analogue of stable
invariant manifolds near a singular point when that point is infinity. Moreover, as
one can check for the Lorenz system, local invariant manifold theory is not
applicable due to a lack of smoothness introduced by moving infinity to the origin.
Therefore the existence of various examples which display rich sets of backward time
exponential growth (see also [D,V1,V2]) suggest that there may exist a wider theory
of invariant sets yet to be discovered. Third, many nonlinear dissipative systems
should be expected to have no solutions off the global attractor which exist for all
times, e.g. [KM] for the Kuramoto–Sivashinsky equation and [Ti] for the viscous
Burgers equation. As yet the only criterion for distinguishing between these two
opposing behaviors seems to be the existence of a second orthogonality relation.
Finally, in what concerns fluid dynamics, for a given driving force, restricting the
study to the flows on or near the attractor establishes a priori bounds for the
Reynolds numbers for the flows. The solutions with exponential growth are the most
mathematically amenable flows with huge Reynolds numbers.

The proofs in this ODE case are naturally elementary. They demonstrate,
however, how to generate a second orthogonality property by finding an alternate
linear operator (here A0). This opens the road for the study of other evolutionary
equations (including infinite dimensional ones) with linear part being merely
sectorial and not necessarily self-adjoint (e.g. the NSE for 2-D flows driven by
moving boundaries).

1. Preliminaries

The Lorenz system

’x ¼ �sx þ sy;

’y ¼ �y � xz;

’z ¼ �bz þ xy � br; ð1:1Þ

where b40; s40; and r41; generates a dissipative dynamical system with a
nonempty compact global attractor (see e.g. [EFT] for estimates on its Hausdorff

dimension). The attractor contains exactly three steady states: u1 ¼
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
;�1Þ; u2 ¼ ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
;�1Þ; and u3 ¼

ð0; 0;�rÞ: While (1.1) is not the classical form of the Lorenz system, it is one which
more closely resembles that of the Navier–Stokes equations. In particular, offsetting
the steady state u3; which is often situated at the origin has the effect of introducing a
force (see (2.1)).
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We consider the common parameter settings s ¼ 10; b ¼ 8=3 and r ¼ 28: Much
of the behavior backward in time can be described in terms of

M0
1 ¼ u0AR3 : lim sup

t-�N

logjSðtÞu0j2
jtj o1

� �
;

M1 ¼ u0AR3 : lim sup
t-�N

logjSðtÞu0j2
jtj p1

� �
;

Mb ¼ u0AR3 : lim sup
t-�N

logjSðtÞu0j2
jtj pb

� �
;

Ms ¼ u0AR3 : lim sup
t-�N

logjSðtÞu0j2
jtj ps

� �
; ð1:2Þ

where SðtÞ is the solution operator of (1.1), u ¼ ðx; y; zÞ and j � j2 denotes the usual

Euclidean norm on R3; namely juj2 ¼ ðx2 þ y2 þ z2Þ1=2: Denote by Px; Py; and Pz

the coordinate projections in R3: The following was proved in [FJKT].

Theorem 1.1. The following hold.

(i) Ms ¼ R3

(ii)
Ms\Mb ¼ u0AR3 : limt-�N

logjPxSðtÞu0j2
jtj ¼ s

� �
;

(iii)
Ms\Mb ¼ u0AR3 : limt-�N

logjSðtÞu0j2
jtj ¼ s

� �
;

(iv)
Ms\A ¼ u0AR3 : lim inf t-�N

logjSðtÞu0j2
jtj X1

� �
;

(v) u0AMb\M1 implies

lim sup
t-�N

logjuðtÞj2
jtj ¼ lim sup

t-�N

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPySðtÞu0j22 þ jPzSðtÞu0j22

q
jtj ;

(vi) M0
1 ¼ A and M1\A ¼ u0AR3 : limt-�N

logjSðtÞu0j2
jtj ¼ 1

� �
:

By the invariance of the z-axis under the flow SðtÞ; we have immediately that Mb

contains the z-axis. We will make repeated use of the following lemma, whose proof
requires only a slight modification of that for Lemma 2.5 in [FJKT].

