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Abstract

The extended coherent state model is further extended as to describe two dipole bands of different parities. The formalism provides a consistent
description of eight rotational bands. A unified description for spherical, transitional and deformed nuclei is possible. Projecting out the angular
momentum and parity from a sole state, the Kπ = 1+ band acquires a magnetic character, while the electric properties prevail for the other band.
New signatures for a static octupole deformation are pointed out. Interesting features concerning the decay properties of the two bands are found.
For illustration the formalism was applied to 172Yb and results are compared with the available data.
 2006 Elsevier B.V.
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The field of negative parity bands became very attractive
when the first suggestions for a static octupole deformation
were advanced by Chassman [1] and Moller and Nix [2]. Since
a nuclear shape with octupole deformation does not exhibit
a space reflection symmetry and on the other hand a sponta-
neously broken symmetry leads to a new nuclear phase, one
expects that the octupole deformed nuclei have specific proper-
ties. The main achievements of this field have been reviewed in
Refs. [3–5].

Identifying the nuclei which have static octupole deforma-
tion seems to be a difficult task. Indeed, because there is no
measurable quantity for the octupole deformation, some indi-
rect information about this variable should be found. Several
properties are considered as signatures for octupole deforma-
tion: (a) In some nuclei like 218Ra, the state 1−, the head of the
Kπ = 0− band, has a very low position and this is an indica-
tion that the potential energy has a flat minimum, as a function
of the octupole deformation. (b) The parity alternating struc-
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ture in ground and the lowest 0− bands suggests that the two
bands may be viewed as being projected from a sole deformed
intrinsic state, exhibiting both quadrupole and octupole defor-
mations. (c) A nuclear surface with quadrupole and octupole
deformations might have the center of charge in a different
position than the center of mass, which results in having an
electric dipole moment which may excite the state 1− from the
ground state, with a large probability. The list is not complete
and thereby any new signature for this new nuclear phase de-
serves a special attention.

Few years ago we considered this subject within a phenom-
enological framework. Thus, in Refs. [6–9] we extended the
coherent state model (ECSM) [10] to the negative parity bands.
To the lowest positive parity bands, named ground (g+), beta
(β+) and gamma (γ +), one associates three negative bands, g−,
β−, γ −, respectively. The six bands are obtained by projecting
out the angular momentum and the parity from three orthogonal
functions which exhibit both quadrupole and octupole deforma-
tions The intrinsic function for the ground as well as for the
Kπ = 0− bands is a product of coherent states with respect
to the zero components of the quadrupole (b†

2µ) and octupole
(b†

3µ) bosons. The other two pairs of different parity bands are
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generated by polynomial quadrupole boson excitations of the
ground band. The excitations are chosen such that the resulting
functions are orthogonal before and after projecting the angular
momentum and parity.

Thus, the intrinsic states for ground, beta and gamma bands
are:

Ψg = ef (b
†
30−b30)ed(b

†
20−b20)|0〉(3)|0〉(2),

(1)Ψβ = Ω
†
βΨg, Ψγ = Ω†

γ Ψg,

where the excitation operators have the expressions:
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The notation |0〉(k) stands for the vacuum state of the 2k-pole
boson operators. Obviously, the states (1) do not have good
space reflection symmetry. Since in the laboratory frame this
symmetry is valid, it should be restored by a projection proce-
dure. Thus, one generates six sets of mutually orthogonal states:

(3)ϕ
(i,k)
JM = N (i,k)

J P J
MKi

Ψ
(k)
i , k = ±; i = g,β, γ,

N (i,k)
J are renormalization factors, while P J

MKi
is the angular

momentum projection operator for Ki = 2δi,γ . The function

Ψ
(k)
i is the component of parity k of the intrinsic state Ψi .

Within the boson space spanned by the projected states, one
considers the following effective quadrupole and octupole bo-
son Hamiltonian

H = A1
(
22N̂2 + 5Ω

†
β ′Ωβ ′

) +A2Ω
†
βΩβ +AJ

�J 2 +B3N̂3

(4)+B1N̂3
(
22N̂2 + 5Ω

†
β ′Ωβ ′

) +A(J23)
�J2 �J3.