Lemma 1.2. (i) Let j;cAC1ðð�N; 0	Þ satisfy

dj
dt

þ aj ¼ c;
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and

cðtÞ ¼ Oðe�gtÞ as t-�N; ð1:3Þ

where a40 and gA½0; aÞ: Then either

0o lim inf
t-�N

eatjjðtÞjp lim sup
t-�N

eatjjðtÞjoN ð1:4Þ

or

jðtÞ ¼ Oðe�gtÞ as t-�N: ð1:5Þ

(ii) Moreover, if instead of (1.3) we have

lim
t-�N

logjcðtÞj
jtj ¼ g; ð1:6Þ

then either (1.4) holds, or

lim
t-�N

logjjðtÞj
jtj ¼ g: ð1:7Þ

The proof of (i) is almost identical to that of Lemma 2.5 in [FJKT], while that of
(ii) requires an easy supplement. We will not use (ii) in this paper, but mention it as
an aside for possible future use.

2. The framework

We write the Lorenz system in the standard form

du

dt
þ Au þ Bðu; uÞ ¼ f ð2:1Þ

with

u ¼
x

y

z

0
B@

1
CA; A ¼

s �s 0

0 1 0

0 0 b

0
B@

1
CA; f ¼

0

0

�br

0
B@

1
CA;

B

x

y

z

0
B@

1
CA;

x̃

ỹ

z̃

0
B@

1
CA

0
B@

1
CA ¼

0

xz̃

�xỹ

0
B@

1
CA: ð2:2Þ

This is the same form as for the Navier–Stokes equations in [CFKM], with the role

of the infinite-dimensional phase space now being played by R3: Note that B enjoys
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the orthogonality property

ðBðu; vÞ; vÞ2 ¼ 0 for all u; vAR3: ð2:3Þ

Here ðu; ũÞ2 is the usual Euclidean scalar product on R3; i.e. ðu; ũÞ2 ¼ xx̃ þ yỹ þ zz̃:
In [CFKM] what allowed the classification of the solutions with backward
exponential growth was the positivity of A and the existence of a second
orthogonality, namely

ðBðu; uÞ;AuÞ2 ¼ 0 for all uAR3: ð2:4Þ

While (2.4) does not hold for the A and B in (2.2), it is remarkable that there exist
another scalar product ð�; �Þb which makes ðAu; uÞbX0; and another positive, self-

adjoint operator A0 such that

ðBðu; vÞ; vÞb ¼ 0; and ðBðu; uÞ;A0uÞb ¼ 0 for all u; vAR3: ð2:5Þ

For b40 we define the scalar product

ðu; ũÞb ¼ b
2

xx̃ þ yỹ þ zz̃

with corresponding norm denoted jujb ¼ ðu; uÞ1=2b : It can be immediately seen that

the first relation in (2.5) holds. Let T ¼ ½tij 	3i; j¼1: We denote the adjoint of T with

respect to ð�; �Þb as T�ðbÞ ¼ ½t�ðbÞij 	3i; j¼1 and use the defining condition

ðT�ðbÞu; ũÞb ¼ ðu;TũÞb ð2:6Þ

to express T�ðbÞ in terms of T : A straightforward computation shows that

T�ðbÞ ¼
t11 2t21=b 2t31=b

bt12=2 t22 t32

bt13=2 t23 t33

0
B@

1
CA: ð2:7Þ

In particular, we have

A�ðbÞ ¼
s 0 0

�bs=2 1 0

0 0 b

0
B@

1
CA:
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Taking this scalar product of (2.1) with u; and using the orthogonality relation
ðBðu; uÞ; uÞb ¼ 0; we obtain