The angular momentum carried by the 2k-pole bosons is de-
noted by Ĵk . If �J 2 is restricted to �J 2

2 , the first three terms from
Eq. (4) define the Hamiltonian used by the coherent state model
(CSM) for ground, beta and gamma bands. Here N̂k , k = 2,3
denotes the 2k-pole boson number operators and Ω

†
β ′ stands for

the following second order invariant: Ω
†
β ′ = (b

†
2b

†
2)0 − d2/

√
5.

Arguments supporting this choice for the model Hamiltonian
are given in Refs. [6,9].

As shown in Ref. [10], the projected states are linear super-
position of states with definite K-quantum number. However,
in the asymptotic limit of the deformation parameter, a sin-
gle K component is prevailing for each set. Assigning to each
band its major K , one may say that the set of projected states
given by Eq. (3) comprises two Kπ = 0+, two Kπ = 0−, one
Kπ = 2+ and one Kπ = 2− subsets. In the boson basis of pro-
jected states, the only nonvanishing matrix elements of the ef-
fective Hamiltonian are relating gk and γ k (k = ±) states. The
eigenvalues of H depend on the structure coefficients and two
deformation parameters d and f . The eight parameters were
fixed by a least square procedure in order to fit the available
experimental excitation energies. The interpretation of these pa-
rameters is given in Ref. [11].
The procedure is interesting not only because is able to de-
scribe a relatively large volume of data with a relatively small
number of parameters but also because it provides a consistent
description of the rotational degrees of freedom. Indeed, all for-
malisms based on quadrupole and octupole boson interaction
overestimate the rotational degrees of freedom contribution.
That happens since in the intrinsic frame the Eulerian angles
associated to the quadrupole and octupole coordinates are inde-
pendent variables. Such a redundancy is automatically removed
in the present formalism due to the projection operation. An-
other salient feature of the coherent state formalism consists
of that it represents the ideal framework for the description of
the semiclassical aspects of the collective motion. In particu-
lar it provides a suitable description for the high spin states,
where the nuclear system behaves semiclassically, as well as for
the quadrupole and octupole deformed systems. Moreover, the
mechanism for a static octupole deformation is different [11]
from the traditional one where a fourth order octupole boson
term is necessary [12]. As we mentioned before an octupole
shaped system may have nonvanishing electric dipole moment.
Also, due to the fact that the angular momentum is built up
by both quadrupole and octupole bosons one expects that the
magnetic properties in a given state depend on its boson compo-
sition. Such properties are expected to be met in dipole bands.

Here, we enlarge the number of bands treated by ECSM,
considering the dipole parity partner bands. A possible solution
for the intrinsic state generating the dipole bands is

(5)Ψ (1,±) = Ω
†
3b
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31Ψ
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From these states, two sets of angular momentum projected
states are obtained, which are hereafter denoted by φ

1,±
JM . These

states are weakly coupled to the states of other bands by the
B1 and B3 terms. Moreover, these terms give large contribution
to the diagonal matrix elements involving the projected dipole
states. Aiming at describing quantitatively the properties of the
dipole states two terms are added to the model Hamiltonian

(6)	H = C1Ω
†
3Ω3 + C2Ω

†
3 N̂2Ω3.

The new terms affect only the diagonal matrix elements of
the dipole states. Their strengths are fixed as follows: C2 is de-
termined so that the corresponding contribution to a particular
state energy, in the negative dipole band, cancels the one com-
ing from the B1 term. C1 is fixed so that the measured excitation
energy of the state 1− is reproduced. With the parameters deter-
mined in this way, the effect of the off diagonal terms, caused
by B1 and B2, on the energies of the two dipole bands, amounts
to few keV. Due to this feature, the energies of the two dipole
bands are obtained as the corresponding average values of the
model Hamiltonian H + 	H .