d

dt
juj2b ¼ 2ð f ; uÞb � ðAu; uÞb � ðu;AuÞb

¼ 2ð f ; uÞb � ððA þ A�ðbÞÞu; uÞb

¼ 2ð f ; uÞb � 2ðAu; uÞb; ð2:8Þ

since

1

2
ðA þ A�ðbÞÞu; u

� 
b
¼ ðAu; uÞb ¼ ðA�ðbÞu; uÞb: ð2:9Þ

It follows from Young’s inequality that

ðAu; uÞb ¼
b
2
sx2 � b

2
sxy þ y2 þ bz2

X
b
2
s� b2s2

4

� 
x2 þ 1

2
y2 þ bz2

X c1
b
2

x2 þ y2 þ z2
� 

; ð2:10Þ

where

c1 ¼ min
s
2

1� bs
2

� 
;
1

2
; b

� �
Xmin

s
4
;
1

2
; b

� �
¼ 1

2
;

provided b satisfies

0obo1=s: ð2:11Þ

Henceforth we assume (2.11) holds and drop the subscript on the scalar product and
norm

ð�; �Þ ¼ ð�; �Þb; j � j ¼ j � jb; A� ¼ A�ðbÞ:

Elementary computations show that any self-adjoint matrix satisfying the second
relation in (2.5) is of the form A0 ¼ diagða; d; dÞ: We will take a ¼ s and d ¼ 1: Note
that A040:
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3. Analogue of the Dirichlet quotient

By the orthogonality and self-adjointness properties we have

d

dt
ðA0u; uÞ ¼ � ðA0Au; uÞ � ðA0Bðu; uÞ; uÞ � ðA0 f ; uÞ

� ðA0u;AuÞ � ðA0u;Bðu; uÞÞ � ðA0u; f Þ

¼ � 2ðAu;A0uÞ þ 2ð f ;A0uÞ: ð3:1Þ

Using (2.8) and (3.1), with q ¼ u
juj; we have

1

2

d

dt

ðA0u; uÞ
juj2

¼ 1

juj2
1

2

d

dt
ðA0u; uÞ � 1

juj4
1

2

d

dt

� 
juj2ðA0u; uÞ

¼ 1

juj2
½ð f ;A0uÞ � ðAu;A0uÞ	 � 1

juj4
½ð f ; uÞ � ðAu; uÞ	ðA0u; uÞ

¼ � ½ðAq;A0qÞ � ðA0q; qÞðAq; qÞ	 þ f

juj; ½A0 � ðA0q; qÞI 	q
� 

¼ � j½A0 � ðA0q; qÞI 	qj2 þ ð½A0 � A	q;A0qÞ

� ðA0; q; qÞð½A0 � A	q; qÞ þ f

juj; ½A0 � ðA0q; qÞI 	q
� 

: ð3:2Þ

Let

l0 ¼ ðA0q; qÞ ¼ ðA0u; uÞ
juj2

be the analogue of the Dirichlet quotient in [CFKM]. With

p ¼ ½A0 � ðA0q; qÞI 	q;

the derivation in (3.2) reads simply as

1

2

d

dt
l0 ¼ �jpj2 þ ðp; ½A0 � A	qÞ þ f

juj; p

� 
: ð3:3Þ

Now denote the components of q as q ¼ ðx; Z; zÞ; and let o ¼ ð0; Z; zÞ so that

b
2
x2 þ joj2 ¼ 1;

b
2
sx2 þ joj2 ¼ l0;

and hence

b
2
x2 ¼ l0 � 1

s� 1
and joj2 ¼ s� l0

s� 1
: ð3:4Þ
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We write out

p ¼
sx

Z

z

0
B@

1
CA� l0

x

Z

z

0
B@

1
CA ¼

ðs� l0Þx
ð1� l0ÞZ
ð1� l0Þz

0
B@

1
CA; p0 ¼def ½A0 � A	q ¼

sZ

0

ð1� bÞz

0
B@

1
CA;

and calculate

ðp; p0Þ ¼
b
2
ðs� l0ÞsxZþ ðl0 � 1Þðb � 1Þz2:

From (3.4) we have

jpj2 ¼ b
2
ðs� l0Þ2x2 þ ð1� l0Þ2joj2

¼ðs� l0Þ2ðl0 � 1Þ
s� 1

þ ðl0 � 1Þ2ðs� l0Þ
s� 1

¼ðs� l0Þðl0 � 1Þ ð3:5Þ

and

jxj ¼ b
2

� �1=2 ðl0 � 1Þ1=2

ðs� 1Þ1=2
: ð3:6Þ

Applying (3.5), along with

z2 ¼ joj2 � Z2 ¼ ðs� l0Þ
ðs� 1Þ � Z2

we rewrite the first two terms in (3.3) as

�jpj2 þ ðp; ½A0 � A	qÞ ¼ � ðs� l0Þðl0 � 1Þ þ b
2
ðs� l0ÞsxZþ ðl0 � 1Þðb � 1Þz2

p � ðs� l0Þðl0 � 1Þ þ b
2
ðs� l0ÞsjxZj � ðl0 � 1Þðb � 1ÞZ2

þ ðl0 � 1Þðb � 1Þðs� l0Þ
ðs� 1Þ : ð3:7Þ

Then use (3.6) and Young’s inequality to obtain

b
2
ðs� l0ÞsjxZj ¼

b
2

� 1=2

ðs� l0Þ
ðl0 � 1Þ1=2

ðs� 1Þ1=2
sjZj

p
b
8

ðs� l0Þ2s2

ðs� 1Þðb � 1Þ þ ðl0 � 1Þðb � 1ÞZ2: ð3:8Þ

ARTICLE IN PRESS
C. Foias, M.S. Jolly / J. Differential Equations 208 (2005) 430–448438



Insert (3.8) into (3.7) and use l0X1 to find that

�jpj2 þ ðp; ½A0 � A	qÞp � ðs� l0Þðl0 � 1Þ þ b
8

ðs� l0Þ2s2

ðs� 1Þðb � 1Þ

þ ðl0 � 1Þðb � 1Þ ðs� l0Þ
ðs� 1Þ

p � ðs� l0Þðl0 � 1Þ ðs� bÞ
ðs� 1Þ þ

bs2

8

ðs� 1Þ
ðb � 1Þ:

Thus by (3.5) and the fact that b � 1os� b we have

1

2

dl0
dt

p � ðs� l0Þðl0 � 1Þ ðs� bÞ
ðs� 1Þ þ

bs2

8

ðs� 1Þ
ðb � 1Þ þ

br

juj jpj

¼ � ðs� l0Þðl0 � 1Þ ðs� bÞ
ðs� 1Þ þ

bs2

8

ðs� 1Þ
ðb � 1Þ þ

br

juj ðs� l0Þ1=2ðl0 � 1Þ1=2

p � 1

2
ðs� l0Þðl0 � 1Þðs� bÞ

ðs� 1Þ þ
bs2

8
þ b2r2

2juj2

" #
ðs� 1Þ
ðb � 1Þ: ð3:9Þ

Now assume that for some t0; the Dirichlet quotient satisfies

l0ðt0Þ ¼
1þ s

2
ð3:10Þ

so that

1

2

dl0
dt

����
t¼t0

p� 1

8
ðs� 1Þðs� bÞ þ s� 1

b � 1

� 
bs2

4
þ b2r2

2juj2

" #
: ð3:11Þ

Henceforth we fix bpb0 where

s� 1

b � 1

� 
b0s

2

4
¼ 1

16
ðs� 1Þðs� bÞ i:e: b0 ¼

11

360
:

For this choice of b; (3.11) can be written as

1

2

dl0
dt

����
t¼t0

p� 1

16
ðs� 1Þðs� bÞ þ s� 1

b � 1

� 
b2r2

2juj2
: ð3:12Þ

From (2.10) we have

1

2

d

dt
juj2pj f jjuj � c1juj2p� c1

2
juj2 þ j f j2

2c1
;
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and hence

juðtÞj2pec1ðt�t0Þjuðt0Þj2 þ
j f j2

c21
½1� ec1ðt�t0Þ	:

Thus any ball of radius r with r4j f j=c1 is absorbing, and more importantly for our
consideration, if

juðt0Þj4R1 ¼def
j f j
c1

; ð3:13Þ

then

d

dt
juj2
����
t¼t0

p� c1 juðt0Þj2 �
j f j2

c21

 !
o0: ð3:14Þ

If

s� 1

b � 1

� 
b2r2

2juðt0Þj2
o

1

16
ðs� 1Þðs� bÞ;

or equivalently, if

juðt0Þj4R2 ¼def
8b2r2

ðb � 1Þðs� bÞ

� �1=2
; ð3:15Þ

then

d

dt

ðA0uðtÞ; uðtÞÞ
juðtÞj2

�����
t¼t0

o0:

We have proved the following.

Lemma 3.1. If for some t0 we have (with R1; R2 defined in (3.13) and (3.15) above)

juðt0Þj4R ¼def maxfR1;R2g; and
ðA0uðt0Þ; uðt0ÞÞ

juðt0Þj2
¼ sþ 1

2
; ð3:16Þ

then

d

dt

ðA0uðtÞ; uðtÞÞ
juðtÞj2

�����
t¼t0

o0; and
d

dt
juðtÞj2

����
t¼t0

o0:

The following basic result will be used in Sections 4 and 5.
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Lemma 3.2. If for some t0 we have

juðt0Þj4R and
ðA0uðt0Þ; uðt0ÞÞ

juðt0Þj2
X
sþ 1

2
; ð3:17Þ

then for all tot0 we have

juðtÞj4R and
ðA0uðtÞ; uðtÞÞ

juðtÞj2
4

sþ 1

2
: ð3:18Þ

Proof. If

ðA0uðt0Þ; uðt0ÞÞ
juðt0Þj2

¼ sþ 1

2
;

then by Lemma 3.1 for small enough e40 we have for tAðt0 � e; t0Þ that

juðtÞj4R and
ðA0uðtÞ; uðtÞÞ

juðtÞj2
4

sþ 1

2
:

By (3.14) we have that juðtÞj4R for all tot0: That the solution cannot enter, for any
tot0 the cone

ðA0u; uÞ
juj2

p
sþ 1

2

follows again from Lemma 3.1. &

4. The Dirichlet quotients and the set Mb

In order to exhibit the link between the behavior of the Dirichlet quotients and the
set Mb we need two preliminary facts. Let w ¼ ð0; y; zÞ; and ðxðtÞ; yðtÞ; zðtÞÞ ¼ SðtÞu0:

Proposition 4.1. For any u0AR3 we have

lim sup
t-�N

logjwðtÞj
jtj pb: ð4:1Þ

Proof. Multiplying the second equation in (1.1) by y; the third by z; and applying
Young’s inequality we find that for any e40

1

2

d

dt
jwj2 ¼ �y2 � bz2 � brzX� y2 � bz2 � ez2 � b2r2

4e
X� ðb þ eÞjwj2 � b2r2

4e
:
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By Gronwall’s inequality

jwðtÞj2peðbþeÞðt0�tÞ jwðt0Þj2 þ
b2r2

2eðb þ eÞ

� �
� b2r2

4eðb þ eÞpeðbþeÞðt0�tÞ jwðt0Þj2 þ
b2r2

2eðb þ eÞ

� �

from which follows (4.1). &

Proposition 4.2. If fuðtÞgtAReA; and

jwðtÞj2pCx2ðtÞ for all to0 ð4:2Þ

for some C40; then u0eMb:

Proof. Multiplying the first equation in (1.1) we have

d

dt
z þ r � x2

2s

� 
¼ �bðz þ rÞ þ x2 ¼ �2s z þ r � x2

2s

� 
þ ð2s� bÞðz þ rÞ: ð4:3Þ

If u ¼ ðx; y; zÞAMb then

c ¼ lim sup
t-�N

logjuðtÞj
jtj pbo2s: ð4:4Þ

For any g; cogoa ¼ 2s we have by Lemma 1.2(i) that either there exists positive
constants

%
c2; %c2;