Here we give the results for 172Yb were members of the
Kπ = 1− band up to spin 14− have been identified with the
170Er(α,2n)172Yb reaction in Ref. [13]. Also few energy lev-
els from the Kπ = 1+ band are available [14]. The option
for this isotope is justified by the fact that by contrast to the
other nuclei where only very few Kπ = 1− states are identi-
fied and moreover in most cases the positive dipole states are
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missing, here the energies of a reasonable large number of di-
pole states are known and also data for the branching ratios of
the E1 transitions to the ground band states are available. To
conclude, we consider this isotope the best candidate to test
the formalism proposed. Concerning the nature of the dipole
states our comments are as follows. Many authors believe that
the states of nonvanishing K cannot be of collective nature. To
give an example, the authors of Ref. [13] invoke the arguments
from Ref. [15] and interpret the dipole states of negative par-
ity as two quasi-neutron states. As one of us (A.F.) concluded
in Ref. [16], based on microscopic studies with surface delta
interaction, the Kπ = 1−,2− bands of some actinides have,
however, a collective nature. On the other hand the microscopic
interpretation of the negative parity states, as two or four quasi-
particle states seems not to be unique. For example the double
bending, one back and one forward, seen in the ground and
0− bands of 218Ra, interpreted in Ref. [17] as caused by suc-
cessive intersections of a collective band, a two neutron and a
two neutron plus two proton quasiparticle bands, are fairly well
reproduced by the phenomenological description provided by
ECSM [9]. Although the dipole states for 172Yb are considered
in Ref. [13] as two quasi-neutron states, the branching ratios
of the Kπ = 0−,1− low lying states are realistically described
within an IBA-sdf formalism in Ref. [18]. In the examples men-
tioned above the effect of single particle degrees of freedom
is simulated by the competition between various anharmonic
terms involved in the model Hamiltonian or in the transition
operator. Since the head states of the negative parity bands
are high in energy, one expects that at least the first states in
the bands do not exhibit octupole deformation. This does not
matter at all our investigation since ECSM is able to describe
the negative parity states for both octupole deformed and oc-
tupole nondeformed nuclei[8]. Actually, the mentioned expec-
tation is confirmed by the behavior of the second order energy
displacement function for the g± and β± pairs of bands, respec-
tively [19]. However this function, considered for the γ bands,
vanish for J = 11− and 11+ which suggests that the energies
of these states have identical A[J (J +1)]2 pattern. This feature
might infer that the two states correspond to the same intrinsic
function exhibiting both quadrupole and octupole deformation.
Of course, the mentioned intrinsic state might generate, by pro-
jecting out the angular momentum and parity, two bands which
are different from the γ ± bands. It clearly results that bands
intersection does not exclude the settlement of the octupole de-
formation. In this respect it is worth investigating the behavior
of the first and second order energy displacement function as-
sociated to the two dipole bands.

The parameters d,f,A1,A2,AJ ,B1 are kept the same as
in Ref. [9] while the remaining ones are given in Table 1. The
strengths of the 	H terms were determined as explained be-
fore while AJ23,B3 were slightly varied around the values ob-
tained in the above quoted reference, in order to improve the
agreement in the negative parity dipole band. Energies of the
Kπ = 1+ band are free of adjustable parameters.

The term 	H given by Eq. (6) produces an energy shift
of −3.562 and −3.801 MeV for the band-head states 1− and
1+, respectively.This energy shift compensates the excessive
Table 1
The coefficients involved in the model Hamiltonian given in units of keV

AJ23 B3 C1 C2

4.70 8328 −8853 594.45

Fig. 1. Theoretical (Th.) and available experimental (Exp.) excitation ener-
gies for the Kπ = 1− and Kπ = 1+ in 172Yb. Experimental data are from
Refs. [13,14].

Fig. 2. The dynamic moment of inertia for the dipole bands of positive and
negative parity corresponding to the calculated and experimental energies re-
spectively, is plotted as function of the angular momentum.

contribution to the excitation energies of the two dipole states
caused by the harmonic octupole term B3. Calculated ener-
gies for g±, β±, γ ± are practically the same as in Ref. [9] and
therefore are not given here. As shown in Fig. 1, the energy
levels of negative parity dipole bands are staggered in doublets
(J−, (J + 1)−) with J -even. The staggering is present also in
the Kπ = 1+ band with the difference that the doublets are of
(odd, even) type. Excitation energies in the two dipole bands
are used to calculate the dynamic moment of inertia which is
presented in Fig. 2 as a function of angular momentum. The
available experimental data are also given. Below J = 22, J (2)

has a saw-teeth structure for both dipole bands. For the 1+
band the moments of inertia of odd and even spins are lying on
smooth curves, respectively. The curve of odd spins lies above
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Fig. 3. The energy displacement functions δE (left panel) and 	E (right panel),
given by Eq. (7), are plotted as functions of J .