%
c3; %c3 such that

%
c2p z þ r � x2

2s

����
����e2stp%c2 for all to0;

which by (4.2) implies

%
c3pjxjestp%c3; ð4:5Þ

or

zðtÞ þ r � x2ðtÞ
2s

����
���� ¼ Oðe�gtÞ as t-�N: ð4:6Þ

Yet if (4.5) holds, then by Theorem 1.1(ii) we have uAMs\Mb; a contradiction. It
follows that

xðtÞ2 ¼ Oðe�gtÞ as t-�N;

and by the condition relating jwj2 to x2 we obtain

juðtÞj ¼ Oðe�gt=2Þ as t-�N:
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By the definition of c we must have cpg=2: Letting grc we obtain c ¼ 0: From
Theorem 1.1 it follows that uðtÞAA ( for all tAR). &

Now if

ðA0u; uÞX1þ s
2

juj2 ð4:7Þ

i.e.

s
b
2

x2 þ y2 þ z2X
1þ s

2

b
2

x2 þ 1þ s
2

ðy2 þ z2Þ;

then simplifying, we have

bx2
X2jwj2: ð4:8Þ

Therefore by Proposition 4.2 and the Lemma 3.2, we readily infer the following:

Theorem 4.3. If (3.17) holds, then uðt0ÞeMb:

Corollary 4.4. We have

MbCG ¼deffu : jujpRg, u : ðA0u; uÞo1þ s
2

juj2
� �

: ð4:9Þ

Remark 4.5. (i) The best result in (4.9) holds for b ¼ b0:
(ii) Note that by (4.9)

fu ¼ ðx; y; zÞ : jujXR1; b0x2
X2ðy2 þ z2ÞgCMs\Mb;

hence dimðMs\MbÞ ¼ 3:

Corollary 4.6. If a trajectory fuðtÞg�NptpN
lies in G; then uðtÞAMb for all tAR:

Proof. Indeed, in this case, we have either uðtÞAA for all tAR and then uðtÞAMb for
all tAR; or there exists a t0 such that juðtÞjpR for tXt0 and juðtÞj4R for tot0; and
consequently

ðA0uðtÞ; uðtÞÞpsþ 1

2
juðtÞj2 for tpt0: ð4:10Þ

Proceeding as in the proof from (4.7) to (4.8), we deduce that (4.10) implies

bxðtÞ2p2jwðtÞj2 for tpt0: ð4:11Þ
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Using Proposition 4.1(i), we readily obtain that

juðtÞj22p
2

b
þ 1

� 
jwðtÞj2pC2

e
2

b
þ 1

� 
e�2bt for all tptept0; e40:

This shows that uð0ÞAMb; and consequently uðtÞAMb for all tAR: &

5. Geometric properties of Mb

By Young’s inequality and (2.11)

1

2

d

dt
juj2 ¼ð f ; uÞ � ðAu; uÞ

X � j f jjuj � b
2
sx2 � ðbsÞ2

8
x2 � 3

2
y2 � bz2

X � j f jjuj � b
2

3s
2

x2 � 3

2
y2 � bz2

X � j f jjuj � 3s
2
juj2

X � j f j2

2s
� 2sjuj2:

Thus

1

2

d

dt
juj2 þ j f j

4s2

� 
X� 2s juj2 þ j f j

4s2

� 

which provides the following estimate.

Lemma 5.1. If

juðt0ÞjXmax R1;R2;R3 ¼def
j f j
2s

� �
; ð5:1Þ

then

juðtÞjX1

2
e�2sðt�t0Þjuðt0Þj; for all tXt0:

Lemma 5.1 along with Lemma 3.2 are the equivalent of Lemma 3.2 in [CFKM],

while the fact that uAG; jujXR ) bx2pjwj2 is the equivalent of Lemma 3.4 in
[CFKM]. With these results settled, the analogue of Lemma 3.9 in [CFKM] can be
established by reproducing almost verbatim the proof in [CFKM]. Therefore we
state the following central result and send the reader to [CFKM] for the details of its
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proof. We mention only that the well-known Brouwer surjectivity theorem is another
basic ingredient in that proof.

Theorem 5.2. Denote by Py;z the projector defined by u ¼ ðx; y; zÞ/w ¼ ð0; y; zÞ:
Then

Py;zMb ¼ Py;zR
3:

This has the following obvious consequence.

Corollary 5.3. The Hausdorff dimension of Mb\A; denoted dHðMb\AÞ; satisfies

dHðMb\AÞX2:

For the definition of the Hausdorff dimension, see [F].

Conjecture 5.4. dHðMbÞo3:

Theorem 5.5. Take

0oeoe0 ¼ max
4b2r2

bsR2
; 1

� �
:

Then for all u ¼ ðx; y; zÞAMb satisfying

jujXRe ¼def
4b2r2

ebs2

� 1=2

; ð5:2Þ

we have

x2pðreðbÞÞ
2jwj2; ð5:3Þ

where

jwj2 ¼ y2 þ z2; reðbÞ ¼
2

b
� le � 1

s� le
; and

le ¼
1

2
ðsþ 1Þ � ðs� 1Þ2 � bs2ð1þ eÞðs� 1Þ2

ðb � 1Þðs� bÞ � 4e
s� 1

s� b

� " #1=28<
:

9=
;:

Moreover

lim sup
jwj-N;uAMb

jxj
jwjp

ffiffiffiffiffi
45

11

r
: ð5:4Þ
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Proof. Using (5.2) in (3.9) we have

1

2

dl0
dt

p� 1

2
ðs� l0Þðl0 � 1Þ ðs� bÞ

ðs� 1Þ þ ð1þ eÞbs
2

8

ðs� 1Þ
ðb � 1Þ:

Suppose that for some t1; l0 ¼ l0ðt1Þ satisfies

�1

2
ðs� l0Þðl0 � 1Þ s� b

s� 1

� 
þ ð1þ eÞbs

2

8

s� 1

b � 1

� 
p� e

2
: ð5:5Þ

This condition is equivalent to

lepl0p
sþ 1

2
;

where the last inequality follows from (4.9) and the fact that Re4R: Then

d

dt
l0p� e for all tpt1;

and hence

l0ðtÞA½le; ðsþ 1Þ=2	; 8tpt1:

But then

eðt1 � t0Þpl0ðt1Þ þ eðt1 � t0Þpl0ðt0Þp
1þ s

2

which is impossible for t0ot1 chosen so that

t1 � t04
s� 1

2e
:

Thus, we have

ðA0u; uÞplejuj2; for juj4Re;

i.e.

s
b
2

x2 þ jwj2ple
b
2

x2 þ lejwj2: ð5:6Þ

Solving for x2 yields (5.3). Holding b40 fixed and taking e-0 we have

le-l�0 ¼ 1

2
ðsþ 1Þ � ðs� 1Þ2 � bs2ðs� 1Þ2

ðb � 1Þðs� bÞ

" #1=28<
:

9=
;;
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and hence

reðbÞ-r0ðbÞ ¼
2

b
l�0 � 1

s� l�0

¼ 2

b

ðs� 1Þ � ðs� 1Þ2 � bs2ðs� 1Þ2

ðb � 1Þðs� bÞ

" #1=2

ðs� 1Þ þ ðs� 1Þ2 � bs2ðs� 1Þ2

ðb � 1Þðs� bÞ

" #1=2

¼ 2

b

bs2ðs� 1Þ2

ðb � 1Þðs� bÞ

ðs� 1Þ þ ðs� 1Þ2 � bs2ðs� 1Þ2

ðb � 1Þðs� bÞ

" #1=28<
:

9=
;

2
:

Taking b-0 we obtain

lim sup
jwj-N;uAMb

jxj
jwjp

s2

2ðb � 1Þðs� bÞ;

which works out to (5.4). &

Remark 5.6. By Proposition 4.2 we have along trajectories in Mb\A that

lim inf
t-�N

jxðtÞj
jwðtÞj ¼ 0; lim inf

t-�N

jwðtÞj ¼ N:
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