that of even spins. The same is true for the negative band with
the difference that here the even spin states have larger moments
of inertia than the odd-spin ones. Starting with J = 19 the odd
spin states of positive parity and even spin states with nega-
tive parity have an interleaved structure. The remaining states
have also an interleaved structure and moreover the two inter-
leaved curves approach each other, when J is increased. The
question is whether this interleaved structure suggests that the
octupole deformation is set on. In order to answer this question
we plotted in Fig. 3 the first and second order energy displace-
ment functions defined as

δE
(
J−) = E

(
J−) − (J + 1)E((J − 1)+) + JE((J + 1)+)

2J + 1
,

	E1,γ (I ) = 1

16

[
6E1,γ (I ) − 4E1,γ (I − 1) − 4E1,γ (I + 1)

+ E1,γ (I − 2) + E1,γ (I + 2)
]
,

(7)E1,γ (I ) = E(I + 1) − E(I).

The two functions vanish or almost vanish for J = 18,19. Thus,
one may say that a static octupole deformation shows up only
for one state in each dipole band. However the E1 transition to
the ground band does not show a jump for these angular mo-
menta since the final state exhibits no deformation. It is worth
mentioning that for Jπ = 19+, the M1 branching ratio to the
Kπ = 0− states gets the largest value in the band. In the right
panel of Fig. 3, two sets of data were plotted, one having 1+ as
the lowest state (black square) while for the other one, 1− is the
lowest state (full circle). The parity assignment in the expres-
sion of 	E is as follows. The states whose angular momenta
differ by two units have the same parity while those which dif-
fer by unity are of different parities. We note that 	E exhibits
a node and a beat pattern with a large period.

Within ECSM it is possible to calculate the angle between
the angular momenta carried by the quadrupole and octupole
bosons respectively, in a dipole state.

(8)cosϕ = 〈φ(k)
JM | �J2. �J3|φ(k)

JM 〉√
〈φ(k)

JM |Ĵ 2
2 |φ(k)

JM 〉〈φ(k)
JM |Ĵ 2

3 |φ(k)
JM 〉

, k = 1,±.
Fig. 4. The angle between the angular momenta carried by the quadrupole and
octupole bosons respectively, in the states of dipole (a) and g± (b) bands, vs.
angular momentum.

Similarly, one may define the angle characterizing the other
parity partner bands. In Fig. 4 we plot the angle vs. angular
momentum for the dipole (left panel) as well as for g± bands.
It is remarkable the fact that for the ground bands, excepting
the state 0+ which is characterized by an angle equal to π ,
the function is almost constant and quite close to π/2. This
feature suggests that adding a third component (e.g., a set of
particles) to the present Hamiltonian, the new system may ex-
hibit a chiral symmetry [20]. Similar J -dependence for the an-
gles in β± and γ ± bands was obtained. A saw-teeth structure
for the angle characterizing the dipole states is to be noticed.
Again the function restricted to odd or even spins have a smooth
decreasing behavior. The two components �J2 and �J3 are orthog-
onal for Jπ ≈ 10−,11+. The angle characterizing the states
J−, J = even decreases slowly reaching the value of 72◦ for
J = 30. For the J+ states with J = odd, the angle decreases
faster and reaches the value 60◦ for J = 29. The angle lower
limits for J− with J -odd and J+ with J -even are about 30◦
and 40◦, respectively. For Jπ = 18+,19− where the static oc-
tupole deformation is settled, the ( �J2, �J3) angle is about π/3.

Concerning the decay properties of these bands, our analysis
leads to the following conclusions. The Kπ = 1+ band may
decay by M1 to g+. Transition is caused by an anharmonic term
of the transition operator

(9)Manh
1µ =

√
3

4π
g′

2

[
J (2)

(
b

†
3b

†
3

)
2

]
1µ

.

The branching ratio (J → (J + 1))/(J → (J − 1)), with J =
odd, has an oscillating behavior as a function of J . For J = 1
the ratio’s value is 0.369µ2

N , then it decreases to the value
0.02µ2

N achieved for J = 9 and again increases up to 1443µ2
N

for J = 19. We recall that for this spin the energy displacement
function vanishes, which suggests that a static octupole defor-
mation is settled. Increasing J the ratio decreases and attains
the value 37.3µ2

N for J = 29. Intraband transitions are mainly
determined by the lowest order boson expansion of the transi-
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Fig. 5. Results for the branching ratios characterizing the transitions of
Kπ = 1− states to the ground band states (triangle), are compared with the cor-
responding experimental data (square) taken from Ref. [14]. The transition op-
erator used is T1µ = T h

1µ
+T anh

1µ
with the anharmonic term defined by Eq. (11).

All ratios correspond to the relative effective charge qanh/q1 = −1.722 where
q1 denotes the strength of the harmonic term.

tion operator

(10)Mh
1µ =

√
3

4π

[
g2J

2
µ + g3J

(3)
µ

]
.

The gyromagnetic factors have the same values as in Ref. [21].
In the band Kπ = 1+, the transitions J → (J − 1) with J -even
dominate those for J -odd. Moreover the B(M1) values in-
creases with J from 0.258µ2

N for J = 2 up to 4.2µ2
N when

J = 30. In the Kπ = 1− band, the M1 transitions J → (J − 1)

with J -odd prevail. They are also increasing functions of J ,
the values for J = 3 and J = 29 being 0.39µ2

N and 1.923µ2
N ,

respectively. The B(E1) values for the Kπ = 1+ to the g−
band transitions, have been calculated by using the lowest or-
der boson expression for the E1 transition operator. The ratio
(J → J +1)/(J → J −1) with J -even is a monotonic function
of J in the interval 4–28 varying from 1.3 to 10.13. For J = 2
the ratio value is 2.64. Concerning the E1 decay of the negative
dipole band to the ground band the results are as follows. The
E1 branching ratio (J → J +1)/(J → J −1) with J -odd, is in-
creasing monotonically with J in the interval 9-29, from 7.197
to 14.234. For J = 1,3,5,7 the values are 28.7; 2.06; 1.31
and 8.28, respectively. Comparing the results obtained with a
harmonic transition operator with the corresponding data one
notices that except for the ratios corresponding to Jπ = 3−,5−
where the agreement is very good, the other theoretical results
exceed the data by a factor varying from 3 to 6. In order to im-
prove the agreement with the data we added to the harmonic
term T h

1µ, defined as in Ref. [11], an anharmonic term involv-
ing the quadrupole and octupole like angular momenta:

(11)T anh
1µ = qanh

{[
b

†
3(Ĵ3Ĵ2)2

]
1µ

+ [
(Ĵ2Ĵ3)2b3̃

]
1µ

}
.

As shown in Fig. 5 the results of our calculations agree reason-
able well with the experimental data [14].
Concluding, the merit of the present formalism consists of
that it provides a consistent description of spectroscopic prop-
erties of eight rotational bands grouped in four pairs. The mem-
bers of each pair have different parities otherwise exhibit the
common feature of originating from a single intrinsic state. Let-
ting the deformation parameters go to zero the description for
the quasi-rotational bands in the vibrational nuclei is readily
obtained. Thus, one may say that the present formalism is suit-
able for a unified description of vibrational, transitional and de-
formed nuclei. Here the focus falls on the dipole bands. Specific
properties concerning excitation energies, E1 and M1 transi-
tion probabilities are pointed out. The inter and intra-band M1
transitions can be discussed in terms of the ( �J2, �J3) angle. Sig-
natures for static octupole deformation are tentatively attributed
only to one positive and one negative parity dipole state. The
positive parity state having static octupole deformation exhibits
large M1 branching ratio to the ground band. One of the major
points made in this Letter asserts that the parity projection op-
eration separates the magnetic and electric properties. Indeed,
the M1 transition probabilities prevail for the 1+, while the E1
transitions associated to the 1− band, are dominant. The nu-
merical application shows that the ECSM provides a consistent
description of both energies and the E1 branching ratios char-
acterizing the electric dipole band in 172Yb. More experimental
data for excitation energies as well as for transition probabili-
ties for both octupole deformed and spherical nuclei are needed
in order to draw definite conclusions about possible fingerprints
of octupole deformation in the dipole bands.
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